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CHAPTER11
Introduction
1.1 GENERAL REMARKS

Steel and steel-concrete composite bridges are commonly used all over the

world, owing to the fact that they combine both magnificent aesthetic

appearance and efficient structural competence. Their construction in a

country not only resembles the vision and inspiration of their architects

but also represents the country’s existing development and dream of a better

future. Compared to traditional reinforced concrete (RC) bridges, steel

bridges offer many advantages, comprising high strength-to-self weight

ratio, speed of construction, flexibility of construction, flexibility to modify,

repair and recycle, durability, and artistic appearance. The high strength-to-

self weight ratio of steel bridges minimizes dead loads of the bridges, which is

particularly beneficial in poor ground conditions. Also, the high strength-to-

self weight ratio of steel bridges makes it easy to transport, handle, and erect

the bridge components. In addition, it facilitates very shallow construction

depths, which overcome problems with headroom and flood clearances, and

minimizes the length of approach ramps. Furthermore, high strength-to-self

weight ratio of steel bridges permits the erection of large components, and in

special circumstances, complete bridges may be installed in quite short

periods. The speed of construction of steel bridges is attributed to the fact

that most of the bridge components can be prefabricated and transported

to the construction field, which reduces working time in hostile environ-

ments. The speed of construction of steel bridges also reduces the durations

of road closures, which minimizes disruption around the area of construc-

tion. Flexibility of construction of steel bridges is attributed to the fact

that the bridges can be constructed and installed using different methods

and techniques. Installation may be conducted by cranes, launching,

slide-in techniques, or transporters. Steel bridges give contractors the flex-

ibility in terms of erection sequence and program. The bridge components

can be sized to suit access restrictions at the site, and once erected, the steel

girders provide a platform for subsequent operations. Flexibility to modify,

repair, and recycle steel bridges is a result of the ability to modify the current

status of the bridges such as widening the bridges to accommodate more

lanes of traffic. Also, steel bridges can be repaired or strengthened by adding
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steel plates or advanced composite laminates to carry more traffic loads. In

addition, if for any reason, such as end of their life of use or change of envi-

ronment around the area, steel bridges can be recycled. Steel bridges are

durable bridges, provided that they are well designed, properly maintained,

and carefully protected against corrosion. Finally, steel bridges can fit most of

the complex architecture designs, which in some cases are impossible to

accommodate using traditional RC bridges.

Highway bridges made of RC slabs on top of the steel beams can be effi-

ciently designed as composite bridges to get the most benefit from both the

steel beams and concrete slabs. Steel-concrete composite bridges offer addi-

tional advantages to the aforementioned advantages of steel bridges. Com-

pared to steel bridges, composite bridges provide higher strength, higher

stiffness, higher ductility, higher resistance to seismic loadings, full usage

of materials, and particularly higher fire resistance. However, these advan-

tages are maintained, provided that the steel beams and concrete slabs are

connected via shear connectors to transmit shear forces at the interface

between the two components. This will ensure that the two components

act together in resisting applied traffic loads on the bridges, which will result

in significant increases in the allowable vehicular weight limitations, ability

to transport heavy industrial and construction equipment, and possibility to

issue overload permits for specialized overweight and oversized vehicles.

One of the main advantages of having steel beams acting together with con-

crete slabs in composite bridges is that premature possible failures of the two

separate components are eliminated. For example, one of the primary modes

of failure for concrete bridges is cracking of the concrete slabs and beams in

tension, while for the steel bridges, the possible modes of failure are the for-

mation of plastic hinges and the buckling of webs or flanges. By having the

steel beams work together with the concrete slab, the whole slab will be

mainly subjected to compressive forces, which reduces the possibility of ten-

sile cracking. On the other hand, the presence of the concrete slab on top of

the steel beams eliminates the buckling of the top flange of the steel beams.

Efficient design of steel-concrete composite bridges can ensure that both the

steel beams and concrete slabs work together in resisting applied traffic loads

until failure occurs in both components, preferably at the same time, to get

the maximum benefit from both components.

Numerous books were found in the literature highlighting different

aspects of design for steel and steel-concrete composite bridges; for exam-

ples, see [1.1–1.11]. The books highlighted the problems associated with

the planning, design, inspection, construction, and maintenance of steel
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and steel-concrete composite bridges. Overall, the books discussed the basic

concepts and design approaches of the bridges, design loads on the bridges

from either natural or traffic-induced forces, and design of different compo-

nents of the bridges. On the other hand, numerous finite element books are

found in the literature; for examples, see [1.12–1.18], explaining finite ele-

ment method as a widely used numerical technique for solving problems in

engineering and mathematical physics. The books [1.12–1.18] were written

to provide basic learning tools for students mainly in civil and mechanical

engineering classes. The books [1.12–1.18] highlighted the general princi-

ples of finite element method and the application of this method to solve

practical problems. However, limited investigations, with examples detailed

in [1.19, 1.20], are found in the literature in which researchers used finite

element method in analyzing case studies related to steel and steel-concrete

composite bridges. Recently, with continuing developments of computers

and solving and modeling techniques, researchers started to detail the use of

finite element method to analyze steel and steel-concrete composite bridges,

with examples presented in [1.21, 1.22]. Also, extensive experimental and

numerical research papers were found in the literature highlighting finite

element analysis of steel and steel-concrete composite bridges, which will

be detailed in Section 1.3. However, up-to-date, there are no detailed books

found in the literature addressing both finite element analysis and design of

steel and steel-concrete composite bridges, which is credited to this book.

The current book will present, for the first time, explanation of the latest

finite element modeling approaches specifically as a complete piece work

on steel and steel-concrete composite bridges. This finite element modeling

of the bridges will be accompanied by design examples for steel and steel-

concrete composite bridges calculated using current codes of practice.

There are many problems and issues associated with finite element

modeling of steel and steel-concrete composite bridges in the literature that

students, researchers, designers, practitioners, and academics need to address.

Incorporating nonlinear material properties of the bridge components in

finite element analyses has expanded tremendously over the last decades.

In addition, computing techniques are now widely available to manipulate

complicated analyses involving material nonlinearities of the bridge compo-

nents. This book will highlight the latest techniques of modeling nonlinear

material properties of the bridge components. Also, simplified analytic solu-

tions were derived to predict the distribution of forces and stresses in differ-

ent bridge components based on many assumptions and limitations.

However, accurate analyses require knowledge of the actual distribution
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of forces and stresses in the component members, which is the target of the

nonlinear finite element modeling approach detailed in this book. In addi-

tion, in case of steel-concrete composite bridges, if the slab cracks under

heavy traffic loads or the steel beam yields or buckles, it becomes extremely

important to know the location of failure, the postfailure strength of the

component that has failed, and the manner in which the forces and stresses

will redistribute themselves owing to the failure. Once again, traditional

simplified analyses cannot account for these complex failure modes because

no interaction between bridge components was considered. The finite ele-

ment modeling approach aimed in this book will capture all possible failure

modes associated with steel-concrete composite bridges. It should also be

noted that while simplified design methods have been developed to predict

the ultimate capacity of steel bridges or their components, none of these

methods adequately predicts the structural response of the bridge in the

region between design load levels and ultimate capacity load levels. There-

fore, the proposed finite element modeling approach will reliably predict

both the elastic and inelastic responses of a bridge superstructure as well

as the structural response in the region between the design limit and the ulti-

mate capacity. Another complex issue is the slip at the steel-concrete inter-

face in composite bridges that occurs owing to the deformation of shear

connectors under heavy traffic loads. This parameter also cannot be consid-

ered using simplified design methods and can be accurately incorporated

using finite element modeling. The aforementioned issues are only examples

of the problems associated with modeling of steel and steel-concrete com-

posite bridges. Overall, this book provides a collective material, for the first

time, for the use of finite element method in understanding the actual

behavior and correct structural performance of steel and steel-concrete com-

posite bridges.

Full-scale tests on steel and steel-concrete composite bridges are quite

costly and time-consuming, which resulted in a scarce in test data for differ-

ent types of bridges. The dearth in the test data is also attributed to the con-

tinuing developments, over the last decades, in the cross sections of the

bridges and their components, material strengths of the bridge components,

and applied loads on the bridges. Therefore, design rules specified in current

codes of practice for steel and steel-concrete composite bridges are mainly

based on small-scale tests on the bridges and full-scale tests on the bridge

components. In addition, design rules specified in the American Specifica-

tions [1.23–1.25], British Standards [1.26], and Eurocode [1.27, 1.28] are

based on many assumptions, limitations, and empirical equations. An
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example of the shortcomings in current codes of practice for steel-concrete

composite bridges is that, up-to-date, there are no design provisions to

consider the actual load-slip characteristic curve of the shear connectors used

in the bridges, which results in partial degree of composite action behavior.

This book will detail, for the first time, how to consider the correct and

actual slip occurring at the steel-concrete interface in composite bridges

through finite element modeling. This book will highlight the latest numer-

ical investigations performed in the literature to generate more data, fill in

the gaps, and compensate the lack of data for steel and steel-concrete com-

posite bridges. This book also highlights the use of finite element modeling

to improve and propose more accurate design guides for steel and steel-

concrete composite bridges, which are rarely found in the literature. In addi-

tion, this book contains examples for finite element models developed for

different steel and steel-concrete composite bridges as well as worked design

examples for the bridges. The author hopes that this book will provide the

necessary materials for all interested researchers in the field of steel and steel-

concrete composite bridges. Furthermore, the book can also act as a useful

teaching tool and help beginners in the field of finite element analysis and

design of steel and steel-concrete composite bridges. The book can provide

a robust approach for finite element analysis of steel and steel-concrete com-

posite bridges that can be understood by undergraduate and postgraduate

students.

The book consists of seven well-designed chapters covering necessary

topics related to finite element analysis and design of steel and steel-concrete

composite bridges. This chapter provides a general background for the types

of steel and steel-composite bridge and explains the classification of bridges.

The chapter also presents a brief review for the components of the bridges

and how the loads are transmitted by the bridge to the ground. The chapter

also gives an up-to-date review for the latest available investigations carried

out on steel and steel-concrete composite bridges. The chapter focuses on

main issues and problems associated with the bridges and how they are han-

dled in the literature. The chapter also introduces the role of finite element

modeling to provide a better understanding of the behavior of bridges.

Finally, this chapter highlights the main current codes of practice used for

designing steel and steel-concrete composite bridges.

Chapter 2 focuses on the nonlinear material behavior of the main com-

ponents of steel and steel-concrete composite bridges comprising steel, con-

crete, reinforcement bars, shear connectors, etc. The chapter presents the

stress-strain curves of the different materials used in the bridges and defines
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the important parameters that must be measured experimentally and incor-

porated in the finite element modeling. The definitions of yield stresses, ulti-

mate stresses, maximum strains at failure, initial stiffness, and proportional

limit stresses are presented in the chapter. The chapter enables beginners

to understand the fundamental behavior of the materials in order to correctly

insert them in the finite element analyses. Covering the behavior of shear

connectors in this chapter is important to understand how the shear forces

are transmitted at the steel-concrete slab interfaces in composite bridges. In

addition, the chapter presents how the different materials are treated in cur-

rent codes of practice.

Chapter 3 presents the different loads acting on steel and steel-concrete

composite bridges and the stability of the bridges when subjected to these

loads. The chapter starts by showing the dead loads of steel and steel-

concrete composite bridges that are initially estimated for the design of brid-

ges. Then, the chapter moves to explain how the live loads from traffic were

calculated. After that, the chapter presents the calculation of wind loads on

the bridges and highlights different other loads that may act on the bridges

such as centrifugal forces, seismic loading, and temperature effects. When

highlighting the loads in this chapter, it is aimed to explain both of the loads

acting on railway and highway bridges. The calculations of the loads are

based on the standard loads specified in current codes of practice. In addi-

tion, the chapter also presents, as examples, the main issues related to the

stability of steel and steel-concrete composite plate girder and truss bridges,

which enable readers to understand the stability of any other type of bridges.

Chapter 4 presents detailed design examples of the components of steel

and steel-concrete composite bridges. The design examples are calculated

based on current codes of practice. The design examples are shown for

the stringers (longitudinal beams of the bridges), cross girders, plate girders,

trusses, bracing systems, bearings, and other secondary members of the brid-

ges. Also, design examples are presented for steel-concrete composite brid-

ges. It should be noted that the aim of this book is to provide all the necessary

information and background related to the design of different bridges using

different codes of practice. Therefore, the design examples presented are

hand calculations performed by the author. The chapter explains how the

cross sections are initially assumed, how the straining actions are calculated,

and how the stresses are checked and assessed against current codes of

practice.

Chapter 5 focuses on finite element analysis of steel and steel-concrete

composite bridges. The chapter presents the more commonly used finite
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elements in bridges and the choice of correct finite element types and mesh

size that can accurately simulate the complicated behavior of the different

components of steel and steel-concrete composite bridges. The chapter

highlights the linear and nonlinear analyses required to study the stability

of the bridges and bridge components. Also, the chapter details how the

nonlinear material behavior can be efficiently modeled and incorporated

in the finite element analyses. In addition, Chapter 5 details modeling of

shear connection for steel-concrete composite bridges. Furthermore, the

chapter presents the application of different loads and boundary conditions

on the bridges. The chapter focuses on the finite element modeling using

any software or finite element package, for example, in this book, the use

of ABAQUS [1.29] software in finite element modeling.

Chapters 6 and 7 present illustrative examples of finite element models

developed to understand the structural behavior of steel and steel-concrete

composite bridges, respectively. The chapters start with a brief introduction

of the presented examples as well as a detailed review of previous investiga-

tions related to the presented examples. The chapters detail how the models

were developed and the results obtained. The presented examples show the

effectiveness of finite element models in providing detailed data that com-

plement experimental data in the field. The results are discussed to show the

significance of the finite element models in predicting the structural response

of the different bridges investigated. Overall, they aim to show that finite

element analysis not only can assess the accuracy of the design rules specified

in current codes of practice but also can improve and propose more accurate

design rules. Once again, it should be noted that in order to cover all the

latest information regarding the finite element modeling of different bridges,

the presented finite element models are developed by the author as well as by

other researchers and previously reported in the literature.

1.2 TYPES OF STEEL AND STEEL-CONCRETE COMPOSITE
BRIDGES

Steel bridges can be classified according to the type of traffic carried to

mainly highway (roadway) bridges, which carry cars, trucks, motorbikes,

etc. with an example shown in Figure 1.1; railway bridges, which carry

trains, with an example shown in Figure 1.2; or combined highway-railway brid-

ges, which carry combinations of the aforementioned traffic as shown in

Figure 1.3. There are also steel bridges carrying pipelines (Figure 1.4), cranes

(Figure 1.5), and pedestrian bridges (Figure 1.6), which are also secondary
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Figure 1.1 A highway arch steel bridge (bikethehoan.com).

Figure 1.2 A railway arch steel bridge (highestbridges.com).

Figure 1.3 A combined highway-railway truss steel bridge (chinatravelguide.com).
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types of this classification. Railway bridges may be constructed such that the

rails rest on sleepers, which rest on the longitudinal beams of the bridge. In

this case, the bridges are called open-timber floor railway bridge and commonly

used outside towns as shown in Figure 1.7. Alternatively, railway bridges

Figure 1.4 An arch steel bridge carrying pipelines (civilenginphotos.blogspot.com).

Figure 1.5 A crane truss steel bridge (paperstreet.iobb.net).

Figure 1.6 A pedestrian arch steel bridge (photos.uc.wisc.edu).
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may be constructed such that the rails rest on sleepers, which rest on compact

aggregates confined by a RC box transmitting the load straightaway to the

main structural system. In this case, the bridges are called ballasted floor railway

bridges and commonly used in towns as shown in Figure 1.8. Railway bridges

with no concrete slabs on top of the carrying steel beams are called railway

steel bridges (Figure 1.2). On the other hand, highway bridges constructed

such that the concrete slabs are connected to the steel beams underneath

via shear connectors ensuring that the two components act together in resist-

ing traffic loads are called highway steel-concrete composite bridges as shown in

Figure 1.9. Figure 1.9 shows a steel-concrete box girder composite bridge

under construction where headed stud shear connectors are used to connect

both the concrete slab and the steel box girder section.

Steel and steel-concrete composite bridges (highway or railway) can be

classified according to the type of the main structural system considered in

the design of the bridges to plate girder bridges, box girder bridges, rigid-frame

bridges, truss bridges, arch bridges, cable-stayed bridges, suspension bridges, and

Figure 1.7 An open-timber floor bridge (123rf.com).

Figure 1.8 A ballasted floor bridge (hothamvalleyrailway.com).
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orthotropic floor bridges. Plate girder bridges are the bridges having their main

carrying structural system made of plate I-shaped girders, which are suitable

for simply supported spans up to 40 m. For normal bridge cross-section

widths (less than or equal 10 m), twin plate girder bridges may be used.

Otherwise, multiple plate girders can be used as main structural systems

transmitting different loads to foundations, as shown in Figure 1.10. Box

girder bridges (see Figure 1.11) are the bridges having their main structural

system made of box-shaped girders, which are suitable for continuous spans

up to 300 m. Rigid frame bridges (see Figure 1.12) are the bridges having

their main structural system made of rigid frames, which are suitable for

continuous spans up to 200 m. Truss bridges (see Figure 1.3) are the bridges

having their main structural system made of trusses, which are suitable for

simple and continuous spans from 40 to 400 m. Arch bridges (see Figures 1.1,

1.2, 1.4, and 1.6) are the bridges having their main structural system made of

arches, which are suitable for simple and continuous spans from 200 to

500 m. Cable-stayed bridges (see Figure 1.13) are the bridges having

their main structural system made of cables hung from one or more towers,

which are economical when the spans are in the range of 200 to 800 m.

Suspension bridges (see Figure 1.14) are the bridges having their main

structural system made of decks suspended by cables stretched over the

bridge span, anchored to the ground at two ends, and passed over towers

at or near the edges of the bridge, which are, similar to cable-stayed bridges,

economical when the spans are in the range of 200 to 1000 m. Finally,

orthotropic floor bridges (see Figure 1.15) are the bridges having their main

structural system made of structural steel deck plate stiffened either

Figure 1.9 A steel-concrete composite box girder bridge under construction (mto.gov.
on.ca).
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Figure 1.11 A box girder bridge (alviassociates.com).

Figure 1.10 A multiplate girder bridge (haks.net).

Figure 1.12 A rigid-frame bridge (en.structurae.de).
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longitudinally or transversely, or in both directions. The orthotropic deck

may be supported straightaway on the main structural system such as plate

girder and truss or supported on a cross girder transmitting the load to the

main structural system.

Steel and steel-concrete composite bridges can also be classified accord-

ing to the position of the carriageway relative to the main structural system

to deck bridges, through bridge, semi-through bridge, and pony bridge. Deck bridges

are the bridges having their carriageway (highway or railway) resting on top

of the main structural system as shown in Figures 1.1 and 1.2 and the high-

way bridge in Figure 1.3. Through bridges are the bridges having their car-

riageway resting on the bottom level of the main structural system and the

top level of the main structural system is above the carriage as shown for the

railway bridge in Figure 1.3. In this case, a top-bracing system can be

installed at the top level of the main structural system. Semi-through bridges

Figure 1.13 A cable-stayed bridge (bridgemeister.com).

Figure 1.14 A suspension bridge (ikbrunel.org.uk).
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are the bridges having their carriageway resting between the bottom and top

levels of the main structural system and the top level of the main structural

system is below the carriage, with an example shown in Figure 1.16. In this

case, a top-bracing system cannot be installed at the top level of the main

structural system. Finally, pony bridges are semi-through bridges having

their carriageway resting on the bottom level of the main structural system

and the top level of the main structural system is below the carriage as shown

in Figure 1.17. In this case, similar to semi-through bridges, a top-bracing

system cannot be installed at the top level of the main structural system. It

should be noted that most of modern bridges are fabricated in workshops

and transferred to the construction field. Also, most of modern bridges

are fabricated such that the main structural system components are

Figure 1.15 An orthotropic steel floor truss bridge (steelconstruction.info).

Figure 1.16 A semi-through truss bridge under construction (steel-trussbridge.com).
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connected by welding to replace the old-fashioned riveted bridge shown in

Figure 1.18. However, in case of continuous bridges and long-span bridges,

it is more convenient to divide the bridge into separate welded parts that are

connected to the construction field by bolted connections.

Let us now look in more detail to the structural components of a tra-

ditional railway bridge. Figure 1.19 shows the general layout of a double-

track open-timber floor plate girder railway steel bridge. A train track of

this railway bridge consists of a pair of rails resting on timber sleepers.

For a single track, the sleepers are supported by two longitudinal steel

beams known as stringers. The stringers are spaced at specified distances

(a3), given by the national code of practice in the country of construction,

depending on the spacing between rails and the spacing between center-

lines of trains (a2), in case of more than a single track. The stringers are

supported on cross steel beams known as cross girders. The cross girders

Figure 1.18 An old-fashioned riveted truss bridge (pbase.com).

Figure 1.17 A pony truss bridge (bphod.com).
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are supported by two, in this case of bridges (Figure 1.19), longitudinal

main steel beams known as main plate girders, which are the main structural

system for this type of bridges. The main plate girders are supported on

supports called “bearings” such as the hinged and roller bearings shown in

Figure 1.19, which rest on foundations or piers, in case bridges are con-

structed over obstacles such as rivers, roads, and seas. The main girders

are spaced at a distance (B), which is the width of the bridge. The moving

L = n×a

a a1

h

Sleepers
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B
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Stiffeners
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Upper wind bracing
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S2 S2
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Cross bracing

Stringers Cross girders

L = n×a

Main plate girder
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Figure 1.19 General layout of a double-track open-timber floor plate girder railway
steel bridge.
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train loads are transmitted from the rails to the sleepers, from the sleepers to

the stringers, from the stringers to the cross girders, from the cross girders

to main plate girders, from the main plate girders to the bearings, from the

bearings to the foundations or piers, and finally from foundations or piers

to the ground. Wind and lateral loads acting on the bridge can be transmit-

ted by systems of horizontal (upper and lower wind bracings) and vertical (cross

wind bracings) bracing systems, which carry out wind loads safely to the

bearings. Also, the stringers can be attached to horizontal systems of brac-

ings called stringer bracing or lateral shock (nosing force) bracing, which transmit

lateral shock (nosing) forces resulting from the moving train safely to cross

girders where it causes additional small axial force on the cross girders. The

web of the main I-shaped plate girder bridge is very sensitive to buckling

since it has a thin thickness compared to its depth. Therefore, the web of

the plate girder is strengthened by vertical and horizontal stiffeners. The

spacing between the vertical stiffeners should be reasonably assumed

(1.5-2 m) not to increase the thickness of the web. Hence, the spacing

between cross girders (a) is dependent on the number of vertical stiffeners

used between two adjacent cross girders. Finally, the length of the bridge

(L) is equal to the number of (a).

The structural components of a traditional highway bridge can be

reviewed as shown in Figure 1.20. The figure shows the general layout of

a through truss highway steel bridge. The bridge has a RC floor supported

by a number of stringers. The stringers are spaced at designed distances (a3)

reasonably assumed between 2 and 3 m. Similar to railway bridges, the

stringers of this type of bridges are supported by cross girders. The cross

girders are supported by two longitudinal trusses, which are the main struc-

tural system for this type of bridges. The main trusses are supported on

hinged and roller bearings, which rest on foundations or piers. The truck

and car loads are transmitted from the RC floor to the stringers, from the

stringers to the cross girders, from the cross girders to the main trusses, from

the main trusses to the bearings, from the bearings to the foundations or

piers, and finally from the foundations or piers to the ground. Wind loads

acting on the bridge can be transmitted by systems of horizontal upper, since

this bridge is a through bridge with enough height to contain traffic in addi-

tion to overhead clearance, and end portal frames, since cross bracing

will close the bridges, which carry out wind loads safely to the bearings.

The bracing systems are also important to define the buckling lengths of

compression members of the main trusses. However, the stringers do not

need a bracing since the RC concrete floor takes care of any lateral and
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longitudinal loads associated with moving traffic. Cross girders must be

aligned with vertical members to avoid adding bending moments to truss

members. Hence, the spacing between cross girders (a) is the spacing

between vertical truss members. The spacing between vertical truss mem-

bers is dependent on the angle of inclined truss members, which is defined

by the height of the vertical members (h) that is dependent on the length of

the bridge (L). The length of the bridge (L) is equal to the number of spacing

between cross girders or vertical truss members (a).

Let us now look at the structural components and general layout of a

steel-concrete composite highway bridge shown in Figure 1.21. The bridge

has a RC floor supported by a number of main I-shaped plate girders.

L = n×a

Elevation Cross-section S-S

Upper wind bracing

Main truss

B
Cross girders

Main truss

Stringers

h
End portal
frame

RC floor

Lower wind bracing Lower wind bracing
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S

S

S1S1

S2

Roller bearing
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Plan of lower wind
bracing (Section S2-S2)
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bracing (Section S1-S1)
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Bracing members
Main truss

Figure 1.20 General layout of a through truss highway steel bridge.
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Headed stud shear connectors were used to transmit shear forces at the steel-

concrete interface and to ensure that both components work together in

resisting applied traffic loads. Themain plate girders are supported on hinged

and roller bearings, which rest on foundations or piers. The traffic loads are

L1

L2

L3

L1

L2

L3

Hinged bearing

Roller
bearing

Cross
bracing

Main plate girders

Main
plate
girder

RC floor
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Plan of lower wind bracing (Section S1-S1)

B

Main plate
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Figure 1.21 General layout of a highway steel-concrete composite bridge.
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carried out by the composite action between the steel plate girders and the

RC concrete floor transmitting the loads to the hinged and roller bearings

attached to the steel plate girders. Wind loads acting on the bridge can be

transmitted by lower bracing systems and cross bracings. However, systems

without upper bracing are used since the RC concrete floor carries out all

lateral and longitudinal loads associated with moving traffic. It should be

noted that for this continuous-span steel-concrete composite plate girder

bridge, there are sagging and hogging bending moments. The composite

action relies on that the concrete slab must be in the compression zone.

Therefore, parts of the composite plate girder where the concrete slab is

in the tension zone are designed without considering the composite action

between the steel plate girder and the concrete slab.

1.3 LITERATURE REVIEW OF STEEL AND STEEL-CONCRETE
COMPOSITE BRIDGES

1.3.1 General Remarks
Steel and steel-concrete composite bridges have been the subject of exten-

sive investigations, reported in the literature, highlighting the design and

structural behavior of the bridges. The investigations were mainly research

papers presenting small-scale laboratory tests on the bridges and their com-

ponents, limited full-scale tests on the bridge components, and numerous

numerical and analytic investigations of the bridges and their components.

The investigations covered different types of bridges subjected to different

loads and designed according to rules specified in current codes of practice.

The main objective of the investigations was to satisfy safety and serviceabil-

ity requirements imposed by current design codes of practice as well as to

fulfill other requirements set by the public such as cost, self-weight, and aes-

thetic appearance. However, the investigations were hindered by the high-

cost and time-consuming full-scale tests on this form of construction.

Numerous books were found in the literature, with examples given in

[1.1–1.11], addressing different parameters related to the design, construc-

tion, inspection, and maintenance of the bridges. The aforementioned

books contained literature reviews and historical developments of steel

and steel-concrete composite girders. These reviews will not be repeated

in this study since the main objective of this book is to present the latest

and current investigations related to the design and finite element modeling

of the bridges investigated. This section presents recent experimental and

numerical investigations on the bridges and their components. The author
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aims that the presented material can update the information related to

steel and steel-concrete composite bridges and act as basis for future

investigations.

1.3.2 Recent Investigations on Steel Bridges
Curved steel I-shaped plate girder bridges have been the subject of exper-

imental and analytic studies presented by Zureick et al. [1.30]. The authors

have shown that due to the need to augment traffic capacity in urban high-

ways and the constraints of existing constructions, there has been a steady

increase in the use of curved bridges. This is attributed to the advantages

of curved steel girders comprising simplicity of fabrication and construction,

speed of erection, and serviceability performance. The study [1.30]

described a full-scale experimental and analytic program to develop new

design guidelines for horizontally curved steel bridges. The authors have

shown that although horizontally curved steel bridges constitute around

one-third of all steel bridges being erected today, their structural behavior

is not fully understood. The study was divided into six stages starting with

a review of previous research and followed by an investigation of construc-

tion issues, determination of straining actions, connection details, service-

ability considerations, and determination of the levels of analysis required

for horizontally curved girders. Based on, mainly, the comprehensive bib-

liography on curved steel girders, containing over 200 references, presented

by McManus et al. [1.31], the state-of-the-art review performed by the

ASCE-AASHTO Committee on Flexural Members [1.32] and the book

published by Nakai and Yoo [1.33], the authors have performed an exten-

sive literature review comprising around 900 references reported in [1.34],

which showed that approximate analytic methods for curved steel I-shaped

plate girder bridges have shortcomings since they do not consider the

bracing effect in the plane of the bottom flange and their reliability depends

on the selection of the proper live-load distribution factors. Thus, approx-

imate methods are only recommended for preliminary analyses. Also, the

authors [1.30] concluded that compared to different analytic methods

(finite strip, finite difference, closed-form solutions to differential equations,

and slope-deflection method), the finite element method can act as a gen-

eral and comprehensive technique to perform static/dynamic and elastic/

inelastic analyses with different mechanical and thermal loadings. The other

analytic methods can be as good as the finite element method but are limited

to certain configurations and boundary conditions. In addition, the authors
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concluded that the geometrically and/or materially nonlinear behavior of

horizontally curved ridges was not fully understood. The study has also out-

lined the shortcomings in the previously published experimental investiga-

tions comprising stability issues related to curved box and I-girder bridges

during construction; effects of ties, bracing, and web stiffeners on the distor-

tional behavior of the bridges during construction; field experimental pro-

grams to measure internal forces and deformations in the main girders and

the bracing during construction; experiments demonstrating local and

lateral-torsional buckling; experiments demonstrating the limit states in a

transversely and/or longitudinally stiffened web; experiments addressing

the effective width of the concrete slab in both curved box and I-girders;

and cost-effective construction methods and erection guidelines that incor-

porate the experience of steel fabricators and erectors.

Padgett and DesRoches [1.35] performed a nonlinear 3D time history

analysis for typical multispan simply supported and multispan continuous

steel girder bridges to evaluate the effectiveness of various retrofit strategies.

The influence of using restrainer cables, steel jackets, shear keys, and elasto-

meric isolation bearings on the variability and peak longitudinal and trans-

verse responses of critical components in the bridges was investigated by the

authors. The authors concluded that different retrofit measures may be more

effective for each class of bridges. The restrainer cables are effective for the

multispan simply supported bridge, shear keys improve the transverse bear-

ing response in the multispan continuous bridge, and elastomeric bearings

improve the response of the vulnerable columns in both bridges. The study

[1.35] has also shown that while a retrofit may have a positive influence on

the targeted component, other critical components may be unaffected or

negatively impacted. Shoukry et al. [1.36] investigated the long-term

sensor-based monitoring of the Star City Bridge in Morgantown, WV,

USA, which was a steel girder bridge designed according to Load and Resis-

tance Factor Design (LRFD) of the American Association of State Highway

and Transportation Officials (AASHTO) [1.37]. The bridge had a length of

306 m over four spans. Overall, the study aimed to demonstrate the long-

term performance of existing lightweight bridge decks. The bridge was

heavily instrumented with over 700 sensors that recorded the response of

the main superstructure elements to various loading parameters. The authors

have recorded data to monitor and evaluate the performance of the bridge

since construction over a 4-year period. The authors have shown that the

expansion and contraction of the superstructure at one end contributed

to the relief of environmentally induced internal stresses in the longitudinal
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direction. It was also found that bearing movement constraints on the other

end introduced normal forces in the steel girders that were not considered in

deck designs. In addition, the study has shown that a nonlinear gradient

across the bridge width was developed, which resulted in additional stresses

found on diaphragm members at the outside girders.

Cheng and Li [1.38] performed a reliability analysis for a long-span steel

arch bridge against wind-induced stability failure during construction. An

algorithm was developed based on stochastic finite element method to eval-

uate the reliability analysis. The study has incorporated uncertainties in static

wind load-related parameters. The proposed algorithm integrated the finite

element method and the first-order reliability method. The authors per-

formed the analysis as an example on a long-span steel arch bridge with a

main span length of 550 m built in China. The reliability analysis was per-

formed in two different construction stages. The first construction stage

involved the construction process before closure of main arch ribs. On

the other hand, in the second construction stage, all the remaining parts

of the bridge have been completed except the stiffening girder of the main

span. Three components of wind loads (drag force, lift force, and pitch

moment) acting on both steel girder and arch ribs were considered in the

study [1.38]. The authors have concluded that the steel arch bridge during

the second construction stage was more vulnerable to wind-induced stability

failure than that during the first construction stage. The authors have per-

formed a parametric study to investigate the effects of the variations of wind

speed with height, drag force of wind loads, design wind speed at the bridge

site, and static aerodynamic coefficients on the probability of wind-induced

stability failure during the construction stages for the steel arch bridge. Yoo

and Choi [1.39] proposed an iterative system buckling analysis to determine

the effective lengths of girder and tower members of cable-stayed bridges.

The proposed technique included a fictitious axial force that was added

to the axial force of each member in the geometric stiffness matrix to rep-

resent an additional force for the individual buckling limit of the member.

The proposed method was initially used to analyze a three-story plane frame

under two different load cases. After that, it was applied to cable-stayed

bridge examples with several center span lengths and girder depths. The

effective lengths of the individual members in these example bridges were

computed using the proposedmethod and compared with those found using

system buckling analysis. The study has shown that the critical load expres-

sion in combination with system buckling analysis yields excessively large

effective length for members subjected to small axial forces. Also, it was
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shown that the proposed method reasonably estimated the individual

buckling limit of each member by introducing a fictitious axial force in

the geometric stiffness matrix during the iterative system buckling analysis.

The optimum design of steel truss arch bridges was investigated by

Cheng [1.40] using a hybrid genetic algorithm. In the study, the weight

of the steel truss arch bridge was used as the objective function, and the

design criteria of strength (stress) and serviceability (deflection) were used

as the constraint conditions. All design variables were treated as continu-

ous/discrete variables. The author considered different methods, analysis

types, and formulations and their effects on the final designs were studied.

It was shown that the proposed algorithm integrated the concepts of the

genetic algorithm and the finite element method. Also, the proposed algo-

rithmwas comparedwith the first-order method and proved to perform bet-

ter than the first-order method. In addition, it was concluded that when the

proposed optimum design was used for a steel truss arch bridge, the weights

can be considerably reduced compared with those of the traditional design.

Finally, it was concluded that the geometric nonlinearity is not significant for

the investigated application. Hamidi and Danshjoo [1.41] studied the effects

of various parameters comprising velocity, train axle distance, the number of

axles, and span lengths on dynamic responses of railway steel bridges and

impact factor values. The study replaced the traditional method specified

in current codes of practice, which considered traffic load as a static load

increased by an impact factor. In the traditional methods, impact factor

was represented as a function of bridge length or the first vibration frequency

of the bridge. The authors investigated dynamic responses and impact factors

for four bridges with 10, 15, 20, and 25 m lengths under trains with 100-

400 km/h velocity and axle distances between 13 and 24 m. It was shown

that, in most cases, the calculated impact factor values are higher than those

recommended by the relevant codes. It was also shown that the train velocity

affected the impact factor, so that the value of impact factor has risen con-

siderably with the train velocity. In addition, it was shown that the ratio of

train axle distance to the bridge span length affects the impact factor value

such that the impact factor value varies for the ratio below and above unity.

Finally, it was concluded that the train number of axles only affected the

impact factor under resonance conditions. The authors have proposed some

relations for the impact factor considering train velocity, train axle distance,

and the bridge length.

The performance of high-strength bolted friction grip joints com-

monly used in steel bridges was investigated by Huang et al. [1.42]. The
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experimental and numerical study aimed to study the mechanical behavior

including load-slip relationship, load transfer factors, stress state, and friction

stress distribution of this type of joints. The study has shown that the loads

resisted by bolts in the edge rows are larger than the loads resisted by bolts in

the middle rows. It was also shown that the stress distributions in the con-

nected plate and cover plate were wavelike with large stress. The authors

concluded that the numerical simulation method of the HSFG joints is

recommended for connection design. Guo and Chen [1.43] discussed the

field stress and displacement measurements in controlled load tests and

long-term monitoring of retrofitted steel bridge details. The retrofitted

details were used to alleviate the cracking problems of the existing steel

bridge. The authors compared the displacements of the retrofitted details

with that of the nonretrofitted details. Based on the field-monitored data

and the AASHTO specifications, a time-dependent fatigue reliability assess-

ment was performed. The effective stress ranges derived from daily stress

range histograms and lognormal probability density functions were used

to model the uncertainties in the effective stress range. The study has shown

that the stress ranges in the instrumented details were below the correspond-

ing constant amplitude fatigue limits. It was concluded that the study can

provide references to bridges with similar fatigue cracking problems. Kim

et al. [1.44] investigated experimentally structural details of steel girder-

abutment joints in integral bridges. Integral bridges are the bridges that

maintain the rigid behavior of their joints. The study proposed structural

details of girder-abutment joints in integral steel bridges to enhance rigid

behavior, load-resisting, and crack-resisting capacity. The authors suggested

various joints that apply shear connectors to existing empirically constructed

girder-abutment joints. The performance of the proposed steel girder-

abutment joints was observed through experimental loading tests. The study

also performed nonlinear finite element analyses, which applied contact

interaction of the interface at the steel-concrete composite joints. It was

shown that all joints investigated had sufficient rigidity and crack-resisting

capacity. It was also concluded that the proposed joints had good structural

performance.

Miyachi et al. [1.45] investigated progressive collapse of three continuous

steel truss bridge models with a total length of 230.0 m using large deforma-

tion and elastoplastic analysis. The study aimed to clarify how the live-load

intensity and distribution affected the ultimate strength and ductility of two

steel truss bridge models having different span ratios. Sizes and steel grades of

the truss members were determined such that theywerewithin the allowable
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stress for the design dead and live loads. After the design load was applied, the

live loadwas increased until the bridgemodel collapses. It was shown that the

collapse process differed depending on live-load distribution and span length

ratio. It was concluded that the investigation clarified the collapse process,

buckling strength, and influences of live-load distribution and the span ratio

on the investigated steel truss bridges. Ye et al. [1.46] carried out an exper-

imental investigation to determine the stress concentration factor and its sto-

chastic characteristics for a typical welded steel bridge T-joint. The study

reported a test on a full-scale segment model, which had the same profile

as an existing railway beam section of the suspension Tsing Ma Bridge.

The test had also the geometric dimension and material property as well

as weld details. Strain gauges were fitted on the web and flanges and the

hot spot strain at the weld toe is determined by a linear regression method.

The stress concentration factor was calculated as the ratio between the hot

spot strain and the nominal strain. The tests were carried out under different

moving load conditions. It was shown that the stress concentration factor for

the welded steel bridge T-joint conformed to a normal distribution.

A current research topic on steel bridges is the investigation of the struc-

tural behavior of the bridges under different fire conditions. Zaforteza and

Garlock [1.47] investigated numerically the fire response of steel girder brid-

ges by developing a 3D numerical model for a typical bridge of 12.20 m span

length. A parametric study was performed considering different axial

restraints of the bridge deck, different types of structural steel for the girders,

different constitutive models for carbon steel, different live loads, and differ-

ent fire loads. The numerical study showed that restraint to deck expansion

coming from an adjacent span or abutment should be considered in numer-

ical models. Also, times to collapse were very small when the bridge girders

are built with carbon steel (between 8.5 and 18 min), but they can almost

double if stainless steel is used for the girders. The authors recommended

that stainless steel be used as a construction material for girder bridges in a

high fire-risk situation. It was also concluded that the methodology devel-

oped in the study and the results obtained can be useful for researchers and

practitioners interested in developing and applying a performance-based

approach for the design of bridges against fire.

Structural health monitoring of steel bridges is a recent research topic for

evaluating bridge condition and safety.Measured strain data from a structural

health monitoring system can be used to assess the status of fatigue of steel

bridges, which is a common form of damage in this form of construction.

Ye et al. [1.48] proposed a standard daily stress spectrum method for fatigue
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life assessment of steel bridges using structural health monitoring data. The

authors applied the proposed method to assess the fatigue status of critical

welded details on the instrumented Tsing Ma Bridge carrying both highway

and railway traffic. It was shown that the proposed method makes it conve-

nient to simultaneously consider the effects of different loads (highway traf-

fic, railway traffic, monsoon, and typhoon) with the use of a single standard

stress spectrum. It was shown that, in applying the proposed method, it was

unnecessary to separate the temperature-induced ingredient and slow-

varying drift from the raw measurement data. The authors concluded that

a standard daily stress spectrum accounting for highway traffic, railway traf-

fic, and typhoon effects can be formulated from the long-term monitoring

data by combining the standard traffic-stress spectrum and standard

typhoon-stress spectrum proportionally. It was also concluded that, for

the Tsing Ma Bridge, the predicted fatigue life was varying slightly when

using more than 10 daily strain data and keeps almost the same when using

more than 20 daily strain data. In addition, it was concluded that the pro-

posed method provided a feasible approach for fatigue life assessment of

welded details on steel bridges by using field monitoring data from a struc-

tural health monitoring system. Investigating the mechanical properties of

new materials used in steel bridges is also a current research area. Mo

et al. [1.49] investigated the mechanical properties of thin epoxy polymer

overlay materials upon steel bridge decks. Overall, the authors highlighted

the epoxy binder-steel bonding behavior, dynamic response of epoxy

binder, and response and fatigue behavior of epoxy polymer concrete.

The test data obtained indicated that epoxy binder-steel bonding exhibited

a strong temperature dependency. Also, fatigue models on epoxy binder-

steel bonding and epoxy polymer concrete were developed using the

power-law equation. It was shown that response models for epoxy binder

and their concrete can be properly established. The developed material

response models can be served for finite element simulations on thin epoxy

polymer concrete overlay upon steel bridge decks.

Proposing approximate methods for estimating collapse loads of steel

bridges with complex geometry is a current research area. Although non-

linear inelastic analysis is commonly used to determine the collapse loads

of these bridges and accounts for all geometric and material nonlinear aspects

of the bridge system, approximate methods can be useful in the preliminary

design stages. Yoo et al. [1.50] proposed a simple alternative for complex

nonlinear inelastic analysis to estimate the collapse load of a steel cable-stayed

bridge. The fundamental theories of nonlinear inelastic analysis and inelastic
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buckling analysis were briefly reviewed. The authors proposed a new

criterion for a beam-column member based on the axial-flexural interaction

equation in combination with the classical tangent modulus theory and the

column-strength curve. The study has shown that the proposed criterion for

a beam-column is appropriate to determine the collapse loads of steel cable-

stayed bridges. It was also concluded that the inelastic buckling analysis using

the proposed criterion for a beam-column can substitute complex nonlinear

inelastic analysis in estimating the collapse load of a steel cable-stayed bridge.

Shifferaw and Fanous [1.51] investigated fatigue-crack formation in the

web-gap region of multigirder steel bridges. The authors have shown that

the region has been a common occurrence of fatigue-crack formation

due to differential deflections between girders resulting in diaphragm forces

that subject the web-gap to out-of-plane distortion. The study investigated

the behavior of web-gap distortion of a skewed multigirder steel bridge

through field testing and finite element analyses. The study also investigated

different retrofit methods that include the provision of a connection plate

between the stiffener and the girder top flange, loosening of the bolts con-

necting the cross bracing to the stiffener, and supplementing a stiffener plate

opposite to the original stiffener side. The study has shown that the connec-

tion plate addition and loosening of bolts alternatives were effective in

reducing induced strains and stresses in the web-gap region. An inverse rela-

tionship between web-gap height and induced strains and stresses with the

shortest web-gap height resulting in the highest strains due to increased

bending by diaphragm forces in the web was also shown. The authors

concluded that expressions developed to relate vertical stresses and relative

out-of-plane displacements combined with measurements of out-of-plane

displacements by transducers can be utilized for prediction of induced stres-

ses at other critical web-gap regions of the bridge and at critical locations in

the web gaps of similar bridges.

Postrehabilitation assessment of existing bridges is a current research

topic. Cavadas et al. [1.52] presented the postrehabilitation assessment of

the Eiffel Bridge, which is a centenary double-deck bridge located in

Portugal. Recently, the bridge was rehabilitated involving the replacement

of the top deck, the strengthening of the top chords, and the replacement of

the support bearings. After the rehabilitation, a load test and an environmen-

tal test were carried out in order to analyze the bridge behavior and the

live-load distribution for the new structural conditions, to evaluate the effec-

tiveness of the chords’ strengthening, and to establish the new baseline con-

dition for future structural assessments. The field results were augmented by
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an appropriate numerical model of the bridge. The authors concluded that

the deflection of the main girder chords results from the overlapping of both

global and local behaviors. Also, the rotations do not reproduce the global

behavior of the structure. Therefore, the fundamentals about rotations in a

beam and the derived methods to estimate the bridge deflection using rota-

tions are not applicable to this structure. In addition, the external prestress

system has a significant influence on the response of the structure to the tem-

perature changes. Furthermore, observing the effectiveness of the top

chords’ strengthening, the internal forces estimated using a multiple linear

regression model agree well with the internal forces obtained with the

numerical model. Overall, it was concluded that the study provided valuable

information regarding the installation of a permanent monitoring system for

the surveillance of the bridge.

The effect of local damage on the behavior of steel bridges is also a current

research area. Brunell and Kim [1.53] investigated the effects of local damage

in steel trusses on the overall behavior of the bridge. The study comprised a

combined experimental and numerical investigation. The experimental

results of a scaled model bridge were used to validate the developed numer-

ical model. The numerical model was used to perform analyses investigating

the relationship between damage and bridge failure. The behavior of 16

damage scenarios was compared with that of a control truss. A static analysis

was carried outwhich utilized a damage index to quantify the level of damage

present in the bridge, to examine the load transfer relationship between truss

members, and to quantify the failure load for various scenarios. In addition, a

dynamic analysis was carried out to highlight the effect of damage on mode

frequency and changes inmode shape. The authorsmentioned that, since the

dynamic behavior of the test specimen was not measured in the laboratory,

the findings reported could be experimentally verified in future research.

A simple reliability analysis was conducted to assess the safety of the truss sys-

tems. The authors showed that the results and conclusions of the study were

based on laboratory-scale research, and thus a size effect might exist when

implemented in practice. Also, the technical findings reported could be con-

servative to a certain extent because the contribution of a RC deck was not

included in the analyses. The authors concluded that the presence of local

damage in the truss system significantly influences the serviceability of the

system. Also, the current AASHTO load rating method was reasonably

applicable to the truss bridge system. From a dynamic analysis perspective,

a higher mode shape and corresponding frequency were useful to detect

the presence of local damage in the truss systems. Finally, it was concluded
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that the stress of the damaged truss member was not effectively redistributed

to other members, except for those adjacent to the damage.

Recently, Cheng et al. [1.54, 1.55] performed a numerical study on steel

truss bridges with welded box section members and bowknot integral joints.

The investigation [1.54] highlighted the linear and nonlinear mechanical

behaviors of the bridges. The truss studied was simply supported at two

end nodes of bottom chords with two concentrated dead and live loads

being applied at each unsupported bottom chord node. The finite element

method was employed to analyze the elastic and elastoplastic behaviors of

trusses with bowknot/conventional integral joints. Based on the study, it

was concluded that the axial forces of members were very insignificantly

enhanced by the section shrinking of the member ends. It was also con-

cluded that the secondary moments at the member ends and the sectional

maximum stresses of the unshrunken segments of the truss are significantly

reduced by the section shrinking of the member ends but the vertical stiffness

and elastic stability of the bowknot truss are deteriorated compared to the

conventional one. Finally, it was shown that when the steel strength of

the shrunken segments has been moderately enhanced, the ultimate bearing

capacities of axially compressed shrunken members and of Warren trusses

with bowknot integral joints are as high as those of uniform members

and of conventional trusses, respectively. The study [1.55] presented a min-

imum weight optimization based on the provisions of current design codes

for both conventional and bowknot trusses. The optimization investigated

was illustrated through analytic derivation of minimumweight optimization

of a single member. The results of the numerical study indicated that the

member weight reduction increased as the primary stress to secondary stress

ratio, or the end moment reduction, was increased. The authors extended

the minimum weight optimization of the truss on the basis of linear finite

element analysis of the same truss that was discussed in [1.54], by the use

of first-order optimization method. It was concluded that the cost rise

due to steel strength enhancement of shrunken segments was taken into

account in the nominal weight of whole truss. Also, a series of requirements

related to truss vertical stiffness, member strength, member stability, and

truss stability were set as constraint functions.

1.3.3 Recent Investigations on Steel-Concrete Composite
Bridges

The short-term and long-term behaviors of composite steel box girder brid-

ges have been investigated theoretically by Kwak et al. [1.56]. The study
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discussed the effect of the slab deck casting sequence on the short-term and

long-term behaviors of the bridges. Three cases of sequential casting and one

case of continuous casting were investigated. The study showed that the

effect of slab casting sequence can be neglected for both short-term and

long-term behaviors as well as the resulting moments of the bridges. The

authors concluded that continuous casting for closed box sections can be

used as an easy and fast construction without any danger of increasing trans-

verse cracking. The authors recommend that continuous casting can be

applicable to open box sections used widely in many countries. However,

the study showed that the effect of drying shrinkage was most critical for the

long-term behavior of a bridge and transverse cracking, which can result in

crack development at interior supports. Steel-concrete composite girders are

analyzed using beam bending theory by utilizing the effective flange width

concept to evaluate deflections, stresses, strengths, etc. Shear lag effects can

be considered by replacing the actual slab width by an appropriate reduced

effective width. Nonlinear finite element analyses can effectively consider

the shear lag effects. However, current codes of practice provide simplified

empirical equations to evaluate effective flange width, which differ from

country to country. Ahn et al. [1.57] investigated effective flange width pro-

visions of several countries including America, Britain, Canada, Japan, and

Europe. The provisions were compared qualitatively and quantitatively by

the authors. It was shown that each specification shares common organiza-

tion in describing the effective flange width comprising basic formulation

and effective span length. In the basic formulation part, the effective flange

width of a simply supported span can be specified. For continuous girders,

the lengths of independent spans to which basic formulation can be applied

were specified in the effective span length part. It was also shown that the

way to describe the basic formulation differed from one provision to the

other following the underlying philosophy that drove the development of

each specification. AASHTO and Eurocode 4 provisions used a list of

descriptions. However, Canadian and Japanese provisions used equations;

BS 5400 used a table format. Through a numerical example of simply sup-

ported spans, it is observed that BS 5400 (interior) develops the largest effec-

tive flange width. Eurocode 4 delivered the largest effective flange width.

Effective flange widths from AASHTO varied considerably compared with

the others. Without the thickness limitation, AASHTO provisions were

similar to the values from Eurocode 4. It was concluded that the interrelation

between effective flange width, loading effects on the bridges, and design of

concrete deck (especially crack control) should be consistent.
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The behavior of curved composite steel I-shaped plate girder bridges was

investigated by Chang and White [1.58]. The authors considered different

parameters affecting the composite bridge modeling including girder web

distortion, cross frames, support and load height, and displacement compat-

ibility between the girders and slab. In the study, web distortion effects were

investigated and an approximate approach using open-section thin-walled

beam theory for the steel I-girders was proposed. Different analysis

approaches including line girder analysis, V-load method, grid methods,

and general finite element methods for analysis of curved I-girder bridge

structural systems were highlighted. The investigated plate girders were hor-

izontally curved bridges subjected to coupled torsion and bending. It was

shown that the plate girder behavior in these bridges involved significant

web distortion, which caused additional lateral displacements and lateral

bending stresses at the girder bottom flanges. The study showed that a gen-

eral 3D analysis using shell elements for the slab and for the girder webs and

3D grid models using open-section thin-walled beam theory for the plate

girders were recommended for efficient modeling of the bridges. However,

the study suggested approximate approaches for simulating the composite

I-shaped plate girder web distortion effects using 3D grid methods. It was

found that when using an open-section thin-walled beam element for the

bridge plate girder and either shell elements or a beam grid system for the

slab, a rotational release must be placed between the slab and the top flange

of the I-girders in order to compensate the web distortion effects. It was also

found that when using an open-section thin-walled beam element for the

combined slab and steel plate girder via an equivalent composite plate girder

cross-sectional model, the contribution from the slab to the St. Venant

torsional constant J was suggested to be neglected. In addition, the lack of

consideration of the web distortion effects results in a significant underesti-

mation of the girder bottom flange lateral bending stresses. The authors have

compared results from a full-scale composite I-shaped plate girder bridge

against the results of the 3D grid models.

Structural performance of bridge decks with high load resistance capacity

as well as high fatigue strength is a current research topic. Ahn et al. [1.59]

conducted tests to investigate the fatigue behavior of a new type of

steel-concrete composite bridge deck. The proposed composite bridge deck

consisted of corrugated steel plate, welded steel ribs, headed stud shear con-

nectors, and RC filler. Fatigue tests were conducted under a four-point

bending test with four different stress ranges in constant amplitude. A total

of eleven fatigue specimens were subjected to cyclic loading to evaluate the
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stress category and fatigue behavior of the proposed composite bridge deck.

In order to determine the influence of the concrete filling, the authors con-

ducted fatigue tests on partial steel specimens with plain corrugated steel

plates. The partial steel specimens and the steel-concrete composite deck

specimens showed that fatigue failure occurred in the tension part. The

research concluded that the fatigue behavior of the proposed steel-concrete

composite decks under sagging moment can be estimated based on the clas-

sical S-N approach, focusing on steel components. The structural behavior

and ultimate strength of steel-concrete composite bridge deck slab with pro-

filed sheeting were investigated by Kim and Jeong [1.60, 1.61]. The study

[1.60] presented an experimental investigation on a steel-concrete compos-

ite bridge deck slab with profiled sheeting and perfobond shear connectors.

Two full-scale deck slab specimens cast onto three concrete blocks were fab-

ricated and tested under static loading to examine the ultimate load-carrying

capacity of the proposed deck slab system under sagging and hogging bend-

ing actions. The ultimate behavior of the full-scale deck slab specimens was

compared with that of simply supported deck specimens under hogging

bending only. In addition, the load-deflection behavior of the proposed

deck systemwas compared with that of a RC deck slab. The test results indi-

cated that the ultimate load-carrying capacity of the proposed deck system

was at least 220% greater than that of the RC deck system and that the deck

weighs about 23% less than the RC deck system. The study [1.61] investi-

gated experimentally the ultimate behavior of steel-concrete composite

deck slab system with profiled steel sheeting and perfobond rib shear con-

nectors. The experimental investigation aimed to develop a composite deck

slab for girder bridges that spans longer but weighs less than the conventional

RC deck slab. Eight deck specimens were tested with different shear span

lengths to evaluate the horizontal shear capacity of the proposed deck system

by using the empirical m-k method. The study also presented the results of

two full-scale deck slab specimens supported by a set of steel box blocks to

examine the ultimate load-carrying capacity of the proposed deck slab sys-

tem under sagging and hogging bending actions. It was found that the ulti-

mate strength and initial concrete cracking load of the proposed deck system

under hogging bending action were approximately 2.5 and 7.1 times greater

than those of an RC deck, respectively, while the deck weighed about 25%

less than RC deck systems.

Steel-concrete composite cable-stayed bridges were investigated numer-

ically by Pedro andReis [1.62]. The composite deck and the concrete towers

were modeled by three node steel and concrete frame elements having seven
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degrees of freedom. Shear connection of the deck was modeled using

continuous spring elements. The numerical investigation considered geo-

metric and material nonlinear behaviors of both steel and concrete materials.

Cable’s sag and time-dependent effects due to load history, creep, shrinkage,

and aging of concrete were also included in the analysis. The cable-stayed

bridge investigated a 420m main span composite cable-stayed bridge under

service conditions. The failure load and the failure mechanismwere also ana-

lyzed, both at the end of construction and at long term. The influence on the

structural behavior of deck load pattern, time-dependent effects, cables’

yielding, existence of intermediate piers at the lateral spans, effective slab

width, and flexibility of the shear connection was investigated in the study.

The structural performance of orthotropic steel bridge decks renovated using

advanced composite bonded systems was the subject of experimental and

analytic investigations reported by Freitas et al. [1.63]. The proposed reno-

vation solution for orthotropic steel bridge decks studied consisted of bond-

ing a second steel plate to the existing steel deck in order to reduce the stresses

and increase the life span of the orthotropic bridge deck. The authors per-

formed a parametric study on the flexural behavior of beams representing

the renovation solution. The influences of different thickness, temperatures,

and spans were investigated. The results obtained for the stress reduction fac-

tor showed that it was independent of temperature. Also,more efficient solu-

tions can be achieved by minimizing the second steel plate thickness and

maximizing the adhesive layer thickness reducing the weight and increasing

the stiffness of the composite structure. Both elastic behavior and yield load of

the composite beams were dominated by the steel plate properties and there-

fore were not affected significantly by temperature. However, the ultimate

failure of the beams occurred by shear of the adhesive layer.

The shear connection of the unfilled composite steel grid deck was

experimentally investigated by Kim and Choi [1.64]. A total of 14 pushout

specimens having different number of holes, areas of reinforcements through

holes, and reinforcement diameters were fabricated and conducted to eval-

uate the load-slip behavior and the shear strength of the connection. The

study highlighted the effects on the shear resistance of the connection owing

to the friction force between the steel beam and the concrete, the concrete

dowel force, and the shear force due to reinforcement bars. An analytic

expression was developed based on an existing formula to predict the shear

resistance of the connection. Based on the limited test specimens for the

shear connector of the unfilled composite steel grid deck, it was concluded

that the failure of the specimen occurred in the concrete slab and the steel
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beam was intact. The crack patterns showed longitudinal splitting on the

concrete slab close to the steel beam, spreading outward to the bottom of

the specimen and falling off the concrete face near the reinforcing bars. It

was also concluded that the shear resistance of the connection was influenced

by the friction force between the steel beam and the concrete slab, the num-

ber of holes, and the amount of reinforcing bars passing through the shear

holes. In these factors, the shear capacity was almost directly dependent on

the area of reinforcing bars. In addition, it was shown that the shear strength

of the connection was predicted by the sum of the friction force, the con-

crete dowel force, and the shear force due to reinforcement bars. The

authors recommended that in a further study, more tests should be required

to highlight the size effects of shear holes, the effect of multiple holes, and the

concrete strength. Machacek and Cudejko [1.65] investigated numerically

distribution of longitudinal shear along an interface between steel and con-

crete parts of various composite truss bridges from elastic phase up to plastic

collapse. The study was based on previous experimental research reported by

the authors. The numerical analysis and the Eurocode approach highlighted

distribution of the longitudinal shear flow. Overall, the study considered

elastic and elastoplastic distribution of the flow corresponding to the design

level of bridge loading and plastic collapse. The analysis covered both the

common elastic frame 2D modeling of the shear connection used by

designers and the 3D geometrically and materially nonlinear analysis using.

The results of the numerical models were compared against design rules

specified in Eurocode 4 for composite bridges. It was shown that the non-

linear distribution of the longitudinal shear, required for correct design of

shear connection of composite steel and concrete bridges (in both ultimate

limit state including fatigue and serviceability limit state), depended on rigid-

ity of the shear connection and densification of the shear connectors above

truss nodes. Parametric studies were performed by the authors and recom-

mendations for practical design were proposed.

The fatigue of steel and composite highway bridges in terms of the struc-

tural system service life was analyzed by Leitão [1.66]. A steel-concrete com-

posite bridge with a 12.50 m roadway width and 0.2 m concrete deck

thickness, spanning 40.0 m by 13.5 m, was investigated in the study. The

computational model, developed for the composite bridge dynamic analysis,

adopted the usual mesh refinement techniques present in finite element

method simulations. The proposed analysis methodology and the proce-

dures presented in the design codes were initially assessed to evaluate the

bridge fatigue response in terms of its structural service life. The study has
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shown that the composite bridge service life results corroborated the impor-

tance of considering the roughness of the pavement surface and other design

parameters such as floor thickness, structural damping, and beam cross-

sectional geometric properties in the bridge dynamic and fatigue analyses.

The analysis methodology considered a vehicle structure mathematical

model, which included the interaction between their dynamic properties.

It was shown that the proposed methodology can be general and can be used

as a solution strategy on other highway bridge types such as multigirder brid-

ges, continuous multigirder bridges, cable-stayed bridges, and rigid-frame

bridges. The authors showed that the fatigue problem was much more com-

plicated and was influenced by several highway bridge types. It was con-

cluded that the investigated composite (steel-concrete) highway bridge

can perform safely with an acceptable probability that indicated that failure

by fatigue cracking can be eliminated. It was also shown that when the

dynamic actions related to the vehicles moving on the bridge lateral track

path and two simultaneous lateral track paths were applied on the bridge

structure, it was observed that the service life values proposed by current

design codes were exceeded. Okamoto and Nakamura [1.67] proposed

and applied a new type of hybrid high tower to a multispan cable-stayed

bridge. The proposed type was a sandwich-type structure and consisted

of a steel double box section filled with concrete. The filled concrete

increased its strength due to the confined effect, and the steel plates increased

the resistance against local buckling because the deformation was restricted

by the filled concrete. The study showed that the hybrid tower can have

high bending and compressive strength and also a good ductile property.

In the study, static analysis was conducted for different live-load intensity

and distribution. The live loads distributed in alternate spans gave larger

bending moment of the towers than the live loads distributed in full spans.

The authors checked the safety of the tower using limit state design method.

Serviceability was not a major problem for the hybrid tower. Following the

static analysis, seismic analysis was performed for a multispan cable-stayed

bridge subjected to the medium and ultra-strong seismic waves. Three sup-

port conditions of the girder at the tower cross beams were considered,

which were movable, connection with linear springs and bilinear springs.

The study showed that bilinear springs were very effective in reducing

the dynamic displacements and bending moments of the towers. The study

also showed that a new steel-concrete hybrid tower was feasible for multi-

span cable-stayed bridges and most effective for seismic forces when the

girder was connected with bilinear springs.
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Ji et al. [1.68] presented static and fatigue performance of composite

sandwich bridge decks with hybrid glass fiber-reinforced polymer-steel

core. The composite sandwich bridge deck system consists of wrapped

hybrid core of glass fiber-reinforced polymer grid andmultiple steel box cells

with upper and lower glass fiber-reinforced polymer facings. The study

investigated the structural performance under static loading and fatigue load-

ing with a nominal frequency of 5 Hz was evaluated. The responses from

laboratory testing were compared with the finite element predictions.

The study showed that the failure mode of the proposed composite sand-

wich bridge deckwas more favorable because of the yielding of the steel tube

when compared with that of glass fiber-reinforced polymer decks. It was also

shown that the ultimate failure of the composite sandwich deck panels

occurred by shear of the bonded joints between glass fiber-reinforced poly-

mer facings and steel box cells. In addition, results from fatigue load test indi-

cated that no loss in stiffness, no signs of debonding, and no visible signs of

deterioration up to 2 million load cycles were observed. The authors recom-

mended that the thickness of the composite sandwich deck retaining the

similar stiffness be decreased to some extent when compared with the glass

fiber-reinforced polymer deck. Furthermore, the study presented design of a

connection between composite sandwich deck and steel girder. Turer and

Shahrooz [1.69] investigated different parameters related to structural iden-

tification, calibrated model-based load rating, and sensitivity of rating to the

analytic model, along with experimental studies conducted on an existing

concrete-deck-on-steel-stringer bridge. The proposed model-updating

procedure used collected dynamic data comprising mode shapes, modal fre-

quencies, and order of modes as well as static deformed shape information.

The authors developed 2D grid models to simulate the transverse load trans-

fer mechanisms between girders, torsional flexibility, and effects of skewed

bridge architecture. It was shown that the rating results obtained from the

2D grid models were close to 3D finite element method-based evaluation,

while simplified 1D bar models had serious shortcomings. It was shown that

grouping the parameters of the analytic model at different stages of model

calibration enhanced the speed and convergence success of the objective

function. It was also shown that although cross braces were considered as

nonstructural members, they were found to be the most critical members

of the selected bridge during rating studies.

Mechanical behavior of composite joints for connecting existing con-

crete bridges and steel-concrete composite beams was the subject of recent

investigation by Nie et al. [1.70]. The authors showed that in a technique of
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widening existing concrete bridges with steel-concrete composite beams,

the old existing concrete bridge and new composite beam were connected

by a composite cross beamwith a composite joint. Six specimens were tested

to compensate the lack in experimental studies on the mechanical behavior

of composite joints. The study showed that, based on the existing methods,

the shear strength of the interface of the old and new concrete was calcu-

lated. It was shown that the shear failure of the interface between the old

and new concrete was the failure mode of the composite joint and the inter-

face between the steel plate and new concrete was always in good condition.

It was also shown that there was approximately no slip between the old and

new concrete before the bonding failure of the interface. The interface

between the old and new concrete had good ductility and high strength.

Based on the constitutive law of the materials, a simplified three-stage

mechanical model was proposed and the load-slip relationship was pre-

dicted. The study showed that the ultimate shear strength of the interface

was determined by the strength of the concrete, roughness degree, and fric-

tion coefficient of the interface and the normal stress could increase the ulti-

mate shear strength. In addition, the residual shear strength of the interface

can be determined by the embedded bars, and the ratio and yield strength of

the embedded bars can be the main influence factors. Based on the tests

results, a practical design method was proposed. Finally, studies on fiber-

reinforced polymer deck-on-steel girder systems are current research topics.

Davalos et al. [1.71] investigated the performance of the fiber-reinforced

polymer deck-on-steel girder system, which depends substantially on the

connectors used. The authors proposed a prototype shear connector and

showed its advantages through experimental studies and field applications.

The effectiveness of the shear connector at bridge system level, including

the static and fatigue performance of the shear connector and the bridge sys-

tem, the degree of composite action of the system, and the influence of the

partial degree of composite action on load distribution factor and effective

flange width were investigated. The authors tested a 1:3 scaled fiber-

reinforced polymer deck bridge model, with a fiber-reinforced polymer

sandwich honeycomb deck connected to steel girders using the prototype

shear connector. The experimental investigation comprised static and

fatigue load tests on the scaled bridge model. The experimental investigation

was accompanied by a numerical investigation using finite element method.

The study showed that the shear connection was able to provide partial

composite action of about 25% and sustain a cyclic fatigue loading equivalent

to 75-year bridge service life span. It was also shown that AASHTO
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specifications can still be applicable for load distribution factor, while the

effective flange width needs to be redefined for a bridge system with partial

degree of composite action. The authors recommended that the findings of

the study be used for design purposes.

1.4 FINITE ELEMENT MODELING OF STEEL AND
STEEL-CONCRETE COMPOSITE BRIDGES

Finite element modeling of steel and steel-concrete composite bridges can

provide a useful insight into the structural performance of the bridges and

compensate the lack in full-scale tests on the bridges. Recent developments

in computers and finite element general-purpose software make it possible

to analyze structures having different nonlinear geometries, different mate-

rial properties, different loading conditions, and different boundary condi-

tions. This book presents the latest modeling techniques used to investigate

the behavior of the bridge components and the whole bridge behavior. The

presented finite element models in this book are intended to be efficient and

accurate models, which are not too-detailed and are not too-simplified

models. There are numerous finite element books published in the litera-

ture, with examples shown in [1.12–1.18]. These books are mainly devoted

to the development of different finite elements and or the development of a

numerical scheme to expedite the convergence of iterative procedures.

These finite element books mostly focus on explaining the finite element

method as a general technique to solve engineering problems. However,

books involved in finite element modeling of the bridge superstructure

are rarely found in the literature, leading to the writing of this book. How-

ever, in order to present how finite element modeling can be used efficiently

to simulate the behavior of steel and steel-concrete composite bridges,

knowledge of the different loads applied on bridges, material nonlinearity

of the bridge components, and design rules specified in current codes of

practice for different bridges is required.

Test data are used to verify and validate the accuracy of finite element

models developed for steel and steel-concrete composite bridges. In order

to investigate the structural performance, stability, and failure modes of

steel and steel-concrete composite bridges and their components, laboratory

tests have to be conducted to observe the actual behavior or theoretical

analyses have to be performed to obtain an exact closed-form solution.

Getting an exact solution sometimes becomes very complicated and

even impossible in some cases that involve highly nonlinear material and
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geometry analyses. Experimental investigations are also costly and time-

consuming, which require specialized laboratories and expensive equip-

ments as well as highly trained and skilled technicians. Without the afore-

mentioned requirements, the test data and results will not be accurate and

will be misleading to finite element development. Therefore, accurate finite

element models should be validated and calibrated against accurate test

results. Although extensive experimental investigations were presented in

the literature on small-scale bridges, as well as small- and full-scale bridge

components, the number of tests on some research topics related to steel

and steel-concrete composite bridges is still limited. This is attributed to

many factors comprising time, costs, labor, capacity of testing frame, capacity

of loading jack, measurement equipment, and testing devices. Therefore,

numerical investigations using finite element analysis are currently main

research areas in the literature to compensate the lack of test data in the field

of steel and steel-concrete composite bridges. However, detailed explana-

tion on how successful finite element analysis can provide a good insight into

the structural performance of the bridges was not fully addressed as a com-

plete piece of work, which is credited to this book.

Following experimental investigations on steel and steel-concrete com-

posite bridges and their components, finite element analyses can be per-

formed and verified against available test results. Successful finite element

models are those validated against sufficient number of tests, preferably from

different sources. Finite element modeling can be extended, once validated,

to conduct parametric studies investigating the effects of the different param-

eters affecting the behavior of steel and steel-concrete composite bridges.

The analyses performed in the parametric studies must be well planned to

predict the performance of the investigated bridges outside the ranges cov-

ered in the experimental program. The parametric studies will generatemore

data that fill in the gaps of the test results andwill help designers to understand

the performance of the bridges under different loading and boundary con-

ditions and different geometries. Hence, one of the advantages of the finite

element modeling is to extrapolate the test data. However, the more signif-

icant advantage of finite element modeling is to clarify and explain the test

data, which is credited to successful finite element models only. Successful

finite element models can critically analyze test results and explain reasons

behind failure of steel and steel-concrete composite bridges and their com-

ponents. The successful finite elementmodels can go deeply in the test results

to provide deformations, stresses, and strains at different locations in the test

specimens, which is very difficult to determine by instrumentation.
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1.5 CURRENT DESIGN CODES OF STEEL AND
STEEL-CONCRETE COMPOSITE BRIDGES

Design rules and specifications are proposed in different countries to define

standards and methods of analysis of steel and steel-concrete composite brid-

ges. The design guides are commonly based on experimental investigations

on small-scale bridges and small/full-scale bridge components. Many design

formulas specified in current codes of practice are in the form of empirical

equations proposed by experts in the field of bridges. However, the empir-

ical equations only provide guidance for design of the bridges and their com-

ponents in the ranges covered by the specifications. The ranges covered by

the specification depend on the number of tests conducted on the bridges at

the time of proposing the codes. Since there is continuing progress in

research to discover newmaterials, sections, connections, and different load-

ings, the codes of practice need to be updated from time to time. Further-

more, test programs on steel and steel-concrete bridges and their

components are dependent on the limits of the test specimens, loading,

boundary conditions, and so on. Therefore, the design equations specified

in current codes of practice always have limitations. Finite element analysis

can provide a good insight into the behavior of steel and steel-concrete com-

posite bridges outside the ranges covered by specifications. In addition, finite

element analysis can check the validity of the empirical equations for sections

affected by nonlinear material and geometry, which may be ignored in the

specifications. Furthermore, design guides specified in current codes of prac-

tice contain some assumptions based on previous measurements, for exam-

ple, assuming values for initial local and overall imperfections on the bridge

beams and compression members. Also, finite element modeling can inves-

tigate the validity of these assumptions. As mentioned previously, an exam-

ple of the shortcomings in current codes of practice for steel-concrete

composite bridges is that, up-to-date, there are no design provisions to con-

sider the actual load-slip characteristic curve of the shear connectors used in

the bridges, which results in partial degree of composite action behavior.

This book will detail, for the first time, how to consider the correct and

actual slip occurring at the steel-concrete interface in composite bridges

through finite element modeling. This book addresses the efficiency of finite

element analyses and the numerical results are able to improve design equa-

tions in the current codes of practice more accurately. However, it should be

noted that there are many specifications developed all over the world for

steel and steel-concrete composite bridges. It is not the intention to include
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all these codes of practice in this book. Once again, this book focuses on

finite element analysis of steel and steel-concrete composite bridges. There-

fore, the book only highlights, as examples, the design rules specified in the

American Specifications [1.23–1.25] and Eurocode [1.27, 1.28]. However,

the finite element modeling presented in this book can be used to simulate

any bridge designed using any current code of practice used in any country.

Following the simulation of the investigated bridge, the design predictions

can be compared and assessed against finite element results.
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CHAPTER22
Nonlinear Material Behavior
of the Bridge Components
2.1 GENERAL REMARKS

Chapter 1 has provided a brief background on steel and steel-concrete com-

posite bridges and reviewed recent developments reported in the literature

related to the design and finite element modeling of the bridges. This chapter

highlights the nonlinear material behavior of the main components of steel

and steel-concrete composite bridges, comprising structural steel, concrete,

reinforcement bars, shear connectors, bolts, and welds. Overall, this chapter

aims to provide a useful background regarding the stress-strain curves of the

different materials used in the bridges. Also, this chapter aims to highlight the

important parameters required for finite element modeling. The definitions

of yield stresses, ultimate stresses, maximum strains at failure, initial stiffness,

and proportional limit stresses are presented in this chapter. This chapter

enables beginners to understand the fundamental behavior of the materials

in order to correctly insert them in the finite element analyses. Covering the

behavior of shear connectors in this chapter is also important to understand

how the shear forces are transmitted at the steel-concrete slab interfaces in

composite bridges. In addition, the material properties of the main compo-

nents of joints used in steel and steel-concrete composite bridges such as

bolts are highlighted in this chapter. Furthermore, this chapter presents

how the different materials are treated in current codes of practice and

the design values specified in current codes of practice. This chapter paves

the way for Chapters 3 and 4, which address the design and stability issues

related to steel and steel-concrete composite bridges. It should be noted that

bridge components, such as structural steels, concrete, and reinforcement

steels, are used in bridge and building constructions. However, when pre-

senting the material behavior of a component in this chapter, it is presented

as it is used in bridges. As an example, structural steels used in bridges gen-

erally have more rigid performance requirements compared with steels used

in buildings. Bridge steels have to perform in an outdoor environment with

relatively large temperature changes, are subjected to excessive cyclic live

loading, and are often exposed to corrosive environments. In addition, steels
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are required to meet strength and ductility requirements for all structural

applications. However, bridge steels have to provide adequate service with

respect to the additional fatigue and fracture limit state. They also have to

provide enhanced atmospheric corrosion resistance in many applications

where they are used with normal protective coatings. For these reasons,

structural steels for bridges are required to have fracture toughness and often

corrosion resistance that exceed general structural requirements in building

constructions. Overall, the author aims that this chapter acts as a basis for

designing and finite element modeling of steel and steel-concrete composite

bridges.

2.2 NONLINEAR MATERIAL PROPERTIES OF STRUCTURAL
STEEL

2.2.1 General
The main component of steel and steel-concrete composite bridges inves-

tigated in this book is structural steel. Understanding thematerial behavior of

the steel is quite important for designing and finite element modeling of the

bridges. As a material composition, steel contains iron, a small percentage of

carbon and manganese, impurities such as sulfur and phosphorus, and some

alloying elements that are added to improve the properties of the finished

steel such as copper, silicon, nickel, chromium, molybdenum, vanadium,

columbium, and zirconium. The strength of the steel increases as the carbon

content increases, but some other properties like ductility and weldability

decrease. Steel used for bridges can be classified as carbon steels, which come

with yield stresses up to 275 N/mm2; high-strength steels, which cover

steels having yield stresses up to 390 N/mm2; heat-treated carbon steels,

which cover steels having yield stresses greater than 390 N/mm2; and

weathering steels, which have improved resistance to corrosion. Steels used

for bridges should have main properties including strength, ductility, frac-

ture toughness, weldability, weather resistance, and residual stresses. These

properties are briefly highlighted in the coming sections.

2.2.2 Steel Stresses
In the United States, the specifications for plate and rolled shape steels used

for bridges are covered by the ASTM A709 [2.1] and AASHTO M270

[1.23, 1.24]. Table 2.1 shows the applicable AASHTO and ASTM standards

for steel product categories, while Table 2.2 provides an overview of the

various steel grades covered by the ASTM A709 [2.1]. The number in
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the grade designation indicates the nominal yield strength in ksi (1 ksi is

equal to 6.895 MPa). The A709M specification is the metric version of

A709. According to ASTM, grade 36 and 50 steels have yield stresses of

36 and 50 ksi (248 and 344 MPa, respectively). Grade 50 steel is commonly

used for primary bridge members, which can be painted or galvanized in

Table 2.1 Examples of American Standards for Main Bridge Steel Products
Product AASHTO ASTM

Structural steel for bridges M270/M 270M A709/A709M

Pins, rollers, and rockers M169

M102/M102M

A108

A668/A668M

Bolts M164

M253

A307 grade A or B

A325

A490

Anchor bolts M314-90 A307 grade C

Nuts M291 A563

Washers M293 F436

F959

Shear studs M169 A108

Cast steel M103/M103M

M163/M163M

A27/A27M

A743/A743M

Cast iron M105 class 30 A48 class 30

Cables A510

Galvanized wire A641

Bridge strand/bridge rope A586

A603

Wire rope M277

Seven-wire strand M203/M203M A416/A416M

Table 2.2 Examples of Bridge Steels Available in the ASTM A709 Specification

M270 A709
Grade ASTM Description

Weather
Resistance

Product

Plates Shapes Bars

36 A36 Carbon steel No Yes Yes Yes

50 A572 HSLAa steel No Yes Yes Yes

50S A992 Structural steel No Yes

50W A588 HSLA steel Yes Yes Yes Yes

HPSb 50W A709 HSLA steel Yes Yes

HPS 70W A709 Heat-treated HSLA steel Yes Yes

HPS 100W A709 Q&T Cu-Ni steelc Yes Yes

aHSLA high-strength low-alloy.
bHigh-performance steel (HPS) grades with enhanced weldability and toughness.
cQ&T Cu-Ni quenched and tempered copper-nickel steel.
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service. Grade 50W steel is a weathering steel that has the same strength as

grade 50 steel, but it has enhanced atmospheric corrosion resistance. The

enhanced corrosion resistance was achieved by adding different combina-

tions of copper, chromium, and nickel to the grade 50 chemistry. Grade

100 and 100W steels are high-strength steels having a yield stress of 100

ksi (689 MPa), if quenched and tempered. It is common that engineers spec-

ify the use of grade 100 and 100W steels for highly stressed parts of the bridge

such as bearing components. High-performance steel (HPS) has enhanced

weldability and toughness compared to grade 100 steel. The properties of

HPS can be achieved by lowering the percentage of carbon in the steel

chemistry. Since carbon is traditionally one of the primary strengthening

elements in steel, the composition of other alloying elements must be more

precisely controlled to meet the required strength and compensate for the

reduced carbon content. Using HPS allows for increasing the span length

of bridges. Grade 100W steels are the same as grade 100 steels but with

enhanced weldability and toughness.

In the United States, structural bolts for members requiring slip critical

connections in bridges are required to comply with either the ASTM A325

[2.2] or the A490 [2.3] specification. On the other hand, anchor bolts and

nonslip critical connections are required to comply with the ASTM A307

[2.4] specification. Compatible nuts are required to be used with all bolts

meeting provisions for the appropriate grade in the ASTM A563 [2.5] spec-

ification. Hardened steel washers meeting the ASTM F436M [2.6] specifi-

cation are required underneath all parts of the bolt assembly that are turned

during installation. The surface condition and presence of lubrication are

important for proper installation of the bolt-nut assemblies. Table 2.3 shows

the minimum specified tensile strength of structural bolts to be used for

bridges. The A325 [2.2] and A490 [2.3] specifications have two different

chemistry requirements for bolts: type 1 and type 3. Type 1 bolts are

carbon-manganese steel with mainly silicon additions and are suitable for

use with painted and galvanized coatings. On the other hand, type 3 bolts

have additional requirements for copper, nickel, and chromium to be

Table 2.3 Nominal Tensile Strengths of American Structural Bolts Used in Bridges
Grade Diameter (mm) Tensile Strength (MPa)

A307 (Grade A or B) All 414

A325 13-25 827

28-38 724

Seven-wire strand All 1034
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compatible with the chemistry of weathering steel grades and are required

for use in unpainted applications where both the bolts and the base metal can

develop rust in service.

Cables and wires used in bridges in the United States are either strands,

which are covered by ASTM A586 [2.7], or ropes, which are covered by

ASTM A603 [2.8]. Cables and wires are constructed from individual

cold-drawn wires that are spirally wound around a wire core. The com-

monly used nominal diameters are between 1/2 (12.7 mm) and 4 in.

(101.6 mm) depending on the intended application. The capacities of the

cables and wires are defined as the minimum breaking strength that depends

on the nominal diameter of the cables or wires. Cables and wires are used as

tension members in bridges. Because relative deformation between the indi-

vidual wires will affect elongation, strands and ropes are preloaded to about

55% of the breaking strength after manufacturing to “seat” the wires and

stabilize the deformation response. Following preloading, the axial deforma-

tion becomes linear and predictable based on an effective modulus for the

wire bundles. A bridge rope has an elastic modulus of 20,000 ksi

(138,000 MPa). The elastic modulus of a bridge strand is 24,000 ksi

(165,000 MPa). Seven-wire steel strands (tendon) are commonly used for

prestressed concrete bridge decks. They are also used as cable stays, hangers,

and posttensioning members. They consist of seven individual cold-drawn

round wires spirally wounded to form a strand with nominal diameters

between 0.25. (6.4 mm) and 0.60 in. (15.2 mm). Two grades are available

(250 and 270) where the grade indicates the tensile strength of the wires

(fpu). The net cross-sectional area of the seven-wire strand (area of the indi-

vidual wires) should be used in all calculations, and prestress losses should be

accounted for, either by measurements or based on specified values in cur-

rent codes of practice. Mechanical properties of seven-wire strands are mea-

sured from tensile coupon tests. The tensile strength is calculated by dividing

the breaking load by the net cross-sectional area of the seven-wire strand.

Compared to structural steels, strands do not exhibit a yield plateau, and

there is a gradual rounding of the stress-strain curve beyond the proportional

limit. The yield stress in this case may be calculated as the stress at the 0.1%

strain offset line (f0.1). Strands are loaded provided that they do not reach the

yield stress. AASHTO [1.23, 1.24] defines the yield strength as fpy¼0.90fpu.

The ASTM A370 [2.9] and the ASTM E8 [2.10] specifications cover

tensile coupon testing procedures for determining the material properties

of steel products. The main properties measured from a tensile coupon test

are the yield strength (fy), tensile strength (fu), Young’s modulus (Es),
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ultimate strain at failure (eu), and full nonlinear stress-strain curve. The full

nonlinear stress-strain curve is known as the engineering stress-strain curve,

which can be measured by recording the load and elongation of an exten-

someter during the tensile coupon test. Young’s modulus for steel can be

determined by predicting the slope of the elastic initial portion of the

stress-strain curve as shown in Figure 2.1. In the absence of the measured

engineering stress-strain curve, Young’s modulus for steel can be conserva-

tively taken as Es¼29,000-30,000 ksi (200,000-207,000 MPa) for structural

calculations for all structural steels used in bridge construction. The yield

strength of steel is determined by the 0.2% offset method. A line is plotted

parallel to the elastic part of the stress-strain curve below the proportional

limit with an x-axis offset of 0.2% (0.002) strain. The intersection of the off-

set line with the stress-strain curve defines the yield strength. Figures 2.1

and 2.2 show the 0.2% offset method applied to steels without a definite

yield plateau and to steels that exhibit a yield plateau, respectively. For

the steels that exhibit a yield plateau, there is an upper yield point that is

greater than the yield strength. When yielding first occurs, there is typically

a slight drop in load before the steel plastically deforms along the yield

plateau (see Figure 2.2). Following the first yield, steels with fy�70 ksi

(483 MPa) undergo plastic deformation at a relatively constant load level

defining the yield plateau. The length of this plateau varies for different

steels, but approximately, est is around 10ey. Strain hardening begins at

the end of the plateau and continues until the maximum load is achieved

Strain

Stress

Es

0.2 %
offset
line 

fy

fu

efinaleuey

fp

Figure 2.1 Engineering stress-strain curve for structural steels without a defined yield
plateau.
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corresponding to the tensile strength fu. The slope of the stress-strain curve

constantly varies during strain hardening. The tangent slope of the curve at

the onset of strain hardening (Est) is often used for analysis of steel behavior at

high strain levels. Tensile coupon test results are usually presented by engi-

neering stress-strain curves where stress is calculated based on the unde-

formed cross-sectional area of the specimen. As the specimen is loaded,

the cross-sectional area is constantly being reduced, which is known as neck-

ing phenomena. The true stress at any given point can be calculated with

respect to the contracted area at that point in time. In nonlinear structural

analyses, true stress-strain curves should be used. Figure 2.3 shows typical

stress-strain curves for steels in the A709 [2.1] specification. Steels with

fy�70 ksi (483 MPa) show definite yield plateaus with similar ductility.

The HPS 100W steel does not have a clearly defined yield plateau and shows

slightly lower ductility compared to the lower-strength steels. The amount

of strain hardening decreases with increasing yield strength. The minimum

specified yield strength (fy) and tensile strength (fu) are shown in Table 2.4 for

steel grades included in the A709 specification. Plates with thickness up to

4 in. (101.6 mm) are available in all grades, except for 50S. Rolled shapes are

not available in the HPS grades. The shear yield stress (fyv) can be determined

Stress

0.2 %
offset
line

Es

Est

ey est

fy

fp

Strain

Figure 2.2 Initial part of the stress-strain curve for steels with a yield plateau.
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using the von Mises yield criterion, which is commonly used to predict the

onset of yielding in steel subject to multiaxial states of stress as follows:

fy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx�sy
� �2

+ sy�sz
� �2

+ sz�sxð Þ2 + 6 txy2 + tyz2 + tzx2
� �

2

s
ð2:1Þ

For the state of pure shear in one direction, the normal stresses are equal

to zero; the shear yield stress (fyv) can be determined as follows:

fyv ¼ 1ffiffiffi
3

p fy� 0:58 fy ð2:2Þ

The shear modulus (G) based on Young’s modulus (E) and Poisson’s

ratio (n) is given as

G¼ Es

2 1+ uð Þ¼ 11, 200 ksi 77, 200 MPað Þ ð2:3Þ

140

280

420

560

700

840

0 0.08 0.16 0.20 0.24

Stress (MPa) 

Strain

HPS 100W 

HPS 70W 

50W

36

0.280.120.04

Figure 2.3 Typical example engineering stress-strain curves for American bridge
structural steels.

Table 2.4 Nominal Strength of American ASTM A709 Steel Grades

Grade 36 50 50S 50W
HPS
50W

HPS
70W HPS 100W

Plate thickness

(mm)

t�102 t�102 N/A t�102 t�102 t�102 t�64 64< t

�102
Shapes All All All All N/A N/A N/A N/A

fu (MPa) 400 448 448 483 483 586 758 689
fy (MPa) 248 345 345 345 345 483 689 620
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In Europe, EC3 (BS EN 1993-1-1) [2.11] specifies that the nominal

values of the yield strength fy and the ultimate strength fu for structural steel

used for buildings and bridges should be obtained either by adopting the

values fy¼Reh and fu¼Rm direct from the product standard or by using

the simplification given in Table 2.5, where Reh and Rm are yield and ulti-

mate strengths to product standards. EC3 [2.11] also specifies that for struc-

tural steels, a minimum ductility is required, which should be expressed in

terms of the limits for the ratio fu/fy (the specified minimum ultimate tensile

strength fu to the specified minimum yield strength fy), the elongation at fail-

ure on a gauge length of 5:65
ffiffiffiffiffiffi
Ao

p
(where Ao is the original cross-sectional

area), and the ultimate strain eus (where eus corresponds to the ultimate

strength fu). It should be noted that EC3 [2.11] specifies that the limiting

values of the ratio fu/fy, the elongation at failure, and the ultimate strain

eu may be defined in the National Annex of the country of construction.

Alternatively, EC3 recommends that fu/fy�1.10, elongation at failure

not less than 0.15, and eu�15ey, where ey is the yield strain (ey¼ fy/Es). Gen-

erally, steels conforming with one of the steel grades listed in Table 2.5

should be accepted as satisfying these requirements. According to EC3,

the modulus of elasticity of steel Es¼210 000 N/mm2, shear modulus

G¼81,000 N/mm2, Poisson’s ratio in elastic stage n¼0.3, and the coeffi-

cient of linear thermal expansion a¼12�10�6 per K (for T�100 �C).
It should be noted that for calculating the structural effects of unequal

temperatures in composite concrete-steel structures to EC4 [2.12], the

coefficient of linear thermal expansion is taken as a¼10�10�6 per K.

Bolts, nuts, and washers used for bridges, according to EC3 (BS EN

1993-2) [1.27], should conform to the reference standards given in EC3

(BS EN 1993-1-8) [2.13], 2.8: Group 4. The different bolt grades used in

bridges are presented in Table 2.6. The nominal values of the yield strength

fyb and the ultimate tensile strength fub are shown in Table 2.6, and they

should be adopted as characteristic values in calculations, while high-

strength structural bolts of grades 8.8 and 10.9, which conform to the ref-

erence standards given in BS EN 1993-1-8 [2.13], 2.8: Group 4, may be

used as preloaded bolts when controlled tightening is carried out in accor-

dance with the reference standards given in BS EN 1993-1-8 [2.13], 2.8:

Group 7. In addition, EC3 (BS EN 1993-2)[1.27] specifies that steel grades

in accordance with the reference standards given in BS EN 1993-1-8 [2.13],

2.8: Group 1, steel grades in accordance with the reference standards given

in BS EN 1993-1-8, 2.8: Group 4, and reinforcing bars conforming to EN

10080 [2.14] may be used for anchor bolts. The nominal yield strength for

anchor bolts should not exceed 640 N/mm2.
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Table 2.5 Nominal Values of Yield Strength fy and Ultimate Tensile Strength fu

Standard and Steel Grade

Nominal Thickness of the Element t (mm)

t £ 40 mm 40 < t £ 80 mm

fy (MPa) fu (MPa) fy (MPa) fu (MPa)

(a) For European Hot-Rolled Structural Steel Specified in EC3 [2.11]

EN 10025-2

S235 235 460 215 360

S275 275 430 255 410

S355 355 510 335 470

S450 440 550 410 550

EN 10025-3

S275 N/NL 275 390 255 370

S355 N/NL 355 490 335 470

S420 N/NL 420 520 390 520

S460 N/NL 460 540 430 540

EN 10025-4

S275 M/ML 275 370 255 360

S355 M/ML 355 470 335 450

S420 M/ML 420 520 390 500

S460 M/ML 460 540 430 530

EN 10025-5

S235 W 235 360 215 340

S355 W 355 510 335 490

EN 10025-6

S460 Q/QL/QL1 460 570 440 550

(b) For European Structural Hollow Sections Specified in EC3 [2.11]

EN 10210-1

S235 H 235 360 215 340

S275 H 275 430 255 410

S355 H 355 510 335 490

S275 NH/NLH 275 390 255 370

S355 NH/NLH 355 490 335 470

S420 NH/NHL 420 540 390 520

S460 NH/NLH 460 560 430 550

EN 10219-1

S235 H 235 360

S275 H 275 430

S355 H 355 510

56 Ehab Ellobody



2.2.3 Ductility
Steel ductility is the capacity of steel material to undergo large strains after

the onset of yielding and before fracture, which provides an advance warn-

ing of possible failure. For steel products, relative ductility is measured as the

percent elongation that occurs before rupture in a standard tensile coupon

test. The percent elongation is dependent on the test specimen geometry and

the gauge length used to measure elongation during tensile coupon test. In

the United States, for the same material, tension specimens with a 2 in.

(50.8 mm) gauge length will exhibit a lower percent elongation compared

to those with an 8 in. (203.2 mm) gauge length. The ASTM A709 [2.1]

specification specifies that structural steel for bridges has an adequate level

of material ductility to perform well in structural applications. Steel material

ductility is different from structural steel connections and overall structural

ductility. For example, a steel member may be ductile on its own; however,

if there are holes in the cross section, it may undergo brittle failure behavior.

The yield-tensile stress ratio (YT ratio) defined as YT¼ fy/fu can provide a

reasonable measure to steel ductility. However, for steels specified in the

A709 [2.1] specification, there is no need for special consideration of the

YT ratio for most bridge structural applications.

Table 2.6 Nominal Values of the Yield Strength fyb and the Ultimate Tensile Strength
fub for European Bolts Specified in EC3 [1.27]
Bolt grade 4.6 5.6 6.8 8.8 10.9

fyb (N/mm2) 240 300 480 640 900

fub (N/mm2) 400 500 600 800 1000

Table 2.5 Nominal Values of Yield Strength fy and Ultimate Tensile Strength fu—cont'd

Standard and Steel Grade

Nominal Thickness of the Element t (mm)

t £ 40 mm 40 < t £ 80 mm

fy (MPa) fu (MPa) fy (MPa) fu (MPa)

S275 NH/NLH 275 370

S355 NH/NLH 355 470

S460 NH/NLH 460 550

S275 MH/MLH 275 360

S355 MH/MLH 355 470

S420 MH/MLH 420 500

S460 MH/MLH 460 530
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2.2.4 Fracture Toughness
Steel members used in bridges must have sufficient fracture toughness to

reduce the probability of brittle failure. The brittle failure may occur suddenly

under a load, which may be below the load level to cause yielding. It may be

initiated by the existence of a small crack or other forms of notch. Very high

concentration of stress occurs at the root of a natural crack. Any sudden change

that occurs in the cross section of a loaded member having a notch-like effect

can disturb the stress pattern and cause a local stress concentration. If the local

yielding at the tip of the crack or notch is insufficient to spread the load over a

large area, a brittle fracture may be initiated. Once initiated, the fracture prop-

agates at high speed drivenby the release of the elastic strain energy in the struc-

ture. Linear-elastic fracture mechanics analysis is the basis for predicting brittle

fracture in structural steels. The stress intensity factor (KI) can characterize the

crack tip singularity. For a given plate geometry, the stress intensity present at a

crack tip is a function of the crack size and the applied stress. Thematerial frac-

ture resistance is characterized by the critical stress intensity factor (KIc) that can

be sustained without fracture. When the applied stress intensity KI equals or

exceeds the material fracture resistance KIc, fracture is predicted. The Charpy

V-notch (CVN) test can beused tomeasure the fracture toughness of structural

steel [2.15]. A small 10�10 mm bending specimen with a machined notch is

impacted by a hammer, and the energy required to initiate fracture is mea-

sured. CVN test data can be used to predict the KIc fracture toughness. The

AASHTO [1.23, 1.24] specification classifies structural steel materials into

two categories, which are fracture-critical material and non-fracture-critical

material. Fracture-critical materials’ fracture would cause collapse of the struc-

ture. The specification divides the United States into three temperature zones

for specifying fracture toughness of bridge steels. The zones are defined by the

lowest expected service temperature as shown in Table 2.7. It should be noted

that the specified toughness requirements are higherwith colder zones, thicker

components, higher grades of steel, and fracture-critical components.

In Europe, EC3 (BS EN 1993-2) [1.27] requires that structural steels

used for bridges should have the enough material toughness to prevent brit-

tle fracture within the intended design to prolong the working life of the

Table 2.7 AASHTO Temperature Zones for Specifying CVN Toughness
Lowest Anticipated
Service Temperature Temperature Zone

0 �F and above 1

�1 to �30�F 2

�31 to �60 �F 3
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structure. The specification requires that no further checks against brittle

fracture need to be made if the conditions given in EN 1993-1-10 [2.16]

are met for the lowest service temperature. EC3 (BS EN 1993-2) [1.27] also

recommends that additional requirements depending on the plate thickness,

with an example given in Table 2.8, may be adopted.

2.2.5 Weldability
Steel weldability is defined as the ability of steel to be welded to serve its

intended application. In the United States, the AASHTO/AWSD1.5 weld-

ing specifications [2.17] govern welding of bridge steels. Following the D1.5

provisions, all bridge steels in the A709 [2.1] specification can be considered

weldable. It should be noted that increasing amounts of carbon and manga-

nese, which are necessary for higher strengths, make the steel harder and

consequently more difficult to weld. Also, the elements added to improve

weathering resistance reduce weldability. In addition, the weldability of

structural steels depends on the chemical composition. Graville [2.18]

showed that the tendency of a heat-affected zone (HAZ) to crack depends

on the carbon content and the carbon equivalent (CE) calculated using

Equation (2.4) as recommended by the Bridge Welding Code D1.5, which

considers other alloying elements in addition to carbon:

CE¼C+
Mn+Si

6
+
Ni+Cu

15
+
Cr +Mo+V

5
ð2:4Þ

where C,Mn, etc., represent the percentage of the element concerned in the

chemical composition of the steel. To obtain higher yield stresses, the

percentage content of the various alloying elements is increased leading

to the increase of the carbon equivalent value. Therefore, welding of

higher-strength steels is more difficult compared with normal-strength

steels. Specifications sometimes limit maximum values for carbon equiva-

lent. Steels with carbon equivalent values higher than 0.53 should have spe-

cial measures in welding.

Table 2.8 Example for Additional Requirement for Toughness of Base Material
Specified in EC3 [1.27]
Example Nominal Thickness Additional Requirement

1 t�30 mm T27J ¼ �20 �C in accordance with EN 10025

30< t�80 mm Fine-grain steel in accordance with EN 10025,

e.g., S355N/M

t>80 mm Fine-grain steel in accordance with EN 10025,

e.g., S355NL/ML
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2.2.6 Weather Resistance
As mentioned previously, steel grades with the “W” suffix used in the United

States are called “weathering steels” since they are developed for increased

weather resistance, such as corrosion resistance. Weathering steels form a thin

iron oxide film on the surfacewhen exposed to damp environment,which acts

as a coating that resists any further rusting. Weathering steels can be used in

bridge structures without special paints. Compared to normal steel grades,

weathering steel grades provide around 3� corrosion resistance. However,

this is greatly dependent on the severity of environment conditions. In the

United States, the ASTMG101 [2.19] specification proposed a methodology

for classification of steels as weathering. The specification proposed a corrosion

index (I) based on the chemical composition of the steel. The ASTM A709

[2.1] specification indicates that steel grades with I�6 can be classified as

weathering steels indicated by the W suffix to the grade. It should be noted

that although paint coatings for normal steels are commonly used for corrosion

resistance, other options such as galvanizing steelmay be effectively used. All of

the A709 bridge steels are suitable for use with any of these coating options.

2.2.7 Residual Stresses
Residual stresses are initial internal stresses existing in cross sections without

the application of an external load such as stresses resulting frommanufactur-

ing processes of metal structural members by cold forming. Residual stresses

produce internal membrane forces and bendingmoments, which are in static

equilibrium inside the cross sections. The force and the moment resulting

from residual stresses in the cross sections must be zero. Residual stresses

in structural cross sections are attributed to the uneven cooling of parts of

cross sections after hot rolling. Uneven cooling of cross-sectional parts is

subjected to internal stresses. The parts that cool quicker have residual com-

pressive stresses, while parts that cool slower have residual tensile stresses.

Residual stresses cannot be avoided and in most cases are not desirable.

The measurement of residual stresses is therefore important for accurate

finite element modeling of steel and steel-concrete composite bridges.

Extensive experimental investigations were conducted in the literature to

determine the distribution andmagnitude of residual stresses inside cross sec-

tions. The experimental investigations can be classified into two main cate-

gories: nondestructive and destructive methods. Examples of nondestructive

methods are X-ray diffraction and neutron diffraction. Nondestructive

methods are suitable formeasuring stresses close to the outside surface of cross
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sections.On the other hand, destructivemethods involvemachining/cutting

of the cross section to release internal stresses andmeasure resulting change of

strains. Destructive methods are based on the destruction of the state of equi-

librium of the residual stresses in the cross section. In this way, the residual

stresses can be measured by relaxing these stresses. However, it is only pos-

sible to measure the consequences of the stress relaxation rather than the

relaxation itself. One of the main destructive methods is to cut the cross sec-

tion into slices and measure the change in strains before and after cutting.

After measuring the strains, some simple analytic approaches can be used

to evaluate resultantmembrane forces and bendingmoments in the cross sec-

tions. Although the testing procedures to determine residual stresses are out-

side the scope of this book, it is important to detail how to incorporate

residual stresses in finite element models. It should be noted that in some

cases, incorporating residual stresses can have a small effect on the structural

performance of metals. However, in some other cases, it may have a consid-

erable effect. Structural steel cross sections used in bridges are subjected to

more loading conditions than that commonly applied to buildings. Since

the main objective of this book is to accurately model all parameters affecting

the behavior and design of steel and steel-concrete composite bridges, the

way to model residual stresses is highlighted.

Limited numerical methods were presented in the literature to simulate

some typical and simple procedures introducing residual stresses. Dixit and

Dixit [2.20] modeled cold rolling for steel and gave a simplified approach to

find the longitudinal residual stress. The numerical simulation [2.20] has

provided the scope to investigate the effects of different parameters on

the magnitude and distribution of residual stresses such as material charac-

teristics and boundary conditions. Kamamato et al. [2.21] have analyzed

residual stresses and distortion of large steel shafts due to quenching. The

results showed that residual stresses are strongly related to the transforma-

tional behavior. Toparli and Aksoy [2.22] analyzed residual stresses during

water quenching of cylindrical solid steel bars of various diameters by using

finite element technique. The authors have computed the transient temper-

ature distribution for solid bars with general surface heat transfer. Jahanian

[2.23] modeled heat treatment and calculated the residual stress in a long

solid cylinder by using theoretical and numerical methods with different

cooling speeds. Yuan and Wu [2.24] used a finite element program to ana-

lyze the transient temperature and residual stress fields for a metal specimen

during quenching. They modified the elastic-plastic properties of specimen

according to temperature fields. Yamada [2.25] presented a method of
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solving uncoupled quasistatic thermoplastic problems in perforated plates. In

their analysis, a transient thermal stress problem was solved for an infinite

plate containing two elliptic holes with prescribed temperature. An exten-

sive survey of the aforementioned numerical investigations was presented by

Ding [2.26]. However, to date, the effect of residual stresses on the structural

behavior and strength of the components of steel and steel-concrete com-

posite bridges was not fully understood, which is addressed in this book.

Residual stresses and their distribution are very important factors affecting

the strength of axially loaded steel members. These stresses are of particular

importance for slender columns, with slenderness ratio varying from approx-

imately 40-120. As a column load is increased, some parts of the column will

quickly reach the yield stress and go into the plastic range because of the pres-

ence of residual compression stresses. The stiffness will reduce and become a

function of the part of the cross section that is still elastic. A column with

residual stresses will behave as though it has a reduced cross section. This

reduced cross section or elastic portion of the column will change as the

applied load changes. The buckling analysis and postbuckling calculation

can be carried out theoretically or numerically by using an effective moment

of inertia of the elastic portion of the cross section or by using the tangent

modulus. Figure 2.4 shows typical residual stress distributions in hot-rolled

and built-up I-sections. It can be seen that although both cross sections are I-

shaped sections, welding and cutting of plates of the built-up sections result in

differences in the distributions of residual stresses in both sections.

2.3 NONLINEAR MATERIAL PROPERTIES OF CONCRETE

2.3.1 General
Understanding nonlinear material behavior of concrete is quite important in

designing and finite element modeling of steel-concrete composite bridges

investigated in this book. As a material composition, plain concrete is a com-

posite material comprising a mixture of coarse and fine aggregates, cement,

water, and additions. Numerous design approaches are available in the liter-

ature that can be effectively used to provide the mix proportions that produce

plain concrete with a target strength, workability, permeability, etc. It should

be noted that explaining these design approaches is outside the scope of this

book. However, the nonlinear material properties of plain concrete required

for designing and finite element modeling of steel-concrete composite bridges

are highlighted in this book. Plain concrete behaves completely different

when subjected to compressive and tensile stresses. Plain concrete is a brittle
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material that has a considerably higher compressive strength comparedwith its

tensile strength. Therefore, in steel-concrete composite bridges wheremassive

concrete decks lies on the top of steel beams, it is more economical to use it to

benefit from the composite action between steel and concrete in the regions

where the concrete is subjected to compressive stresses. However, when plain

concrete is subjected to tensile stresses, it fails prematurely if its tensile strength

is exceeded. Therefore, reinforcement steel bars are commonly placed in the

regions where plain concrete is subjected to tensile stresses to form reinforced

concrete (RC). Nonlinear material properties of reinforcement bars are also

briefly highlighted in this book. It should be also noted that detailing the

Figure 2.4 Distributions of residual stresses in hot-rolled and built-up I-sections.
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nonlinear material properties of concrete in this book is based on specified

properties provided in current codes of practice. This is attributed to that

experimental and numerical investigations reported in the literature on non-

linear material properties are unlimited and differ from a country to another.

Since the main objective of this book is to provide a consistent and robust

nonlinear approach for designing and finite element modeling of steel-

concrete composite bridges, only specified values in current codes of practice

are highlighted in this book.

2.3.2 Concrete Stresses
In Europe, EC2 (BS EN 1992-1-1 and BS EN 1992-2) [2.27, 2.28] specify

that the compressive strength of concrete is denoted by concrete strength

classes, which are based on the characteristic cylinder strength fck determined

at 28 days with a recommended maximum value Cmax (fck/fck,cube) of C90/

105. The characteristic strengths for fck and the corresponding mechanical

characteristics necessary for design according to EC2 are given in Table 2.9.

In certain situations (e.g., prestressing), it may be appropriate to assess the

compressive strength of concrete before or after 28 days with reference to

test specimens stored under other conditions rather than those prescribed

in EN 12390 [2.29]. If the concrete strength is determined at an age

t>28 days, the values acc and act, which are coefficients taking account

of long-term effects on the compressive and tensile strengths, respectively,

should be reduced by a factor kt. EC2 recommends the value of kt as 0.85.

According to EC2, when it is required to specify the concrete compressive

strength, fck(t), at time t for a number of stages (e.g., transfer of prestress), the

following relationships can be used:

fck tð Þ¼ fcm tð Þ�8 MPað Þ for 3< t< 28 days: ð2:5Þ
fck tð Þ¼ fck for t� 28 days: ð2:6Þ

The compressive strength of concrete at an age t depends on the type of

cement, temperature, and curing conditions. For a mean temperature of

20 �C and curing in accordance with EN 12390 [2.29], the compressive

strength of concrete at various ages fcm(t) may be estimated as follows:

fcm tð Þ¼ bcc tð Þ fcm ð2:7Þ
with

bcc tð Þ¼ exp s 1� 28

t

� �1=2
� �	 


ð2:8Þ
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Table 2.9 Strength and Deformation Characteristics for Concrete Specified in EC2 [2.27]
Strength Classes for Concrete

fck (MPa) 12 16 20 25 30 35 40 45 50 55 60 70 80 90

fck,cube (MPa) 15 20 25 30 37 45 50 55 60 67 75 85 95 105

fcm (MPa) 20 24 28 33 38 43 48 53 58 63 68 78 88 98

fctm (MPa) 1.6 1.9 2.2 2.6 2.9 3.2 3.5 3.8 4.1 4.2 4.4 4.6 4.8 5.0

fctk, 0.05 (MPa) 1.1 1.3 1.5 1.8 2.0 2.2 2.5 2.7 2.9 3.0 3.1 3.2 3.4 3.5

fctk, 0.95 (MPa) 2.0 2.5 2.9 3.3 3.8 4.2 4.6 4.9 5.3 5.5 5.7 6.0 6.3 6.6

Ecm (GPa) 27 29 30 31 33 34 35 36 37 38 39 41 42 44

ec1 (%) 1.8 1.9 2.0 2.1 2.2 2.25 2.3 2.4 2.45 2.5 2.6 2.7 2.8 2.8

ecu1 (%) 3.5 3.2 3.0 2.8 2.8 2.8

ec2 (%) 2.0 2.2 2.3 2.4 2.5 2.6

ecu2 (%) 3.5 3.1 2.9 2.7 2.6 2.6

n 2.0 1.75 1.6 1.45 1.4 1.4

ec3 (%) 1.75 1.8 1.9 2.0 2.2 2.3

ecu3 (%) 3.5 3.1 2.9 2.7 2.6 2.6
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where fcm(t) is the mean concrete compressive strength at an age of t days, fcm
is the mean compressive strength at 28 days according to Table 2.9, bcc(t) is a
coefficient that depends on the age of the concrete t, t is the age of the con-

crete in days, and s is a coefficient that depends on the type of cement. The

value of s is equal to 0.2 for cement of strength classes CEM 42,5 R, CEM

52,5N, and CEM 52,5 R (class R). The value of s is equal to 0.25 for cement

of strength classes CEM 32,5 R and CEM 42,5N (class N). The value of s is

equal to 0.38 for cement of strength class CEM 32.5N (class S). The tensile

strength refers to the highest stress reached under concentric tensile loading.

Where the tensile strength is determined as the splitting tensile strength,

fct,sp, an approximate value of the axial tensile strength, fct, may be taken as

fct ¼ 0:9 fct,sp ð2:9Þ
The development of tensile strength with time is strongly influenced by

curing and drying conditions and by the dimensions of the structural mem-

bers. As a first approximation, it may be assumed that the tensile strength

fctm(t) can be calculated based on the values of fctm, given in Table 2.9, as

follows:

f ctm tð Þ ¼ bcc tð Þð Þa � fctm ð2:10Þ
where

a¼ 1 for t< 28

a¼ 2=3 for t� 28
ð2:11Þ

According to EC2 [2.27, 2.28], the elastic deformations of concrete

largely depend on its composition (especially the aggregates). The values

given in EC2 should be regarded as indicative for general applications.

However, they should be specifically assessed if the structure is likely to

be sensitive to deviations from these general values. The modulus of elastic-

ity of a concrete is controlled by the moduli of elasticity of its components.

Approximate values for the modulus of elasticity Ecm, secant value between

sc¼0 and 0.4fcm, for concretes with quartzite aggregates, are given in

Table 2.9. For limestone and sandstone aggregates, the value should be

reduced by 10% and 30%, respectively. For basalt aggregates, the value

should be increased by 20%. According to EC2, variation of the modulus

of elasticity with time can be estimated as follows:

Ecm tð Þ¼ fcm tð Þ=fcmð Þ0:3Ecm ð2:12Þ
where Ecm(t) and fcm(t) are the values at an age of t days and Ecm and fcm are

the values determined at an age of 28 days. Poisson’s ratio (uc) may be taken
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equal to 0.2 for uncracked concrete and 0.0 for cracked concrete. Unless

more accurate information is available, the linear coefficient of thermal

expansion may be taken equal to 10�10�6 per K.

2.3.3 Creep and Shrinkage
Creep and shrinkage of the concrete depend on the ambient humidity, the

dimensions of the element, and the composition of the concrete. Creep is

also influenced by the maturity of the concrete when the load is first applied

and depends on the duration and magnitude of the loading. According to

EC2 [2.27, 2.28], the creep coefficient, ’(t, t0), is related to Ec, the tangent

modulus, which may be taken as 1.05Ecm. The code provides charts for

determining the creep coefficient, provided that the concrete is not sub-

jected to a compressive stress greater than 0.45 fck(t0) at an age t0, the age

of concrete at the time of loading. The creep deformation of concrete ecc
(1, t0) at a time t¼1 for a constant compressive stress sc applied at the

concrete age t0 is given by

ecc 1,t0ð Þ¼’ 1,t0ð Þ sc=Ecð Þ ð2:13Þ
When the compressive stress of concrete at an age to exceed the value

0.45 fck(t0), EC2 [2.27, 2.28] requires that creep nonlinearity should be con-

sidered. The high stress can occur as a result of pretensioning, for example, in

precast concrete members at tendon level. In such cases, the nonlinear

notional creep coefficient should be obtained as follows:

’nl 1,t0ð Þ¼’ 1,t0ð Þexp 1:5 ks�0:45ð Þ½ 	 ð2:14Þ
where ’nl(1,t0) is the nonlinear notional creep coefficient, which replaces

’(1,t0); ks is the stress-strength ratio sc/fck(t0), where sc is the compressive

stress; and fck(t0) is the characteristic concrete compressive strength at the

time of 1oading. The values of the final creep coefficient ’(1,t0) are given

in EC2 and are valid for ambient temperatures between�40 �C and +40 �C
and a mean relative humidity between RH¼40% and RH¼100%. In

determining ’(1,t0), t0 is the age of the concrete at time of loading in days

and h0 is the notional size¼2Ac/u, where A is the concrete cross-sectional

area and u is the perimeter of that part that is exposed to drying.

The total shrinkage strain, according to EC2, is composed of two com-

ponents, the drying shrinkage strain and the autogenous shrinkage strain.

The drying shrinkage strain develops slowly, since it is a function of the

migration of the water through the hardened concrete. The autogenous
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shrinkage strain develops during hardening of the concrete, with the major

part therefore developing in the early days after casting. Autogenous shrink-

age is a linear function of the concrete strength. It should be considered spe-

cifically when new concrete is cast against hardened concrete. Hence, the

values of the total shrinkage strain ecs can be calculated as follows:

ecs¼ ecd + eca ð2:15Þ
where ecs is the total shrinkage strain, ecd is the drying shrinkage strain, and eca
is the autogenous shrinkage strain. The final value of the drying shrinkage

strain ecd,1 is equal to kh�ecd,0. ecd,0 may be taken fromTable 2.10. The devel-

opment of the drying shrinkage strain in time can be calculated as follows:

ecd tð Þ¼ bds t,tsð Þkecd,0 ð2:16Þ
where kh is a coefficient depending on the notional size h0 according to

Table 2.11:

ecd tð Þ¼ t� tsð Þ
t� tsð Þ+0:04

ffiffiffiffiffi
h30

p ð2:17Þ

where t is the age of the concrete at the moment considered in days and ts is

the age of the concrete (days) at the beginning of drying shrinkage (or swell-

ing). Normally, this is at the end of curing; h0 is the notional size (mm) of the

Table 2.11 Values for kh Specified in EC2 [2.27]
h0 Kh

100 1.00

200 0.85

300 0.75

� 500 0.70

Table 2.10 Nominal Unrestrained Drying Shrinkage Values ecd0 (%) for Concrete with
Cement CEM Class N Specified in EC2 [2.27]

fck/fck,cube

Relative Humidity (%)

20 40 60 80 90 100

20/25 0.62 0.58 0.49 0.30 0.17 0.00

40/50 0.48 0.46 0.38 0.24 0.13 0.00

60/75 0.38 0.36 0.30 0.19 0.10 0.00

80/95 0.30 0.28 0.24 0.15 0.08 0.00

90/105 0.27 0.25 0.21 0.13 0.07 0.00
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cross section ¼2Ac/u, where Ac is the concrete cross-sectional area and u is

the perimeter of that part of the cross section, which is exposed to drying.

The autogenous shrinkage strain can be calculated as follows:

eca tð Þ¼ bas tð Þeca 1ð Þ ð2:18Þ
where

eca 1ð Þ¼ 2:5 fck�10ð Þ10�6 ð2:19Þ
and

bas tð Þ¼ 1� exp �0:2t0:5
� � ð2:20Þ

2.3.4 Stress-Strain Relation of Concrete for Nonlinear
Structural Analysis

In nonlinear structural analysis and in nonlinear finite element modeling,

concrete material should be carefully treated. In the absence of experimental

data, design rules specified in current codes of practice can be adopted. As an

example, EC2 [2.27] provides the relation between sc and ec shown in

Figure 2.5 (compressive stress and shortening strain shown as absolute values

and the use of 0.4 fcm for the definition of Ecm are approximates) for short-

term uniaxial loading, which is described by the following expression:

sc
fcm

¼ k���2

1 + k�2ð Þ� ð2:21Þ

a

sc

ec1

fcm

0.4fcm

ecu1 ec

Figure 2.5 Schematic representation of the stress-strain relation for structural analysis
specified in EC2 [2.27].
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where �¼ ec/ec1, where ec1 is the strain at peak stress according to Table 2.9,
and k¼1.05 Ecm�|ec1|/fcm, where fcm is taken from Table 2.9. Expres-

sion (2.21) is valid for 0<|ec|< ecu1, where ecu1 is the nominal ultimate

strain.

According to EC2 [2.27, 2.28], the value of the design compressive

strength is defined as follows:

fcd¼ acc fck=gC ð2:22Þ
where gC is the partial safety factor for concrete and acc is the coefficient

taking account of long-term effects on the compressive strength, which is

recommended to be taken as 1.0. The value of the design tensile strength,

fctd, is defined as follows:

fctd ¼ act fctk,0:05=gC ð2:23Þ
where act is a coefficient taking account of long-term effects on the tensile

strength, which is recommended to be taken as 1.0.

2.3.5 Stress-Strain Relations for the Design of Cross Sections
To design concrete cross section, simplified stress-strain curves can be

adopted to ease hand calculations. As an example, for the design of cross sec-

tions using EC2, the following stress-strain relationship is recommended (see

Figure 2.6) (compressive strain shown as positive):

sc¼ fcd 1� 1� ec
ec2

� �n� �
for 0� ec� ec2 ð2:24Þ

sc¼ fcd for ec2� ec� ecu2 ð2:25Þ
where n is the exponent according to Table 2.9, ec2 is the strain at reaching

the maximum strength according to Table 2.9, and ecu2 is the ultimate strain

according to Table 2.9. Other simplified stress-strain relationships may be

used if equal to or more conservative than the nonlinear one, for instance,

bilinear according to Figure 2.7 (compressive stress and shortening strain

shown as absolute values) with values of ec3 and ecu3 according to Table 2.9.
A rectangular stress distribution (as given in Figure 2.8) may be assumed.

The factor l, defining the effective height of the compression zone, and the

factor �, defining the effective strength, can be taken as follows:

l¼ 0:8 for fck� 50 Mpa

l¼ 0:8� fck�50ð Þ=400 for 50< fck� 90 Mpa
ð2:26Þ
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sc

fck

fcd

ec2 ecu2 ec

Figure 2.6 Parabola-rectangle diagram for concrete under compression specified in
EC2 [2.27].

sc

fck

fcd

ec3 ecu3 ec

Figure 2.7 Bilinear stress-strain relation specified in EC2 [2.27].

Ac

Ars

Fc

Frs

d

x

ecu3

lx

hfcd

ers

Figure 2.8 Rectangular stress distribution specified in EC2 [2.27].
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and

�¼ 1:0 for fck � 50 Mpa

�¼ 1:0� fck�50ð Þ=200 for 50< fck� 90 Mpa
ð2:27Þ

It should be noted that, according to EC2, if the width of the compres-

sion zone decreases in the direction of the extreme compression fiber, the

value �fcd should be reduced by 10%.

2.3.6 Flexural Tensile Strength
The mean flexural tensile strength of reinforced concrete members depends

on the mean axial tensile strength and the depth of the cross section. EC2

[2.27, 2.28] recommends the following relationship to be used in determin-

ing mean flexural tensile strength of reinforced concrete members:

fctm,fl ¼ max 1:6�h=1000ð Þfctm; fctmf g ð2:28Þ
where h is the total member depth in mm and fctm is the mean axial tensile

strength following Table 2.9. The relation given earlier also applies for the

characteristic tensile strength values.

2.3.7 Confined Concrete
In cases where concretes are surrounded by a stiffer material, such as

concrete-filled steel tubular columns, the compressive strength and ductility

of concrete are improved significantly. In this case, the concrete is called

confined concrete, and depending on the yield stress and geometries of

the surrounding stiffer material, the mechanical properties of this concrete

improve considerably compared with unconfined concrete. To accurately

model confined concrete, improved mechanical properties must be consid-

ered in nonlinear structural analysis and in nonlinear finite element model-

ing. Current codes of practice provide guidelines to account for concrete

confinement. As an example, by adopting EC2 [2.27, 2.28], confinement

of concrete results in a modification of the effective stress-strain relationship,

achieving higher strength and higher critical strains. The other basic material

characteristics may be considered as unaffected for design. In the absence of

more precise data, the stress-strain relation shown in Figure 2.9 (compressive

strain shown as positive) may be used, with increased characteristic strength

and strains according to

fck,c¼ fck 1:0+ 5:0s2=fckð Þ for s2 � 0:05 fck ð2:29Þ

72 Ehab Ellobody



fck,c¼ fck 1:125+ 2:5s2=fckð Þ for s2> 0:05 fck ð2:30Þ
ec2,c¼ ec2 fck,c=fck

� �2 ð2:31Þ
ecu2,c¼ ecu2 + 0:2s2=fck ð2:32Þ

where s2 (¼s3) is the effective lateral compressive stress at the ultimate limit

state due to confinement and ec2 and ecu2 followTable 2.9. Confinement can

be generated by adequately closed links or cross ties, which reach the plastic

condition due to lateral extension of the concrete.

2.4 NONLINEAR MATERIAL PROPERTIES
OF REINFORCEMENT BARS

2.4.1 General
The third main component of steel-concrete composite bridges is the rein-

forcement bars. Concrete slab decks used in steel-concrete composite brid-

ges are strengthened with either reinforcement bars or prestressing tendons.

In order to model the bridges accurately, it is quite important to understand

the nonlinear material behavior of the reinforcement imbedded in the floor

decks. Once again, when highlighting the nonlinear material behavior of the

reinforcement bars, to use specified values recommended in current codes of

practice to provide a consistent modeling approach is advisable. However, in

the presence of detailed experimental investigations regarding the nonlinear

material behavior of reinforcement bars, the experimental data can be also

incorporated in designing and finite element modeling of the bridges.

ec

fcd,c

ecu2ec2

fck,unconfined

ecu, unconfined

s1 = fck,c

s2 s3 = (s2)

sc

fck,c

Figure 2.9 Stress-strain relationship for confined concrete specified in EC2 [2.27].
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In Europe, EC2 [2.27, 2.28] gives principles and rules for reinforcement,

which is in the form of bars, decoiled rods, welded fabric, and lattice girders.

They are not applicable to especially coated bars. One of the required prop-

erties of the reinforcement is that the material should be placed in the hard-

ened concrete. The steels covered in EC2 are that in accordance with

EN10080 [2.14]. The required properties of reinforcing steels shall be ver-

ified using the testing procedures in accordance with EN 10080. It should be

noted that EN 10080 refers to a yield strength Re, which relates to the char-

acteristic, minimum and maximum values based on the long-term quality

level of production. In contrast, fyk is the characteristic yield stress based

on only the reinforcement used in a particular structure. There is no direct

relationship between fyk and the characteristic Re. However, the methods of

evaluation and verification of yield strength given in EN 10080 provide a

sufficient check for obtaining fyk.

2.4.2 Properties
According to EC2 [2.27, 2.28], the behavior of reinforcing steel is spec-

ified by main properties comprising yield strength (fyk or f0.2k), maximum

actual yield strength (fy,max), tensile strength (ft), ductility (euk and ft/fyk),

bendability, bond characteristics (fR), section sizes and tolerances, fatigue

strength, weldability, and shear and weld strength for welded fabric and

lattice girders. EC2 [2.27, 2.28] applies to ribbed and weldable reinforce-

ments, including fabric. The permitted welding methods are given in

Table 2.12, while Table 2.13 gives the properties of reinforcement

suitable for use with EC2. The properties are valid for temperatures

between �40 and 100 �C for the reinforcement in the finished structure.

It should be noted that the values for the fatigue stress range with an upper

limit of bfyk are given in Table 2.14. The recommended value of b is 0.6.

The rules for design and detailing specified in EC2 are valid for a specified

yield strength range, fyk¼400-600 MPa. The surface characteristics of

ribbed bars shall be such to ensure adequate bond with the concrete. Ade-

quate bond may be assumed by complying the specification of projected

rib area, fR, with minimum values of the relative rib area, fR, given in

Table 2.14. The yield strength fyk (or the 0.2% proof stress, f0.2k) and

the tensile strength ftk are defined, respectively, as the characteristic value

of the yield load and the characteristic maximum load in direct axial ten-

sion, each divided by the nominal cross-sectional area. The reinforcement

shall have adequate ductility as defined by the ratio of tensile strength
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to the yield stress (ft/fy)k and the elongation at maximum force, euk.
Figure 2.10 shows stress-strain curves for typical hot-rolled and cold-

worked steel. Values of k¼ (ft/fy)k and euk for classes A, B, and C are

shown in Table 2.13. Welding processes for reinforcing bars shall be in

accordance with Table 2.12, and the weldability shall be in accordance

with EN 10080 [2.14]. The strength of the welded joints along the

anchorage length of welded fabric shall be sufficient to resist the design

forces. The strength of the welded joints of welded fabric may be assumed

to be adequate if each welded joint can withstand a shearing force not less

than 25% of a force equivalent to the specified characteristic yield stress

times the nominal cross-sectional area. This force should be based on

Table 2.12 Permitted Welding Processes and Examples of Application Specified in
EC2 [2.27]

Loading Case Welding Method Bars in Tensiona
Bars in
Compressionb

Predominantly

static

Flash welding Butt joint

Manual metal arc

welding and metal arc

welding with filling

electrode

Butt joint with ’�20 mm,

splice, lap, cruciform jointsc;

joint with other steel members

Metal arc active

weldingb
Splice, lap, cruciformc joints;

joint with other steel members

– Butt joint

with

’�20 mm

Friction welding Butt joint and joint with other

steels

Resistance spot welding Lap jointd

Cruciform jointb,d

Not

predominantly

static

Flash welding Butt joint

Manual metal arc

welding

– Butt joint

with

’�14 mm

Metal arc active

weldingb
– Butt joint

with

’�14 mm

Resistance spot welding Lap jointd

Cruciform jointb,d

aOnly bars with approximately the same nominal diameter may be welded together.
bPermitted ratio of mixed diameter bars �0.57.
cFor bearing joints ’�16 mm.
dFor bearing joints ’�28 mm.
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Table 2.13 Properties of Reinforcement Specified in EC2 [2.27]

Product Form Bars and Decoiled Rods Wire Fabrics

Requirement
or Quantile
Value (%)

Class A B C A B C –

Characteristic yield strength fyk or f0.2k (MPa) 400-600 5.0

Minimum value of k¼ (ft/fy)k �1.05 �1.08 �1.15

�1.35

�1.05 �1.08 �1.15

�1.35

10.0

Characteristic strain at maximum force, euk (%) �2.50 �5.0 �7.5 �2.5 �5.0 �7.5 10.0

Bendability Bend/rebend test –

Shear strength – 0.3Afyk (A is the area of

wire)

Minimum

Maximum deviation

from

Nominal bar size

(mm)

5.0

Nominal mass �8 
6.0

(Individual bar or wire)

(%)

>8 
4.5
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the area of the thicker wire if the two are different. EC2 specifies that

where fatigue strength is required, it shall be verified in accordance with

EN 10080 [2.14]. The design of concrete cross sections with reinforce-

ment bars should be based on the nominal cross-sectional area of the rein-

forcement and the design values derived from the characteristic values

given in EC2 [2.27, 2.28]. For normal design (see Figure 2.11), either

an inclined top branch with a strain limit of eud and a maximum stress

of kfyk/gS at euk, where k¼ ( ft/fy)k, or a horizontal top branch without

the need to check the strain limit can be used. The recommended value

specified in EC2 [2.27, 2.28] for eud is 0.9euk. The mean value of density

may be assumed to be 7850 kg/m3. The design value of the modulus of

elasticity, ES, may be assumed to be 200 GPa.

Table 2.14 Properties of reinforcement specified in EC2 [2.27]

Product Form

Bars and
Decoiled
Rods

Wire
Fabrics

Requirement or
Quantile Value
(%)

Class A B C A B C –

Fatigue stress range (MPa) (for
N�2�106 cycles) with an upper

limit of bfyk

�150 �100 10.0

Bond Nominal

bar size

(mm)

5.0

Minimum relative rib area, fR,min 5-6 0.035

6.5-12 0.04

>12 0.056

s s

e e

ft = kfyk

fyk

euk euk

f0.2k

ft =kf0.2k

0.2% 

 Cold worked steel  Hot rolled steel (b)(a)
Figure 2.10 Stress-strain diagrams of typical reinforcing steel specified in EC2 [2.27].
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2.5 NONLINEAR MATERIAL PROPERTIES OF PRESTRESSING
TENDONS

2.5.1 General
Prestressed concretes are commonly used in steel-concrete composite brid-

ges. In this case, high-strength prestressing tendons are used to apply the ini-

tial stresses in concrete. To incorporate prestressed concrete decks in

designing and finite element modeling of steel-concrete composite bridges,

it is necessary to understand the nonlinear material behavior of the prestres-

sing tendons imbedded in the floor decks. Once again, when highlighting

the nonlinear material behavior of the reinforcement bars, it is decided to

use specified values recommended in current codes of practice to provide

a consistent modeling approach. However, in the presence of detailed

experimental investigations regarding the nonlinear material behavior of

prestressing tendons, the experimental data can be also incorporated into

the designing and finite element modeling of the bridges. EC2 [2.27] also

specifies rules that apply to wires, bars, and strands used as prestressing ten-

dons in concrete structures. Prestressing tendons shall have an acceptably

low level of susceptibility to stress corrosion. The level of susceptibility to

stress corrosion may be assumed to be acceptably low if the prestressing ten-

dons comply with the criteria specified in EN 10138 [2.30]. The require-

ments for the properties of the prestressing tendons are for the materials

as placed in their final position in the structure, where the methods of pro-

duction, testing, and attestation of conformity for prestressing tendons are in

s

e

fyk

kfyk

fyd = fyk/gs 

kfyk

kfyk/gs

Idealized

Design 

eukeudfyd/Es

Figure 2.11 Idealized and design stress-strain diagrams for reinforcing steel (for tension
and compression) specified in EC2 [2.27].
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accordance with EN 10138 [2.30]. For steels complying with this Eurocode,

tensile strength, 0.1% proof stress, and elongation at maximum load are spec-

ified in terms of characteristic values; these values are designated, respec-

tively, fpk, fp0.lk, and euk. It should be noted that EN 10138 [2.30] refers

to the characteristic, minimum andmaximum values based on the long-term

quality level of production. In contrast, fp0.lk and fpk are the characteristic

proof stress and tensile strength based on only the prestressing steel required

for the structure. There is no direct relationship between the two sets of

values. However, the characteristic values for 0.1% proof force, Fp0.lk,

divided by the cross-sectional area, Sn, given in EN 10138 together with

the methods for evaluation and verification provide a sufficient check for

obtaining the value of fp0.lk. No welds in wires and bars are allowed. Indi-

vidual wires of strands may contain staggered welds made only before cold

drawing.

2.5.2 Properties
According to EC2 [2.27, 2.28], the properties of prestressing steel are given

in EN 10138 [2.30]. The prestressing tendons (wires, strands, and bars) shall

be classified according to strength, class, size, and surface characteristics. The

strength denotes the value of the 0.1% proof stress ( fp0.lk) and the value of

the ratio of tensile strength to proof strength ( fpk/fp0.lk) and elongation at

maximum load euk. On the other hand, the class indicates the relaxation

behavior. The actual mass of the prestressing tendons shall not differ from

the nominal mass by more than the limits specified in EN 10138 [2.30].

EC2 specifies three classes of relaxation, which are class 1 (wire or strand

with ordinary relaxation), class 2 (wire or strand with low relaxation),

and class 3 (hot-rolled and processed bars). The design calculations for the

losses due to relaxation of the prestressing steel should be based on the value

of r1000, the relaxation loss (in %) at 1000 h after tensioning and at a mean

temperature of 20 �C. It should be noted that the value of r1000 is expressed
as a percentage ratio of the initial stress and is obtained for an initial stress

equal to 0.7fp, where fp is the actual tensile strength of the prestressing steel

samples. The values for r1000 can be either assumed equal to 8% for class 1,

2.5% for class 2, and 4% for class 3 or taken from the certificate. The relax-

ation loss may be obtained from the manufacturers’ test certificates or

defined as the percentage ratio of the variation of the prestressing stress over

the initial prestressing stress, which should be determined by applying one of

the expressions in the succeeding text. Expressions (2.33) and (2.34) apply to
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wires or strands for ordinary prestressing and low-relaxation tendons, respec-

tively, whereas Expression (2.35) applies to hot-rolled and processed bars:

Class1
Dspr
spi

¼ 5:39r1000e
6:7m t

1000

� �0:75 1�mð Þ
10�5 ð2:33Þ

Class2
Dspr
spi

¼ 0:66r1000e
9:1m t

1000

� �0:75 1�mð Þ
10�5 ð2:34Þ

Class3
Dspr
spi

¼ 1:98r1000e
8m t

1000

� �0:75 1�mð Þ
10�5 ð2:35Þ

where Dspr is the absolute value of the relaxation losses of the prestress, spi;
for posttensioning, spi is the absolute value of the initial prestress spi¼spm0

and, for pretensioning, is the maximum tensile stress applied to the tendon

minus the immediate losses occurred during the stressing process; t is the

time after tensioning (in hours); m¼spi/fpk where fpk is the characteristic

value of the tensile strength of the prestressing steel; and r1000 is the value
of relaxation loss (in %), at 1000 h after tensioning and at a mean temperature

of 20 �C. The long-term (final) values of the relaxation losses may be esti-

mated for a time t equal to 500,000 h (i.e., around 57 years).

The 0.1% proof stress (fp0.lk) and the specified value of the tensile strength

( fpk) are defined as the characteristic value of the 0.1% proof load and the

characteristic maximum load in axial tension, respectively, divided by the

nominal cross-sectional area as shown in Figure 2.12. According to EC2,

s

e

fpk

fp0.1k

euk0.1%

Figure 2.12 Stress-strain diagram for typical prestressing steel specified in EC2 [2.27].
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the prestressing tendons shall have adequate ductility, as specified in EN

10138 [2.30]. Adequate ductility in elongation may be assumed if the pre-

stressing tendons obtain the specified value of the elongation at maximum

load given in EN 10138. Adequate ductility in tension may be assumed

for the prestressing tendons if fpk/fp0.lk�k. The value of k specified in

EC2 is 1.1. EC2 also specifies that prestressing tendons shall have adequate

fatigue strength. The fatigue stress range for prestressing tendons shall be in

accordance with EN 10138 [2.30]. Structural analysis is performed on the

basis of the nominal cross-sectional area of the prestressing steel and the char-

acteristic values fp0.lk, fpk, and euk. The design value for the modulus of elas-

ticity, EP, may be assumed equal to 205 GPa for wires and bars. The actual

value can range from 195 to 210 GPa, depending on the manufacturing pro-

cess. The design value for the modulus of elasticity, EP, may be assumed

equal to 195 GPa for a strand. The actual value can range from 185 to

205 GPa, depending on the manufacturing process. The mean density of

prestressing tendons for the purposes of design may normally be taken as

7850 kg/m3. The values given earlier may be assumed to be valid within

a temperature range between �40 and +100 �C for the prestressing steel

in the finished structure. The design value for the steel stress, fpd, is taken

as fp0.lk/gS (see Figure 2.13). For cross-sectional design, either an inclined

branch with a strain limit eud or a horizontal top branch without strain limit

can be utilized. The design may also be based on the actual stress-strain rela-

tionship, if this is known, with stress above the elastic limit reduced analo-

gously (see Figure 2.11). It should be noted that, according to EC2, the

recommended value for eud is 0.9euk. If more accurate values are not known,

s

e

fpk

fpd = fp0.1k/gs 

fpk/gs 

Idealized 

Design 

eukeudfpd/Ep

f0.1pk

Figure 2.13 Idealized and design stress-strain diagrams for prestressing steel specified
in EC2 [2.27].
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the recommended values are eud¼0.02 and fp0.lk/fpk¼0.9. Prestressing ten-

dons in sheaths (e.g., bonded tendons in ducts and unbonded tendons) shall

be adequately and permanently protected against corrosion. Prestressing

tendons in sheaths shall be adequately protected against the effects of fire

as specified in EC2 (BS EN 1992-1-2) [2.31].

2.6 NONLINEAR BEHAVIOR OF SHEAR CONNECTION

2.6.1 General
Steel-concrete composite construction is used extensively in highway brid-

ges owing to its advantages in terms of saving in weight of steel, high

strength, high stiffness, high resistance to seismic and cyclic loading, increas-

ing load capacity, better fire resistance, and reduction in construction depth.

In composite beam design, shear connectors are commonly used to transfer

longitudinal shear forces across the steel-concrete interface. The shear

strength of the connector and the resistance of the concrete slab against lon-

gitudinal cracking are the main factors affecting the shear stiffness and

strength of the shear connection. Calculation of the structural behavior of

composite beams depends on howmuch slip is assumed to occur at the inter-

face between concrete and steel. Experimental push-off tests are the tradi-

tional source of knowledge about the load-slip behavior and the shear

capacity of the shear stud in composite beams.

Up to the early 1950s, steel beams were designed to act as composite

beams with solid concrete slabs of various thickness, connected to them

using a variety of types of mechanical shear connectors. However, during

this period, composite construction in buildings was generally uneconom-

ical. This was due to the significant amount of formwork and propping

required for the concrete slabs, along with the costly process in terms of time

of having the shear connectors welded to the steel beams. In a composite

steel-concrete beam, the floor slab tends to slide along the flange of the steel

beam and the importance of the shear connectors arises from preventing this

slippage. The structural behavior of a composite beam is affected by the slip

at the steel-slab interface. Practically, the assumption that this slip may be

completely eliminated cannot be ensured. Therefore, accurate calculation

methods of the structural behavior of composite girders must take into con-

sideration the effects of this slip. Push-off tests provide a convenient way to

study the behavior of shear connector without carrying an expensive full

bending test. Initially, the evaluation of the shear capacity of connectors

was the main output of these tests. After that, researchers realized that the
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load-slip behavior of the connector was also of equal importance. The slip

at the steel-concrete interface depends on many factors such as type of con-

nector, size of shear connector, spacing between connectors, type of floor

slab, and concrete strength of slab. To evaluate the load-slip behavior of

the connector taking into account all parameters that affect the shear con-

nection, an unlimited number of expensive push-off tests would need to

be carried out. Numerical modeling of push-off tests can be used in carrying

out extensive parametric studies to evaluate the load-slip behavior of the

shear connector.

The development of the electric drawn arc stud welding apparatus in

1954 allowed a type of shear connector known as the headed stud connector

(see Figure 2.14) to be rapidly fastened to the top flange of the steel beams

in situ. Due to its advantages over other forms of shear connection, such as

rapid installation and the fact that they were equally strong and stiff in shear

in all directions normal to the axis of the stud, the stud connector became

one of the most popular types of connector used in composite construction.

Studies of stud connectors did not begin until 1956. Push-off tests on stud

connectors were first carried out by Viest [2.32]. The study used straight

studs with an upset head of diameter ranging from 0.5 (13 mm) to

1.25 in. (32 mm). Fatigue and static tests were also performed by Thurli-

mann [2.33]. These push-off studies used 0.5 in. (13 mm) diameter bent

studs and, to a lesser extent, 0.75 in. (19 mm) diameter straight studs with

an upset head. All the push-off tests showed that steel studs are suitable

for use as shear connectors and that the behavior of a stud connector is similar

to that of a flexible channel connector. The shear capacity was found to be a

function of the diameter and height of the stud and of the strength of the

concrete.

During the latter half of the 1950s, profiled steel sheeting (decking) (see

Figure 2.15) was introduced in the North American steel construction

Not less than 1.5 d Automatic stud weld 

20mm min. 

d 

Figure 2.14 Headed stud shear connector.
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market that eliminated the use of traditional timber temporary forms. Ini-

tially, the new decking system served only as a replacement for the timber

formwork due to its advantages of serving as a working platform to support

the construction loads, as well as a permanent formwork for the concrete.

Once the sheets had their surfaces suitably embossed with small indentations

to ensure reliable bond with the concrete, it became an integral structural

element of the slab by providing all or a part of the main tension reinforce-

ment, and it was eventually incorporated into the overall composite floor

and framing system. Since the decking created a barrier between the con-

crete slab and the steel beam, holes were initially cut or punched into the

deck for the welding of the stud shear connectors, but it soon became pos-

sible to weld these connectors through the decking. The disadvantages of

this form of construction were the operation and cost of welding the con-

nectors through the decking on site, the limitations to maximum spans to

about 3.5 m without propping, and the addition of framing, and a “wet

trade” is involved in pouring the concrete floor that prevents a dry construc-

tion environment.

The use of composite construction can be seen now between steel beams

and different concrete slabs. As an example, the use of prestressed hollow

core concrete slabs in conjunction with steel beams to provide composite

action is a new form of construction. In this construction, the prestressed

hollow core concrete units are placed on the top of the steel beam as shown

in Figure 2.16. Tie steel is placed on site into the slots made at the top of the

hollow cores, which are filled with grade C25 (minimum) in situ concrete.

The slab rests directly on the top of the flange of the steel beam as shown in

Figure 2.16, and shear connectors are used to ensure the composite action

between the prestressed hollow core concrete floor and the steel beam.

Figure 2.17 shows the details of the precast in situ joint in a composite beam

with hollow core concrete units. The longitudinal and transverse joints

between the hollow core concrete units are filled with in situ concrete so

that horizontal compressive membrane forces can be transferred through

dpbo hsc

hp hp

Centroidal axis of sheet Centroidal axis of sheet 

bo dp

e e 

hsc

Figure 2.15 Composite beam with profiled steel decking spanning the same direction.
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the slab. Composite construction incorporating prestressed hollow core

concrete units is intended to complement the traditional composite con-

struction with steel decking and to offer advantages where, for reasons of

design or environmental considerations, a steel decking system may be pre-

cluded. The main advantages of this form of construction are that the precast

concrete slabs can span up to 15 m without propping, the erection of 1.2 m

wide precast concrete units is simple, and quick and shear studs are pre-

welded on beams before delivery to site, thereby offering additional savings

associated with shorter construction times.

Prestressed hollow core 
concrete slab In situ concrete 

Opened core 

Transverse reinforcement 

Steel beam with prewelded studs 

Figure 2.16 Prestressed hollow core concrete-steel beam construction.

Steel beam 

Headed stud 

In situ concretegTransverse reinforcement 

Bearing size 
Plug 

Void 

Precast HCU 

Figure 2.17 Details of the prestressed in situ joint of composite beam with hollow core
concrete units.
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2.6.2 Shear Connectors
In steel-to-concrete composite construction, longitudinal shear forces are

transferred across the steel-concrete interface by the mechanical action of

the shear connectors. The problem associated with this connection is that

it is a region of severe and complex stress. The methods of connection have

been developed empirically and verified by tests. These tests show that at low

loads, most of the longitudinal shear is transferred by bond at the interface.

This bond breaks down at higher loads, and once broken, it cannot be

restored. So, in design calculations, bond strength is taken as zero. Also,

greasing the steel flange before the concrete is cast destroys the bond

between it and the concrete slab. The design of the connectors to ensure

an adequate degree of interaction was first specified in CP 117 [2.34,

2.35]. There are numerous types of shear connectors available in the market

such as channels, bent bars, and T-sections. However, the most widely used

type of connector is the headed stud shown in Figure 2.14. The British Stan-

dards [2.36] require the steel from which the studs are manufactured to have

an ultimate tensile strength of at least 450 N/mm2 and an elongation of at

least 15%. The advantages of stud connectors are that the welding process

is rapid, they provide little obstruction to reinforcement in the concrete slab,

and they are equally strong and stiff in shear in all directions normal to the

axis of the stud. The property of a shear connector most relevant to design is

the relationship between the longitudinal shear force transmitted, P, and the

slip at the interface, d. This load-slip curve should ideally be found from tests

on composite beams. However, most of the data on connectors have been

obtained from various types of “push-off” test. The flanges of a short length

of steel I-section are connected to two small concrete slabs. The details of the

“standard push-off test” given in Eurocode 4 (EC4) [2.37] are shown in

Figure 2.18. The slabs are bedded onto the lower platen of a

compression-testing machine or frame, and the load is applied to the upper

end of the steel section. The slip between the steel member and the two slabs

is measured at several points, and the average slip is plotted against the load

per connector. The push-off test must be specified in detail for the load-slip

relationship, which is influenced by many variables. The variables include

the number of connectors in the test specimen; mean longitudinal stress

in the concrete slab surrounding the connectors; size, arrangement, and

strength of slab reinforcement; thickness of concrete surrounding the con-

nectors: freedom of the base of each slab to move laterally; bond at the steel-

concrete interface; strength of the concrete slab; and degree of compaction

of the concrete surrounding the base of each connector. The amount of
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reinforcement specified and the size of the slabs are greater than that of the

earlier British Standard push-off test [2.38] shown in Figure 2.19. EC 4

[2.37] gives results that are less influenced by splitting of the slabs and so give

better predictions of the behavior of connectors in beams as mentioned by

Johnson [2.39, 2.40].

2.6.3 Complete and Partial Shear Concoction
The connection between the steel beam and the concrete slab is called

“complete” in the sense that the slip and uplift at the interface of the two

elements are negligible. Shear connection in composite beams is identified

[2.41, 2.42] as complete when the beam has a bending strength that would

not be increased by the addition of further connectors. On the other hand,

the connection between steel beam and concrete is called partial when

fewer connectors are used than are required for the complete shear connec-

tion. The term “partial connection” should not be considered to imply

P 

150 

250 

250 

180 180 180 

150 150 260 

35 

35 
30 recess 

150 

150 

150 

100 

200 200 200 

100 
600 

Reinforcement:  
10mm diameter ribbed bars Steel section:  

254×254×89 kg UC 

Mortar base 

Figure 2.18 Standard push-off test specimen specified in EC4 [2.37].
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unsatisfactory shear connectors but rather a connection resulting in nonne-

gligible slip at the steel beam-concrete slab interface. This slip has a great

influence on both the strength and the deformations of the composite beam.

Significant contributions have been made in this scientific area initiated by

[2.43] where the influence of the slip on the ultimate plastic strength of the

composite beam has been studied. The accurate analysis of the behavior of

composite beams with partial connection is very important since the slip

between steel and concrete may be big enough to cause fracture of some

connectors at a serviceability state. Appropriate ductility of the shear con-

nectors is the only way to sustain the likely big slip deformations without

fracture. Since the main objective of this book is to accurately model the

behavior of steel-concrete composite bridges, the correct shear connection

behavior will be incorporated in the finite element models.

2.6.4 Main Investigations on Shear Connection in Composite
Beams with Solid Slabs

Davies [2.44] showed that the ultimate capacity of a stud connector in a

push-off test depends on a large extent upon the pattern and spacing of

the connectors. It was observed that if the studs were oriented parallel to

Reinforcement:  
10mm diameter mild steel 

P 

230 

50 

150 150 260 

200 

300 

150 

460 

Mortar base 

300 

Steel section:  
254×146×43 UB 

Figure 2.19 Standard push-off test specimen according to BS 5400 [2.38].
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the direction of the load, its ultimate capacity was reduced. Also, a decrease

in the longitudinal stud spacing resulted in a decrease in ultimate strength. A

further study by Davies [2.45] showed that when transverse reinforcement is

provided in a solid concrete slab, the cracking resistance of the slab is

improved. The longitudinal cracks only develop when the yield stress of

the reinforcement is reached. Therefore, a certain minimum amount of

transverse reinforcement has to be used, to achieve the maximum load-

carrying capacity of a composite beam. Johnson [2.39] found that the con-

crete strength influences the mode of failure of shear connection between

steel and concrete, as well as the failure load. Menzies [2.46] compared

the strengths of shear connectors given in CP 117 part 1 [2.34] and part 2

[2.35] with his results of push-off tests. It was found that CP 117 part 1

assumes linear relationships between the static strength of shear connectors

and the concrete strength and CP 117 part 2 assumes that the variation of

fatigue strength of stud connectors with concrete strength was inside limited

range of concrete strengths. Therefore, the author conducted an experimen-

tal investigation comprising 34 push-off specimens to investigate the effect

of concrete strength and density on the static and fatigue strength of connec-

tors. The investigation was carried out over a wide range of concrete

strengths. Different types of connectors, studs, channels, and bars were used,

and the maximum load per connector, the mode of failure, and the slab in

which the failure occurred were given. The maximum static loads per con-

nector were plotted against the compressive strength of both water-stored

and air-stored concrete cubes. The slip in the static tests, that is, the vertical

movement of the slab relative to the steel beam, was plotted for each spec-

imen against the load. The maximum andminimum values of the cyclic load

per connector, the fatigue life, and the mode of failure were given. It was

concluded that a modification of specified strengths of shear connector given

in CP 117 is desirable for a larger range of concrete strengths; a distinction

should be made in design between connectors embedded in normal-density

concrete and lightweight concrete; the static strengths of studs in normal-

density concrete are overestimated in CP 117; when the density of the light-

weight concrete is below 1400 kg/m3, there may be difficulty in ensuring

adequate connection strength and an adequate degree of interaction in a

composite beam; and the specification in CP 117 of the fatigue strength

of stud connectors based on percentages of static strength is confirmed when

embedded in normal-density concrete.

Jayas and Hosain [2.47] conducted tests on 18 full-size push-off speci-

mens and four pull-out specimens. The objective of the project was mainly
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to study the behavior of headed studs in composite beams with ribbed metal

decks perpendicular and parallel to the steel beam, but five of the push-off

specimens had solid concrete slabs. These five push-off specimens were sim-

ilar to those tested by Ollgaard et al. [2.48]. The used stud has a diameter of

16 mm and a height of 76 mm. They found that when the studs were spaced

sufficiently far apart, themode of failure is likely to be because of the shearing

off of studs. On the other hand, concrete failure was observed in specimens

when the studs were closely spaced (longitudinal spacing less than 6� the

stud diameter), and this led to a reduction in the stud strength by 7%.Oehlers

[2.49] investigated the longitudinal shear flow in composite steel-concrete

beams across the steel flange/concrete slab interface by the action of individ-

ual connectors. The authors have shown that shear connectors in steel-

concrete composite beams act as steel dowels embedded in a concrete

medium. These shear connectors are generally assumed to fail when the steel

component fractures, which may be a consequence of the gradual reduction

in strength and stiffness of the concrete in the bearing zone of high triaxial

compressive stress (Oehlers and Johnson 1987 [2.50]). Oehlers [2.49]

showed that the concentrated load P that a connector applies to a slab

can induce three distinct modes of cracking of the slab shown in Figure 2.20.

The modes of cracking comprise lateral, shear, and splitting cracks. The lat-

eral cracks are the cracks extending from the sides of the connector and

caused by the ripping action of the concentrated load on the slab. These

cracks are assumed to have little effect on the connector strength since they

occur away from the high triaxial compression bearing zone. The shear

cracks occur near the compressive zone and hence may affect the triaxial

restraint. Finally, the splitting cracks occur in front of the triaxial

Shear cracks

Concentrated load P 

Ripping cracks

Plan of slab 

Splitting cracks 

Figure 2.20 Crack formation of slabs in composite girders.
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compression zone due to the concentrated load induced by the shear con-

nector. These large lateral tensile stresses propagate and induce splitting

behind the shear connector and also relieve the triaxial restraint to the bear-

ing zone leading to connector failure through compressive failure of con-

crete. Oehlers [2.49] found that splitting cracks reduce the strength of the

shear connection to less than 20% of its theoretical shear connector strength.

Also, fully anchored transverse reinforcement placed in front of a heavily

loaded single connector did not increase the splitting strength of the slab

nor increase the strength after splitting. However, the transverse reinforce-

ment was found to limit the strength of the split and allow a general gradual

reduction in the shear load after splitting.

Oehlers and Park [2.51] found that composite steel-concrete connec-

tions that incorporate a haunch are prone to splitting failure. This is

because the shear connectors have to transfer high concentrations of load

into the concrete slab in the region of the haunch where the side cover to

the connectors is limited. The experimental tests were on stud shear con-

nectors encased in haunches with sloping sides. A similar study, reported

by Johnson [2.52], determined the splitting resistance for haunches with

vertical sides and obtained the load-slip curves of the connectors for dif-

ferent haunch slopes. It was concluded that these results can be used to

design composite slabs made with steel decking when the ribs of the steel

decking are parallel to the steel section of composite beam. Push-off tests

on studs in high-strength and normal-strength concrete have been carried

out by Li and Krister [2.53]. Eight push-off specimens were divided into

four pairs, according to the concrete strength and the amount of reinforce-

ment in concrete slabs. The authors found that the concrete compressive

strength significantly affects the strength of the shear connections. The

increase in the maximum shear load was about 34% when the cylinder

compressive strength of the concrete increased from 30 to 81 MPa. The

tests showed that the amount of slip at the maximum load was of the same

level for both normal-strength and high-strength concrete. However,

ductile behavior of the studs was observed for the normal-strength spec-

imen after the maximum load. The descending branch of the load-slip

curves for the high-strength concrete was short and steep. The reinforce-

ment in the concrete slabs is a negligible influence on the capacity of

normal-strength concrete (the increase was about 6%) but confined the

concrete surrounding the studs. A negligible effect of reinforcement on

the capacity of the shear connection was observed in high-strength con-

crete specimen.
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2.6.5 Main Investigations on Shear Connection in Composite
Beams with Profiled Steel Decking

Where profiled sheeting is used, stud connectors are located within concrete

ribs that have a haunch shape. The sheeting normally run either transverse or

parallel with the span of the beam. There are different parameters [2.39,

2.54] that affect the behavior of stud in composite beams with profiled sheet-

ing in addition to geometrical data shown in Figure 2.15. The parameters

comprise the compressive strength and density of concrete; ultimate tensile

strength of stud; location of stud within the concrete rib, in relation to the

direction of sheeting; shape of the steel profile, whether the studs are welded

through it or through holes in it; and size, spacing, and level of any reinforce-

ment in the slab. Hawkins andMitchell [2.55] conducted 13 push-off tests to

study the behavior of headed stud shear connectors in composite beams with

profiled steel sheeting perpendicular to the beam. The diameter of the stud

was 19 mm, the profiled sheeting depths were 38 and 76 mm, and the pro-

filed sheeting widths ranged from 38 to 127 mm. Four different failure

modes were observed by Hawkins and Mitchell [2.55]. The failure modes

were stud shearing, concrete pull-out, rib shearing, and rib punching. Jayas

and Hosain [2.47] conducted 18 push-off tests on full-size specimens having

ribbed metal decks perpendicular and parallel to the steel beam. The 16 mm

diameter�75 mm height headed studs that were welded through profiled

steel sheeting having a depth of 38 mm and a width ranged from 53.8 to

165.9 mmwere used in most of the tests. The main parameters studied were

longitudinal spacing of the headed studs and rib geometry. Jayas and Hosain

[2.47] provided two separate empirical equations to calculate the shear

capacity of headed shear stud in composite beams with profiled steel sheeting

having depths of 38 and 76 mm. Jayas andHosain [2.56] conducted two full-

size push-off tests on composite beams. The profiled steel sheeting was

placed perpendicular to the steel beam. The 19�127 mm headed stud

was used in the tests, and the profiled steel sheeting had a depth of

76 mm and widths of 144 and 225 mm. The failure modes observed were

concrete pull-out and mixed concrete pull-out and stud shearing. Lloyd

and Wright [2.57] carried out 42 push-off tests on headed studs welded

through-deck. The investigation focused on the amount and position of

reinforcement and dimensions of the composite slab. The authors concluded

that the capacity of shear connection in composite beams with profiled steel

sheeting depends upon the geometry of the sheeting and stud height. It is

also concluded that the capacity of shear connection is considerably less than

that in solid slabs. Kim et al. [2.58, 2.59] conducted three push-off tests to
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study the behavior of through-deck-welded shear connectors. The headed

stud used in the tests was 13�65 mm and the profiled steel sheeting had

a depth of 38 mm. Kim et al. [2.58, 2.59] discussed concrete pull-out failure

surface area and strength. The major failure modes found in the tests

were concrete pull-out failure and local concrete crushing around the foot

of the stud.

2.6.6 Main Investigations on Shear Connection in Composite
Beams with Prestressed Hollow Core Concrete Slabs

Moy and Tayler [2.60] carried out 27 push-off tests to evaluate the shear

strength of headed studs in solid prestressed concrete planks. The prestressed

planks were used as permanent shutters for the in situ concrete. The planks

had a depth of 65 mm and a bearing width of 50 mm on the steel beam

flange. A 533 mm depth by 210 mm width by 92 kg steel beam was used

with two studs welded on each flange. The diameter of the headed stud

used was 19 mm, and different lengths ranging from 95 to 120 mm were

used. The rest of the 150 mm depth of the slab was made with in situ con-

crete. Figure 2.21 shows the details of Moy and Tayler [2.60] push-off test

specimen. A typical load-slip curve of the 19 mm stud was obtained, and the
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Figure 2.21 Details of push-off test specimen conducted by Moy and Tayler [2.60].
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results showed a reduction in strength of connection as the volume of in situ

concrete decreases. It was recommended that the width of the in situ con-

crete on the flange be a minimum of 100 mm. It was also recommended that

two layers of reinforcement must be used in the slab to avoid concrete

splitting.

Push-off tests on headed studs in precast HC slabs were reported by Lam

et al. [2.61]. The authors carried out 12 full-scale push-off tests (10 tests on

headed studs used with tapered-end precast HCU slabs and 2 on headed

studs used with reinforced solid concrete slabs). The tests were carried

out horizontally as shown in Figure 2.22 with the same cross section shown

in Figure 2.17. The tests were carried out for different gap sizes “g” (40, 65,

and 120 mm) between the ends of the precast slabs. Also, different transverse

reinforcement sizes (8, 16, and 25 mm) were used. Two of the 10 tests con-

sisted of two 1200 mm wide�150 mm deep HCUs, whereas others con-

sisted of four 600 mm wide�150 mm deep hollow core units. The units

were connected to grade 43 steel 356�171 UB with prewelded headed

studs at 150 mm centers. Milled slots approximately 500 mm long were

made in the second cores from the edges of the units. The characteristic cube

strength for the precast concrete was taken as 50 N/mm2. All studs were

19 mm diameter�125 mm height (TRW-Nelson headed studs). The

authors found that the capacity of the stud is reduced compared with that

in a solid reinforced concrete slab. A reduction formula for the precast effect

583 583 28 

Transverse reinforcement 

20mm Stiffeners 
Spreader beam 

300 

500kN Jacks Stiffeners 

500kN Load cells 
500 

POT 

Figure 2.22 Horizontal push-off testing as carried by Lam et al. [2.61].
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was derived, and the load-slip curves of the studs were plotted for the 12

push-off tests.

The behavior of shear connections in a composite beamwith a full-depth

prestressed slab was investigated by Shim et al. [2.62]. Eighteen push-off tests

were performed with variations of the stud shank diameter and the compres-

sive strength of the mortar. Figure 2.23 shows the push-off test specimen

used by the authors to evaluate the shear stud properties in a composite beam

with a full-depth precast slab. Different stud diameters (13, 16, 19, and

22 mm) were used with a stud height of 150 mm. The push-off tests were

similar to BS 5400 [2.38], but it had shear pockets for stud shear connectors

and a bedding mortar layer 20 mm thick between the precast slab and the

steel beam. The load-slip curves of the stud were obtained, and the relation-

ship between the shear stud capacity and the stud diameters was plotted.

From the experimental work, the authors observed that the deformations

of the stud in a full-depth precast slab were greater than its deformations

in a cast in place slab. The static strengths of the shear connections agree

50 

170 

300 

180 

50 

220 220 20 20300 

140 

140 

160 

100 

50 

110 

600 

340 220 220

15 

10

300 

300 

Figure 2.23 Details of push-off test specimen used by Shim et al. [2.62].
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approximately with those evaluated from the tensile strength of the stud

shear connectors. Also, an empirical equation for the initial shear stiffness

of a shear connection was proposed.

Nip and Lam [2.63] investigated the effect of end conditions of hollow

core slabs on longitudinal shear capacity of composite beams. The published

work was an extension for Lam et al. [2.61] and mainly concerned about

push-off tests with precast hollow core concrete slab of square ends (see

Figures 2.16 and 2.17). Eighteen push-off tests (12 push-off tests with precast

hollow core slab of square ends, 2 push-off tests with precast hollow core slab

of tapered ends, and 4 push-off tests with solid slab) were carried out by the

authors. The same horizontal push-off testing approach used by Lam et al.

[2.61] was used. The headed studs used had 19 mm diameter and

100 mm height. The precast floor specimens consisted of four 600 mmwide

hollow core units connected to a 254�254�73 UC. Each beam had six

prewelded studs at 150 mm centers. The effects of transverse reinforcement

size, gap width, and in situ concrete strength were discussed by the authors.

The authors concluded that 100 mm high headed studs with square-end

hollow core slabs performed as well as the 125 mm high headed studs with

tapered-end hollow core slabs. It is also concluded that the optimum in situ

gap width that should be used for square-end hollow core slab is 80 mm and

16 mm diameter high-tensile bars are recommended to be used as transverse

reinforcement to ensure a slip ductility of 6 mm at the maximum load.

2.6.7 Main Investigations on Numerical Modeling of Shear
Connection

Finite element modeling could provide a good insight into the behavior of

shear connection and compensate the lack in the experimental data. Nether-

cot [2.64] highlighted the importance of combining experimental and

numerical study in advancing structural engineering understanding. The

author mentioned that there is a lack in the detailed numerical studies deal-

ing with the behavior of the individual connector. It is also mentioned that

the absence of experimental/numerical approach means that real under-

standing is lacking and design expressions are very limited. Limited numer-

ical models have been found in the literature for push-off tests with different

slabs. Initially, Johnson and Oehlers [2.65] used a simplified purpose-written

program, developed originally by Oehlers [2.66], in their parametric study

to predict the shank failure loads of headed stud in steel-solid slab push-off

test and the influence of weld collar on forces acting on the stud. The pro-

gram performed a step-by-step plane stress elastic analysis using triangular
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finite elements. Initially, one stud and one slab of a push-off test specimen

were modeled. The stud shank and the weld collar were assumed to be of

square cross section. The program took into account two types of local fail-

ure, cracking due to tensile stress and cracking due to tensile strain caused by

normal compressive stress. The program was used in two modes: linear elas-

tic analyses of isotropic materials with and without the provision for con-

crete to fail in tension. In both modes, the shear connection was assumed

to have reached its maximum strength when the maximum stress in the

shank of the stud reached the measured ultimate tensile strength of the

shank. The failure of concrete in compression was not modeled in this study.

The authors found that a weld collar less than 5 mm high attracts 70% of the

total shear and reduces the bending moment at the base of the stud to one-

third of the value found for a stud without a collar.

The inelastic behavior of shear connections was investigated by Kalfas

et al. [2.67]. The authors used the finite element method to model the

behavior of shear connectors in a steel-solid slab push-off test. The results

were compared with a series of push-off tests performed in the steel-

structures laboratory of Democritus University of Thrace. The model sim-

ulated the linear and nonlinear behavior of the materials (bilinear stress-strain

curves were used for concrete and headed stud shear connector). The three

components of a push-off test were simulated with different types of standard

finite elements. The concrete slab was modeled by nonlinear volume ele-

ments, the steel beam by a rigid bar element, and the shear connectors by

nonlinear beam elements as shown in Figure 2.24. The finite element pack-

age COSMOS was used in the analysis. The load-slip curve obtained from

the finite element solution was compared with experimental results, and the

maximum deviation between the results was about 14%. Although the con-

crete slab was modeled with 1920 elements, the results obtained were inac-

curate and this may be attributed to the incompatibility of the FE elements

used. The predicted shear stud capacity is considerably higher than that tab-

ulated in BS 5950 and Eurocode 4, and the mode of failure was not inves-

tigated. The authors suggested to improve the material models by including

the strain hardening of steel, contribution of concrete rebars, and small ten-

sile branch of the stress-strain diagram of concrete to reduce the deviation

between experimental and FE solution. The behavior of headed shear stud

connector in a steel-full-depth precast slab push-off test was modeled

numerically by Shim et al. [2.62] using the finite element method. The

push-off test specimen shown in Figure 2.23, previously discussed, was con-

structed using the finite element method. The purpose of the model was to
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investigate the initial stress distribution of the shear stud connector in the

push-off test under consideration. The distributions of flexural and shear

stresses along the stud shank were given. The stresses were concentrated

around the root of the stud shank below a height of 20 mm. The authors

found that the flexural deformation of the stud shear connector was greater

than that in the case of cast in place slabs, which can resist the splitting force

better through adequate reinforcement. The studywas based on linear elastic

material properties to investigate initial stresses only. The load-slip curves of

the stud, shear stud capacity, and modes of failure were not obtained from

this finite element study.

Ellobody [2.68] and Lam and Ellobody [2.69] developed an accurate

nonlinear finite element model to investigate the behavior of headed shear

stud connector in solid slabs. The results obtained from the finite element

analysis compared well with the experimental results conducted by Ellobody

[2.68] and Lam and Ellobody [2.69]. The capacity of the shear connection,

the load-slip behavior of the headed studs, and the failure modes were accu-

rately predicted by the finite element model. A parametric study was con-

ducted to investigate the effects of the change in headed stud diameter and

height and concrete slab strength. The results of the finite element model

were compared with the American, British, and European specifications

for steel-concrete composite structures. It was concluded that the European

code provides good agreement with experimental and finite element results,
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Figure 2.24 Finite element representation of push-off test specimenmodeled by Kalfas
et al. [2.67].
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while the American and British specifications overestimated the resistance

of headed stud shear connectors in composite beams with solid slabs.

Ellobody [2.68] and Ellobody and Lam [2.70] extended the research to

investigate the behavior of headed shear stud connector in composite beams

with precast hollow core slabs. An accurate finite element model was devel-

oped, and the results obtained from the finite element analysis compared

well with experimental results conducted by Ellobody [2.68] and Ellobody

and Lam [2.70].

The performance of headed stud shear connectors in composite beams

with profiled steel sheeting was investigated by Ellobody and Young

[2.71]. The authors developed an efficient nonlinear three-dimensional

finite element model to investigate the behavior of headed stud shear con-

nectors in composite beams with profiled steel sheeting perpendicular to the

steel beam. The finite element program ABAQUS [1.29] was used in the

analysis. The results obtained from the finite element analysis were verified

against the test results carried out by Lloyd and Wright [2.57] and Kim et al.

[2.58, 2.59]. Parametric studies were performed to investigate the effects of

the changes in profiled steel sheeting geometries, diameter and height of

headed shear stud, concrete slab dimensions, and strength of concrete on

the strength and behavior of shear connection in composite beams with pro-

filed steel sheeting. The results obtained from the finite element analysis

were compared with design strengths calculated using current codes of prac-

tice for headed stud shear connectors in composite slabs with profiled steel

sheeting perpendicular to the steel beam.

2.6.8 Main Investigations on Numerical Modeling
of Composite Girders

Many experimental and numerical investigations have been carried out to

investigate the structural behavior of steel-concrete composite girders. Most

of these investigations were concentrated on steel-solid concrete slab girders

composite beams and limited investigations focused on composite girders

with prestressed hollow core slabs and composite slabs with profiled steel

sheeting. There is no intention to survey these investigations in general in

this book. However, this chapter is concentrated on how researchers

numerically simulated different components of composite girders including

the shear connection between these components. Also, investigations deal-

ing with the evaluation of the effective width, ultimate load capacity, and

load-deflection curves of composite girders are also highlighted in this book.
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Earlier investigations by Ansourian [2.72] used the finite element

method in analyzing composite steel-solid slab floor systems. The author

studied the full composite action between concrete slabs and steel joists in

the elastic range. The principal variable of the study was the ratio of the flex-

ural stiffness of the joist and slab. Two different methods of finite element

models were investigated. In the first model, the slab was represented by

a combination of 16-node and 8-node solid 3D prismatic elements and

the joist was represented by plane stress elements. At a section of the struc-

ture, each steel beam flange was represented by one element and the webwas

represented by two elements. The authors found satisfactory convergence

with this method, but the preparation of data and analysis of output were

time-consuming. In the secondmodel, the slab was represented by thin plate

elements built up from the superposition of linear curvature triangles for the

flexural stresses and linear strain triangles for the membrane stresses, and the

joist was represented by beam elements. The author found that the second

model gives applicable output of bending moments and plane stresses.

Mofatt and Dowling [2.73] introduced a finite element study of the elastic

longitudinal bending behavior of composite box girder bridges in which the

use of flexible shear connectors results in incomplete interaction between

the slab and girder components. The buckling and the inelastic behavior

were not considered. Some preliminary investigations were carried out to

determine suitable finite element meshes for use in analyzing the girders.

The box girders, the slab, and the reinforcement were represented by shell

elements. The shear connectors were represented by linkage elements that

allowed slip in the plane of the concrete-steel interface. It was assumed that

the shear connection would be provided by 19 mm�100 mm headed studs.

On the basis of information given in reference [2.74], the authors used con-

stant slip modulus of the studs as 0.4�106 N/mm. The authors highlighted

the need for codes of practice to include design information on the stiffness

and distribution requirements of the connectors in composite girders.

Mistakidis et al. [2.75] introduced a numerical method taking into con-

sideration the nonlinearities introduced in the analysis of long-span compos-

ite girders. The authors showed that the experimental data show a nonlinear

behavior for the load-deformation curve of the shear connectors joining the

steel beam with the concrete slab. The influence of the behavior of the con-

nectors has been demonstrated through the analysis of a long-span composite

girder spanning 30.0 m. The finite element method was used in modeling

the composite girder. Bending finite elements with axial deformation pos-

sibility representing the concrete slab and the steel beam were used. Spring
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elements of zero length, which can bear only shear force and obey the load-

deformation law of the shear connectors, were used to connect steel and

concrete. The authors have concluded that consideration of the actual

load-deformation diagram of studs in the design of composite girders is

needed and increases the safety of the beam at the serviceability limit state.

Studies carried out by Oehlers et al. [2.76] and by Oven et al. [2.77]

investigated numerically the behavior of composite steel-solid slab beams.

Oehlers et al. [2.76] found that in the maximum flexural capacity of com-

posite beams, where the axial strength of the concrete section is usually

much larger than that of the steel section, partial interaction has virtually

no effect on the strength. Conversely, partial interaction can reduce the

strength of composite beams with very strong steel sections, where the axial

strength of the steel section is much greater than that of the concrete section.

Also, it has been found that the greatest effect of partial interaction is to

reduce the strain in the steel element and hence limit the beneficial effects

of strain hardening. The work of the authors was part of an ongoing study,

and a computer model has been developed to carry out the parametric study,

while Oven et al. [2.77] developed a 2D nonlinear inelastic finite element

model for the structural analysis of steel-solid slab composite beams with

flexible shear connection. The effects of slip between the steel beam and

the concrete slab and the nonlinear nature of force-slip characteristics of

the shear connectors were included. Themodel was based on a 2D nonlinear

FE analysis program INSTAF, developed originally for steel frames by

El-Zanaty [2.78]. The program used a line element with 4 degrees of free-

dom at each node to represent the steel I-section and the concrete slab. The

material nonlinearities of the composite girder components have been

incorporated. The author concluded that the model can be used to predict

the load-deflection behavior and the slip distribution along the length of the

beam and the model has been validated by comparing the results with pub-

lished test data. Cai et al. [2.79] investigated the behavior of cable-stayed

composite bridges. The author developed a finite element model to repre-

sent the shear connection between a steel beam and a concrete slab. A 2D

finite element was used in their analysis to model the steel beam and the con-

crete slab. The two elements are then connected via rigid links to model the

shear connectors, and hence, they eliminated slip at the steel-concrete inter-

face. The composite connection between steel beam and solid concrete slab

was modeled by Youn and Chang [2.80] using 3D finite elements. The

model consisted of two layers of solid elements and 3D beam elements.

Rigid links were used between the concrete slab and the girders.
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Orthotropic reinforcing bars in the concrete slab were modeled by four lay-

ered elements as a smeared layer with constant thickness. The thickness of

the smeared layer was equal to the area of each bar divided by the bar spac-

ing. The finite element program ABAQUS was used to analyze this model.

The use of rigid links shows that the interaction between the steel beam and

concrete slab is complete and there is no slip between the shear connectors,

which is not true and has been rejected by many researchers. Gattesco [2.81]

studied numerically the nonlinear behavior of composite steel-solid slab

beams with deformable shear connection. The numerical procedure

accounted for the nonlinear behavior of concrete, steel, and shear connec-

tor. The finite element package COBENA was used in the analysis. The

steel beam and the concrete slab were modeled by using beam-type elements

that have four nodal points with 3 degrees of freedom per node (horizontal

and vertical displacements and rotation in the x-y plane). The interface

between the steel beam and the concrete slab was modeled by two horizon-

tal springs. The uplift of the concrete slab with respect to the steel beam and

the buckling effects of the steel beam were neglected. The model was ver-

ified by comparing the finite element solutions with the experimental work

of Chapman and Balakrishnan [2.82]. The author found good agreement

between numerical and experimental results and concluded that this model

can be used for extensive parametric studies on composite beams with com-

plete or partial shear connection.

Kwak and Seo [2.83] modeled the behavior of composite girder using

the finite element method. The aim of the study was to predict the long-

term behavior of composite steel-solid slab girders in bridges. A 2D beam

element that has 3 degrees of freedom (two translations and one rotation)

was used in the analysis to represent the steel beam and the concrete slab.

Material nonlinearities have been taken into consideration. The elements

were divided into imaginary layers to describe the material properties with

the assumption that plane sections remain plane to represent the linearity in

the strain distribution on any section at any time. The load-slip characteristic

of the stud has been neglected in the analysis, and perfect interaction has

been assumed between the steel beam and the concrete slab. The finite ele-

ment method was used in the modeling of steel-solid composite beams

curved in plane by Thevendran et al. [2.84]. The numerical model was used

to verify the experimental testing aimed by the authors to study the ultimate

load behavior of these composite girders. The finite element software, ABA-

QUS, has been used in the analysis. Full composite action between steel

beam and concrete slab was assumed. Figure 2.25 shows a typical finite
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element mesh with 1257 elements used by the authors in the analysis. The-

vendran et al. [2.84] used 3D finite elements to develop the finite element

model. In the model, the concrete slab was simulated by four-node isopara-

metric thick shell elements with the coupling of bending stiffness, while the

steel flanges and web were modeled by four-node isoparametric thin ele-

ments with the coupling of bending and stiffness. The shear connectors

between concrete slab and steel flange were modeled by rigid beam ele-

ments. Rigid connection beam elements were used to model the shear studs

based on the assumption that no slip occurs between the concrete slab and

the steel girder. The material nonlinearities of the steel beam and the con-

crete slab were accounted in the analysis. The authors found good agreement

between experimental and numerical results in most of the cases. The

observed discrepancies in some of the results between the values predicted

numerically and that predicted experimentally are attributed to neglecting

the slip at the steel-concrete interface by using rigid elements to represent

the studs. Amadio and Fragiacomo [2.85] used the finite element method

to model steel-solid slab composite girders. The model was used in studying

the evaluation of effective width for serviceability and ultimate analysis.

In the model, the shell elements were used in modeling both the steel beam

and the concrete slab. A nonlinear elastic law represented the behavior of the

shear connection. The effects of steel and concrete material nonlinearities

were taken into consideration. Although this research was applied on can-

tilever beams, the authors concluded that the numerical study demonstrated

Concrete slab 
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Main girder 

Figure 2.25 FE model of the composite beam modeled by Thevendran et al. [2.84].
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that the connection deformability affected the evaluation of the effective

width of steel-solid slab composite beams. A displacement-based finite ele-

ment model for the analysis of steel-solid slab composite girders with flexible

shear connection was developed by Faella et al. [2.86]. The model was orig-

inally developed by improving the two-node 1D displacement-based finite

element. The research is still in press and the authors suggested that the

model might be used in the accurate simulation of the behavior of composite

girders.

Lam [2.87, 2.88] developed a 2D finite element model to verify the

experimental testing of composite steel-prestressed hollow core concrete

slab girders. In the model, the concrete slab was modeled by using 2D

eight-node plane stress elements, while the steel beamwas modeled by using

2D four-node plane stress elements. Figure 2.26 shows the finite element

mesh developed in [2.87, 2.88]. The transverse reinforcement was not mod-

eled as a separate element due to the limitation of the 2D element used, but

its effect was taken indirectly into account in simulating the shear connec-

tion behavior. Both the precast hollow core concrete slab and in situ con-

crete were modeled as a single concrete element that had a breadth equal

to the thickness of the prestressed hollow core concrete units and with com-

bined material properties. The shear connectors were modeled by using

spring elements that obeyed the load-slip characteristic of the shear stud con-

nector used. Lam [2.87, 2.88] concluded that, although the composite pre-

cast hollow core beam was modeled in a simplified way, the results obtained

from the model showed good agreement with the experimental results. The

model was used in carrying out parametric studies that took into account the

different parameters affecting the behavior of steel-prestressed hollow core
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Figure 2.26 Finite element mesh of the composite beam used by Lam [2.87, 2.88].
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concrete slab composite girders. The parametric study on composite girders

with precast hollow core slabs was published by Lam et al. [2.89]. Also, from

the results of the parametric study, design charts have been developed for

initial sizing of composite girders by the authors [2.90]. Shim et al. [2.91]

developed a finite element model to simulate shear connection in composite

girders with full-depth prestressed decks. The numerical model was devel-

oped as a part of a study carried out to investigate design considerations of the

shear connection in steel-concrete composite bridges with full-depth pre-

stressed decks. The authors assumed that the shear connection was contin-

uous and uniform along the beam and no separation took place at the

interface. The finite element method has been used in the analysis, and a

composite beam element that has 12 degrees of freedom was developed.

The shear stiffness of the shear connection was evaluated from linear elastic

analysis, and this, in addition to the assumption of full interaction between

steel beam and concrete slab, limits the use of this model in an accurate finite

element analysis. Ellobody and Lam [2.92] evaluated the effective width of

composite steel beams with precast hollow core slabs numerically using the

finite element method. A parametric study, carried out on 27 beams with

different steel cross sections, hollow core unit depths, and spans, is presented.

The effective width of the slab is predicted for both the elastic and the plastic

ranges. Eight-node 3D solid elements are used to model the composite beam

components. The material nonlinearity of all the components is taken into

consideration. The nonlinear load-slip characteristics of the headed shear

stud connectors are included in the analysis. The moment-deflection behav-

ior of the composite beams, the ultimate moment capacity, and the modes of

failure are also presented. In addition, the ultimate moment capacity of the

beams evaluated using the present FE analysis was compared with the results

calculated using the rigid-plastic method.

Ranzi and Bradford [2.93] presented a numerical model for the analysis

of composite steel-concrete beams at elevated temperatures accounting for

both longitudinal and transverse interaction. The model was derived by

means of the principle of virtual work. A finite element was developed based

on the formulation of partial interaction. The authors performed parametric

studies investigating the effects of different thermal distributions on the

structural response of a composite beam. Elastic material properties were

assumed for all materials while still accounting for their degradation with

temperature. A bilinear constitutive model was adopted for the transverse

interface connection. Based on the proposed numerical model, it was con-

cluded that it is important to account for the combined actions, that is,
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combined tension and shear force, to better identify the stress state at the

interface connection. In addition, it was concluded that ignoring this cou-

pling might lead to a significant underestimation of the connectors’ available

capacity. Furthermore, a prescriptive failure criterion based on the von

Mises yield condition was proposed for shear connectors. Valipour and

Bradford [2.94] presented the formulation of a force-based one-dimensional

steel-concrete composite element that captured material nonlinearities and

partial shear interaction between the steel profile and the reinforced concrete

slab. A total secant solution strategy based on a direct iterative scheme was

introduced by the authors. The slip forces along the element axis were cal-

culated analytically. The accuracy and efficiency of the formulation are ver-

ified by some numerical examples reported by other researchers in the

literature. It was shown that the formulation could lead to virtually closed

form of analytic results as long as the integrals in the formulation were cal-

culated accurately.

Recently, Erkmen and Saleh [2.95] have shown that when modeling

composite or built-up beams using finite element software, analysts con-

nected two standard Euler-Bernoulli beam elements at the nodes by using

a rigid bar or master-slave-type kinematic constraints to express the degrees

of freedoms of one of the members in terms of the other. The authors have

shown that this type of modeling can lead to eccentricity-related numerical

errors and special solutions that avoid eccentricity-related issues may not be

available for a design engineer due to the limitations of the software. There-

fore, a simple correction technique was introduced in the application of

master-slave-type constraints. It was shown that the eccentricity-related

numerical errors in the stiffness matrix can be completely corrected by using

extra fictitious elements and springs. The correction terms were obtained by

using the exact homogenous solution of the composite beam problem as the

interpolation functions, which impose the zero-slip constraint between the

two components in the point-wise sense. Yu-hang et al. [2.96] developed a

steel-concrete composite fiber beam-column model. The model consisted

of a preprocessor program that was used to divide a composite section into

fibers. Uniaxial hysteretic material constitutive models were incorporated in

the model. The authors showed that the steel-concrete composite fiber

beam-columnmodel can be used for global elastoplastic analysis on compos-

ite frames with rigid connections subjected to the combined action of gravity

and cyclic lateral loads. The model was verified against a number of exper-

iments, and the results showed that the developed composite fiber model

behaved better compared with traditional finite element models. In
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addition, it was shown that although the fiber beam-column model

neglected the slip between the steel beam and concrete slab, there were

no effects on the global calculation results of steel-concrete composite

frames. It was concluded that the proposed model can be used to analyze

composite frames subjected to cyclic loading due to earthquake.
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CHAPTER33
Applied Loads and Stability
of Steel and Steel-Concrete
Composite Bridges

3.1 GENERAL REMARKS

The brief introduction of steel and steel-concrete composite bridges pre-

sented in Chapter 1 and the revision of the nonlinear material behavior of

the main bridge components presented in Chapter 2 provide a useful back-

ground on bridges and the material behavior of the components of the

bridges. It is now possible to detail applied loads acting on steel and

steel-concrete composite bridges, which is highlighted in this chapter.

This chapter presents different loads acting on railway and highway bridges

and the stability of the bridges when subjected to these loads. The chapter

starts by showing the dead loads of steel and steel-concrete composite brid-

ges that are initially estimated for the design of bridges. Then, the chapter

presents the live loads from traffic as specified in the American and

European codes. After that, the chapter presents the calculation of hori-

zontal loads and other loads acting on the bridges such as centrifugal forces,

seismic loading, collision forces, and temperature effects. In addition, the

chapter presents the load combinations specified in the current codes of

practice to predict the worst case of loading for the calculation of different

straining actions in the bridge components. Furthermore, different design

approaches specified in the current codes of practice are highlighted in this

chapter. Finally, the chapter addresses the main issues related to the stability

of steel and steel-concrete composite plate girder and truss bridges such as

buckling behavior of compression members, stability of thin-walled steel

plate girders, lateral torsional buckling, and composite plate girder behav-

ior. Once again, when highlighting the main issues related to the stability

of the bridge components, it intends to review and present the issues based

on the design rules specified in the current codes of practice, with partic-

ular focus on the Eurocode as an example. Overall, the author hopes that

this chapter paves the way to the design examples of different bridge

components presented in Chapter 4.
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3.2 DEAD LOADS OF STEEL AND STEEL-CONCRETE
COMPOSITE BRIDGES

The dead loads acting on railway and highway bridges consist of the weight

of all its structural parts, fittings, finishing, curbs, lighting and signing

devices, gas and water mains, electricity and telephone cables, etc. These

loads are permanent and remain constant in position and magnitude. To cal-

culate the straining actions on the bridge components, the weight of the

structural parts has to be initially assumed. The assumed weights have to

be assessed after designing and predicting cross sections of all structural parts.

When there is a considerable difference between the assumed and predicted

weights, the calculation of the loads and design has to be repeated until close

agreement is achieved between assumed and predicted weights. It should be

noted that most current codes of practice provide guidance for the unit

weights of commonly used materials in steel and steel-concrete composite

bridges, which can also be used to estimate the dead loads acting on the brid-

ges. Furthermore, the dead loads of previously designed existing bridges can

be used to provide guidance to dead loads expected on similar bridges under

construction.

3.2.1 Dead Loads of Railway Steel Bridges
As an example, let us estimate the dead loads acting on different components

of the traditional double-track open-timber floor plate girder railway steel

bridge shown in Figure 1.20. Starting with the dead loads acting on a

stringer, these loads are half the weight of the track loads (train, sleepers,

and rails), own weight of the stringer, and weight of stringer bracing.

The track load varies from country to country and can be found in the

national code of practice of the country of construction. A commonly

assumed track load is 6 kN/m acting along the stringer length, which is

the spacing between two adjacent cross girders. The ownweight of a stringer

depends on its length and the type of steel used. The weight of a stringer can

be reasonably assumed to be from 1 to 1.5 kN/m all over the stringer length.

Finally, the weight of stringer bracing can be reasonably assumed to be 0.2-

0.3 kN/m acting along the stringer length. By knowing the assumed total

dead load acting on the stringer, the straining actions resulting from dead

loads comprising bending moment and shear force can be calculated.

The dead loads acting on an intermediate cross girder (see Figure 1.20)

are the concentrated dead loads coming from the stringers, which are sup-

ported by the cross girders and own weight of cross girder. Once again, the
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own weight of cross girder depends on its length and the type of steel used.

The own weight of cross girder can be reasonably assumed to be 2-3 kN/m

of the length of cross girder, which is the pacing between the main girders.

By knowing the assumed concentrated dead loads acting on the cross girder

and its assumed own weight, the straining actions resulting from dead loads

comprising bending moment and shear force can be calculated. Finally, the

dead loads acting on the main girders (see Figure 1.20) are the weight of steel

structural parts plus the weight of tracks. The weight of steel structural parts

can be estimated from similar existing bridges or from some empirical for-

mulas, which are obtained from the data available from previously designed

railway steel bridges. The assumed weight of steel structural parts depends on

many factors including the length of main girder, type of steel used, and type

of bridge. A reasonable assumption of the weight of structural parts (ws) for

single-track open-timber floor bridges can be given by the following empir-

ical equations:

ws ¼4+ 0:5L kN=mð Þ
for deck bridges without stringers and cross girdersð Þ ð3:1Þ

ws¼9+ 0:5L kN=mð Þ
for deck bridges with stringers and cross girdersð Þ ð3:2Þ

ws ¼ 11+ 0:5L kN=mð Þ for pony bridgesð Þ ð3:3Þ
where L is the length of main girder in meters and the weight of structural

parts (ws) is divided into twomain girders. For double-track bridges, the pre-

viously mentioned loads can be increased by 80-90%. By knowing the

assumed total dead load acting on the main girder, the straining actions

resulting from dead loads comprising bending moment and shear force

can be calculated. For ballasted floor railway steel bridges, the weight of

structural parts can be increased by 20-40%.

3.2.2 Dead Loads of Highway Steel and Steel-Concrete
Composite Bridges

As an example, let us estimate the dead loads acting on different components

of the traditional through-truss highway steel bridge as shown in

Figure 1.21. Starting with the dead loads acting on a stringer, the dead loads

include the weight of flooring (1.5-2 kN/m2), the weight of reinforced con-

crete slabs having a thickness of around 200 mm (5 kN/m2), the weight of

reinforced concrete haunch (0.3 kN/m2), and the own weight of stringer
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(1-1.5 kN/m). By knowing the assumed total dead load acting on the

stringer, the straining actions resulting from dead loads comprising bending

moment and shear force can be calculated.

The dead loads acting on an intermediate cross girder (see Figure 1.21) are

the concentrated dead loads coming from the stringers, which are supported

by the cross girder, and own weight of cross girder. Once again, the own

weight of cross girder depends on its length and the type of steel used.

The own weight of cross girder can be reasonably assumed to be 2.5-

3 kN/m of the length of cross girder. By knowing the assumed concentrated

dead loads acting on the cross girder and its assumed own weight, the strain-

ing actions resulting from dead loads comprising bending moment and shear

force can be calculated. Finally, the dead loads acting on the main trusses are

the weight of steel structural parts plus weight of finishing, reinforced con-

crete slabs, and haunches. Once again, the weight of steel structural parts can

be estimated from similar existing bridges or from some empirical formulas,

which are obtained from the data available from previously designed railway

steel bridges. A reasonable assumption of theweight of structural parts (ws) for

highway bridges can be given by the following empirical equations:

ws1 ¼1:75+ 0:04L +0:0003L2 � 3:5 kN=m2
� �

for part of bridge between main trussesð Þ ð3:4Þ

ws2 ¼1+ 0:03L kN=m2
� �

for part of bridge outside main trussesð Þ ð3:5Þ

where L is the length of the main girder in meters. By knowing the assumed

total dead load acting on the truss, the straining actions resulting from dead

loads comprising axial tension and compression forces in the truss can be

calculated.

3.3 LIVE LOADS ON STEEL AND STEEL-CONCRETE
COMPOSITE BRIDGES

Live loads acting on steel and steel-concrete composite bridges differ from

country to country. National codes of practice in any country specify design

live loads that should be considered in the calculation of different straining

actions on the bridge components. The design loads represent the worst

cases of traffic loading permitted and expected to pass over a specific bridge.

Since the main objective of this book is to provide a consistent and general

approach for finite element analysis and design of steel and steel-concrete
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composite bridges, the design live loads specified in the current codes of

practice are highlighted in this section. The design live loads for railway

bridges depend on the types of trains passing on the bridges, while the design

loads for highway bridges depend on the types of vehicles passing on the

bridge. The design live loads for railway and highway bridges are either con-

centrated loads acting on the axles of the specified trains and vehicles, respec-

tively, or equivalent uniformly distributed loads simulating the case of

several closely spaced vehicles in a jam situation. The specified trains and

vehicles have specified dimensions and axles spaced at definite locations

in the trains or vehicles. Live loads resulting from moving trains or vehicles

are magnified to account for the effect of impact and dynamic application of

the loads on the bridges.Wide steel and steel-concrete composite bridges are

designed on the worst cases of live loads acting on several adjacent lanes.

Long steel and steel-concrete composite bridges are designed to carry mul-

tiple trains or vehicles that should be positioned to provide the maximum

straining actions at a specific section.

3.3.1 Live Loads for Railway Steel Bridges
Let us start byhighlighting the live loads specified in theEurocode (EC1) [3.1]

for railway bridges. EC1 is applicable to railway traffic on the standard track

gauge andwide track gauge Europeanmainline network. According to EC1,

the design load models adopted do not describe actual loads. However, they

have been selected so that their effects, with dynamic enhancements taken

into account separately, represent the effects of service traffic. Where traffic

outside the scope of the loadmodels specified in EC1 needs to be considered,

then alternative load models, with associated combination rules, should

be specified. The live loads specified in EC1 are not applicable for actions

due to narrow-gauge railway, tramways and other light railway, preservation

railway, rack and pinion railways, and funicular railways. EC1 provides three

standard mixes of railway traffic, which are recommended for calculating

the fatigue life of bridges as detailed in Annex D of the code. EC1 specifies

the general rules for the calculation of characteristic vertical load values (static

effects) and eccentricity and distribution of loading and specifies the associ-

ated dynamic effects, centrifugal forces, nosing force, traction and braking

forces, and aerodynamic actions due to passing railway traffic.

According to EC1, railway traffic actions are defined by means of five

load models of railway loading that are as follows: “Load Model 71” and

“Load Model SW/0” for continuous bridges to represent normal railway
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traffic on mainline railways, “Load Model SW/2” to represent heavy loads,

“high-speed load model (HSLM)” to represent the loading from passenger

trains at speeds exceeding 200 km/h, and finally Load Model “unloaded

train” to represent the effect of an unloaded train. Load Model 71 represents

the static effect of vertical loading due to normal railway traffic. The load

arrangement and the characteristic values for vertical loads shall be taken into

account as shown in Figure 3.1. The characteristic values given in Figure 3.1

shall be multiplied by factor a on lines carrying railway traffic that is heavier

or lighter than normal railway traffic. When multiplied by the factor a, the
loads are called “classified vertical loads.” This factor a varies from 0.75 to

1.46. Also, the actions comprising equivalent vertical loading for earthworks

and earth pressure effects, centrifugal forces, nosing force, traction and brak-

ing forces, combined response of structure and track to variable actions,

derailment actions for accidental design situations, and Load Model SW/

0 for continuous span bridges shall be multiplied by the same factor a.
For checking the limits of deflection, classified vertical loads and other

actions enhanced by a shall be used (except for passenger comfort where

a shall be taken as unity). Load Model SW/0 represents the static effect

of vertical loading due to normal railway traffic on continuous beams. Load

Model SW/2 represents the static effect of vertical loading due to heavy rail-

way traffic. The load arrangements SW/0 and SW/2 shall be taken as shown

in Figure 3.2, with the characteristic values of the vertical loads according to

Table 3.1. For some specific verifications, a particular load model is used,

called “unloaded train.” The LoadModel “unloaded train” consists of a ver-

tical uniformly distributed load, with a characteristic value of 10.0 kN/m.

0.8 m 0.8 m1.6 m 1.6 m 1.6 m

qvk = 80 kN/m qvk = 80 kN/m 

Qvk = 250 kN 250 kN 250 kN 250 kN

Figure 3.1 Load Model 71 and characteristic values for vertical loads of standard trains
specified in EC1 [3.1].

a

qvqvk

ca

Figure 3.2 Load Models SW/0 and SW/2 of standard trains specified in EC1 [3.1].
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In the United States, design live train loads recommended by the Amer-

ican Railway Engineering and Maintenance-of-Way Association

(AREMA) [1.25] are based on the Cooper E80 loading as shown in

Figure 3.3. The 80 in E80 refers to the 80 kip (1 kip is equal to

4.448 kN) weight of the locomotive drive axles. An E60 load has the same

axle locations, but all loads are factored by 60/80. New bridges may be

designed to carry E90 or E100 loads. The designated steel bridge design live

load also includes an “Alternate E80” load, consisting of four 100 kip axles,

which is shown in Figure 3.4. This load controls over the regular Cooper

load on shorter spans. AREMA [1.25] also presents formulas for the calcu-

lation of the impact, which is the dynamic amplification of the live load

effects on the bridge caused by the movement of the train across the span.

The design impact values are based on an assumed train speed of 60 mph. It

should be noted that the steel design procedure allows the reduction of the

calculated impact for ballast deck structures. Different values for impact from

116.75 kN/m
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Figure 3.3 Cooper E80 live loading of standard trains specified in AREMA [1.25].

444.82 kN

444.82 kN

444.82 kN

444.82 kN

1.52 m
 

1.52 m
 

1.83 m
 

Figure 3.4 Alternate E80 live load of standard trains specified in AREMA [1.25].

Table 3.1 Characteristic Values for Vertical Load Models SW/0 and SW/2 of Standard
Trains Specified in EC1 [3.1]
Load Model qvk (kN) a (m) c (m)

SW0 133 15.0 5.3

SW2 150 25.0 7.0
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steam and diesel locomotives are used. The steam impact values are signif-

icantly higher than diesel impact over most span lengths.

3.3.2 Live Loads for Highway Steel and Steel-Concrete
Composite Bridges

The live loads on highway (roadway) steel and steel-concrete composite

bridges are also specified in the Eurocode (EC1) [3.1]. Load models covered

by the code should be used for the design of highway bridges with loaded

lengths less than 200 m. The 200 m corresponds to the maximum length

taken into account for the calibration of Load Model 1 (see Figure 3.5).

In general, the use of Load Model 1 is safe-sided for loaded lengths over

200 m. The models and associated rules are intended to cover all normally

foreseeable traffic situations (i.e., traffic conditions in either direction on any

lane due to the road traffic), which should be taken into account for design.

Specific models may be used for bridges equipped with appropriate means

including road signs intended to strictly limit the weight of any vehicle (e.g.,

for local, agricultural, or private roads). Load models for abutments and walls

adjacent to bridges are defined separately. The load models specified in EC1

derive from the road traffic models without any correction for dynamic

effects. For frame bridges, loads on road embankments may also give rise

to action effects in the bridge structure. The effects of loads on road con-

struction sites (e.g., due to scrapers and motortrucks carrying earth) or of

loads specifically for inspection and tests are not intended to be covered

by the load models and should be separately specified, where relevant.

According to EC1, loads due to the road traffic, consisting of cars, motor-

trucks, and special vehicles (e.g., for industrial transport), give rise to vertical

and horizontal and static and dynamic forces. It should be noted that the load

models defined in EC1 do not describe actual loads. They have been selected

and calibrated so that their effects (with dynamic amplification included

4

3

2

1

w1 

w1 

w1 

w

Key 
w Carriageway width 
w1 National lane width 
1 National lane Nr. 1 
2 National lane Nr. 2 
3 National lane Nr. 3 
4 Remaining area 

Figure 3.5 Example of lane numbering in the most general case according to EC1 [3.1].
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where indicated) represent that of the actual traffic in the year 2000 in

European countries.Where vehicles that do not comply with the regulations

concerning the limits of weights and, possibly, dimensions of vehicles not

requiring special permits, or military loads, have to be taken into account

for the design of a bridge, they should be defined.

The carriageway width (w) (see Figure 3.5 specified in EC1 (3.1)) should

be measured between curbs or between the inner limits of vehicle restraint

systems and should not include the distance between fixed vehicle restraint

systems or curbs of a central reservation nor the widths of these vehicle

restraint systems. The recommended minimum value of the height of the

curbs is 100 mm. The width w1 of notional lanes on a carriageway and

the greatest possible whole (integer) number n1 of such lanes on this car-

riageway are defined in Table 3.2, which are specified in the code. For var-

iable carriageway widths, the number of notional lanes should be defined in

accordance with the principles used for Table 3.2. Where the carriageway

on a bridge deck is physically divided into two parts separated by a central

reservation, then each part, including all hard shoulders or strips, should be

separately divided into notional lanes if the parts are separated by a perma-

nent road restraint system.Where the whole carriageway, central reservation

included, should be divided into notional lanes if the parts are separated by a

temporary road restraint system, the locations of notional lanes should not be

necessarily related to their numbering. For each individual verification

(e.g., for a verification of the ultimate limit state of resistance of a cross sec-

tion to bending), the number of lanes to be taken into account as loaded,

their location on the carriageway, and their numbering should be so chosen

so that the effects from the load models are the most adverse. For fatigue

representative values and models, the location and the numbering of the

lanes should be selected depending on the traffic to be expected in normal

conditions. The lane giving the most unfavorable effect is Lane Number 1,

the lane giving the second most unfavorable effect is Lane Number 2, etc.

Table 3.2 Load Model 1: Characteristic Values Specified in EC1 [3.1]

Location
Tandem System, TS UDL System
Axle loads Qik (kN) qik or (qik) (kN/m

2)

Lane number 1 300 9

Lane number 2 200 2.5

Lane number 3 100 2.5

Other lanes 0 2.5

Remaining area (qrk) 0 2.5
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(see Figure 3.6). Where the carriageway consists of two separate parts on the

same deck, only one numbering should be used for the whole carriageway.

Hence, even if the carriageway is divided into two separate parts, there is

only one Lane Number 1, which can be considered alternatively on the

two parts. Where the carriageway consists of two separate parts on two inde-

pendent decks, each part should be considered as a carriageway. Separate

numbering should then be used for the design of each deck. If the two decks

are supported by the same piers and/or abutments, there should be a single

numbering for the two parts together for the design of the piers and/or the

abutments. According to EC1, for each individual verification, the load

models, on each notional lane, should be applied on such a length and so

longitudinally located that the most adverse effect is obtained. On the

remaining area, the associated load model should be applied on such lengths

and widths in order to obtain the most adverse effect.

It should be noted that characteristic loads specified in EC1 (3.1) are

intended for the determination of road traffic effects associated with ultimate

limit state verifications and with particular serviceability verifications. The

load models for vertical loads represent the following four traffic effects:

LoadModel 1 (LM1), LoadModel 2 (LM2), LoadModel 3 (LM3), and Load

Model 4 (LM4). LM1 contains concentrated and uniformly distributed

loads, which cover most of the effects of the traffic of motortrucks and cars.

This model should be used for general and local verifications. LM2 contains

a single axle load applied on specific tire contact areas, which covers the

dynamic effects of the normal traffic on short structural members. As an

order of magnitude, LM2 can be predominant in the range of loaded lengths

1

2

3

aQiQik 
aqiQik 

aQiQik 

2.0

0.5*

0.5*

Key 
(1) Lane Nr. 1 : Q1k = 300 kN; q1k = 9 kN/m2

(2) Lane Nr. 2 : Q1k = 200 kN; q1k = 2.5 kN/m2

(3) Lane Nr. 3 : Q1k  = 100 kN; q1k = 2.5 kN/m2

*For wl = 3.00 m 

Figure 3.6 Application of Load Model 1 according to EC1 [3.1].
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up to 3-7 m. LM3 contains a set of assemblies of axle loads representing spe-

cial vehicles (e.g., for industrial transport), which can travel on routes per-

mitted for abnormal loads. It is intended for general and local verifications.

Finally, LM4 contains a crowd loading, intended only for general verifica-

tions. This crowd loading is particularly relevant for bridges located in or

near towns if its effects are not covered by Load Model 1. Load Models

1, 2, and 3, where relevant, should be taken into account for any type of

design situation (e.g., for transient situations during repair works). Load

Model 4 should be used only for some transient design situations. Load

Model 1 consists of the following two partial systems: double-axle concen-

trated loads (tandem system, TS) and uniformly distributed loads (UDL sys-

tem). For double-axle concentrated loads, each axle has a weight of aQQk

where aQ are adjustment factors. No more than one tandem system should

be taken into account per notional lane and only complete tandem systems

should be taken into account. For the assessment of general effects, each tan-

dem system should be assumed to travel centrally along the axes of notional

lanes. Each axle of the tandem system should be taken into account with two

identical wheels, the load per wheel being therefore equal to 0.5aQQk. The

contact surface of each wheel should be taken into account as a square of side

0.40 m (see Figure 3.7). On the other hand, uniformly distributed loads have

a weight of aqqk per square meter of notional lane, where aq are adjustment

2.0

≥0.5

2.0

1.2

x

0.4

0.4

Figure 3.7 Application of tandem systems for local verifications according to EC1 [3.1].
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factors. The uniformly distributed loads should be applied only in the unfa-

vorable parts of the influence surface, longitudinally and transversally. LM1

is intended to cover flowing, congested, or traffic jam situations with a high

percentage of heavy motortrucks. Load Model 1 should be applied on each

notional lane and on the remaining areas. On notional Lane Number 1, the

load magnitudes are referred to as aQiQik and aqiqik (see Table 3.1). On the

remaining areas, the load magnitude is referred to as aqrqrk. The values of

adjustment factors aQi, aqi, and aqr should be selected depending on the

expected traffic and possibly on different classes of routes. In the absence

of specification, these factors should be taken equal to unity. The character-

istic values of Qik and qik, dynamic amplification included, should be taken

from Table 3.2. For local verifications, a tandem system should be applied at

the most unfavorable location. Where two tandem systems on adjacent

notional lanes are taken into account, they may be brought closer, with a

distance between wheel axles not below 0.50 m (see Figure 3.7).

Load Model 2 consists of a single axle load bQQak with Qak equal to

400 kN, dynamic amplification included, which should be applied at any

location on the carriageway. However, when relevant, only one wheel of

200bQ (kN)may be taken into account. The value of bQ should be specified.

The contact surface of each wheel should be taken into account as a rect-

angle with sides 0.35 and 0.60 m (see Figure 3.8). The contact areas of Load

Models 1 and 2 are different and correspond to different tire models,

arrangements, and pressure distributions. The contact areas of Load Model

2, corresponding to twin tires, are normally relevant for orthotropic decks.

For simplicity, the National Annex may adopt the same square contact

2.00 X

0.60

0.35

1Key 
X Bridge longitudinal axis direction
1 Curb

Figure 3.8 Load Model 2 according to EC1 [3.1].
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surface for the wheels of Load Models 1 and 2. For Load Model 3 (special

vehicles), where relevant, the models of special vehicles should be defined

and taken into account. The National Annex may define Load Model 3 and

its conditions of use. Finally, Load Model 4 (crowd loading), if relevant,

should be represented by a load model consisting of a uniformly distributed

load (which includes dynamic amplification) equal to 5 kN/m2. The appli-

cation of LM4 may be defined for the individual project. Load Model 4

should be applied on the relevant parts of the length and width of the road

bridge deck, the central reservation being included, where relevant. This

loading system, intended for general verifications, should be associated only

with a transient design situation.

In the United States, the AASHTO [1.23] specifies vehicular live loading

on the roadways of bridges based on designated HL-93 load model consist-

ing of a combination of the design truck or design tandem and design lane

load. Each design lane under consideration shall be occupied by either the

design truck or tandem, coincident with the lane load. The weights and

spacings of axles and wheels for the design truck specified in AASHTO

are shown in Figure 3.9. A dynamic load allowance is considered for the

design truck load. The spacing between the two 145,000 N axles varies

between 4300 and 9000 mm to produce extreme force effects. It should

be noted that the total design force effect is also a function of load factor,

load modifier, load distribution, and dynamic load allowance. The design

tandem shall consist of a pair of 110,000 N axles spaced 1200 mm apart.

The transverse spacing of wheels shall be taken as 1800 mm. A dynamic load

allowance is also considered for the design tandem load. The design lane load

consists of a load of 9.3 N/mm uniformly distributed in the longitudinal

direction. Transversely, the design lane load is assumed to be distributed

over a 3000 mm width. The force effects from the design lane load are

not subject to a dynamic load allowance. The tire contact area of a wheel

consisting of one or two tires is assumed to be a single rectangle having a

width of 510 mm and a length of 250 mm. The tire pressure is assumed

to be uniformly distributed over the contact area.

The extreme force effect according to AASHTO [1.23] is taken as the

larger of the effect of the design tandem combined with the effect of the

design lane load or the effect of one design truck with the variable axle spac-

ing combined with the effect of the design lane load and for both negative

moment between points of contraflexure under a uniform load on all spans

and reaction at interior piers only; 90% of the effect of two design trucks

spaced a minimum P equal to the design wheel load (N). For the design
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of deck overhangs with a cantilever, not exceeding 1800 mm from the cen-

terline of the exterior girder to the face of a structurally concrete railing, the

outside row of wheel loads may be replaced with a uniformly distributed line

load of 14.6 N/mm intensity, located 300 mm from the face of the railing.

To allow for dynamic effects, as specified in AASHTO, the static effects of

the design truck or tandem, other than centrifugal and braking forces, shall

be increased by the percentage specified in Table 3.3. For the dynamic load

Table 3.3 Dynamic Load Allowance (IM) Recommended by AASHTO [1.23]
Component IM (%)

Deck joints—all limit states 75
All other components
Fatigue and fracture limit state 15

All other limit states 33

145,000 N145,000 N145,000 N 

4300 - 9000 mm4300 mm

1800 mm
600 mm General 
300 mm Deck overhang 

Design lane 3600 mm

≈

Figure 3.9 Characteristics of the design truck specified in AASHTO [1.23].
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allowance, the factor to be applied to the static load shall be taken as (1+ IM/

100). The dynamic load allowance is not applied to pedestrian loads or the

design lane load.

3.4 HORIZONTAL FORCES ON STEEL AND STEEL-CONCRETE
COMPOSITE BRIDGES

3.4.1 General
Steel and steel-concrete composite bridges are subjected to horizontal forces

resulting from the moving trains or trucks and resulting from the environ-

ment. The horizontal forces may be transverse forces, acting transversely to

the bridge direction, such as wind forces, lateral shock forces resulting from

nosing of the trains, and centrifugal forces, or may be longitudinal forces,

acting in the longitudinal direction of the bridge, such as traction and brak-

ing forces. In the next sections, the horizontal forces acting on the bridges

will be highlighted. Once again, the forces presented are specified values in

the current codes of practice.

3.4.2 Horizontal Forces on Railway Steel Bridges
3.4.2.1 Centrifugal Forces
Where the track on a bridge is curved over the whole or part of the length of

the bridge, centrifugal force and track cant should be taken into account.

According to EC1 [3.1], centrifugal forces should be taken to act outward

in a horizontal direction at a height of 1.80 m above the running surface as

shown in Figure 3.10. The centrifugal force shall always be combined with

the vertical traffic load. The centrifugal force should not be multiplied by

s

Qla ( )
Qlb ( ) wt

u

(1) 
Qs 

Qt 

**
wF

2
2 hh

Key 
(1)    
(2)

**
wF Nosing force 

ht Height of centrifugal force over the running surface 
hw Height of wind force over the running surface 
Q1a Traction force 
Q1b Traction force 
Qs Nosing force 
Qt Centrifugal force 
Qv Vertical axle load 
s Gauge 
u ant 

Running surface
Longitudinal forces acting along the centerline of the track

Figure 3.10 Notation and dimensions especially for railways according to EC1 [3.1].
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any dynamic factors. The characteristic value of the centrifugal force shall be

determined according to the following equations specified in EC1:

Qtk ¼ v2

g� r
f �Qvkð Þ¼ V 2

127r
f �Qvkð Þ ð3:6Þ

qtk ¼ v2

g� r
f � qvkð Þ¼ V 2

127r
f � qvkð Þ ð3:7Þ

whereQtk and qtk are characteristic values of the centrifugal forces in kN and

kN/m, respectively.Qvk and qvk are characteristic values of the vertical loads

(excluding any enhancement for dynamic effects) for Load Models 71, SW/

0, SW/2, and “unloaded train.” For HSLM, the characteristic value of the

centrifugal force should be determined using LoadModel 71. f is a reduction

factor. v is the maximum speed in m/s.V is the maximum speed in km/h. g is

the acceleration due to gravity 9.81 m/s2. Finally, r is the radius of curvature

in m. In the case of a curve of varying radii, suitable mean values may be

taken for the value r.

The calculations shall be based on the specified maximum line speed at the

site. In the case of Load Model SW/2, an alternative maximum speed may be

assumed. For SW/2, a maximum speed of 80 km/hmay be used. It is recom-

mended that the individual project specify an increased maximum line speed

at the site to take into account potential modifications to the infrastructure and

future rolling stock. For Load Model 71 (and where required Load Model

SW/0) and a maximum line speed at the site higher than 120 km/h, two cases

should be considered. In the first case, Load Model 71 (and where required

Load Model SW/0) with its dynamic factor and the centrifugal force for

V¼120 km/h according to Equations (3.6) and (3.7) with f¼1 should be

considered. While in the second case, Load Model 71 (and where required

Load Model SW/0) with its dynamic factor and the centrifugal force accord-

ing to Equations (3.6) and (3.7) for the maximum speed V specified should

also be considered, with a value for the reduction factor f given by Equa-

tion (3.8). For Load Model 71 (and where required Load Model SW/0),

the reduction factor f is subject to a minimum value of 0.35 and is given by

f ¼ 1�V �120

1000

814

V
+1:75

� �
1�

ffiffiffiffiffiffiffiffiffi
2:88

Lf

r� �� �
ð3:8Þ

where Lf is the influence length of the loaded part of the curved track on the

bridge, which is most unfavorable for the design of the structural element

under consideration in meters as detailed in EC1 [3.1].
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3.4.2.2 Nosing Force
The nosing (lateral shock) force shall be taken as a concentrated force acting

horizontally, at the top of the rails, perpendicular to the centerline of the

track. It shall be applied on both straight track and curved track. According

to EC1 [3.1], the characteristic value of the nosing force shall be taken as

Qsk¼100 kN. It shall not be multiplied by any other factor. The nosing

force shall always be combined with a vertical traffic load.

3.4.2.3 Traction and Braking Forces
Traction and braking forces act at the top of the rails in the longitudinal

direction of the track. According to EC1, the forces shall be considered

as uniformly distributed over the corresponding influence length La,b for

traction and braking effects for the structural element considered. The direc-

tion of the traction and braking forces shall take account of the permitted

direction(s) of travel on each track. The characteristic values of traction

and braking forces given in EC1 [3.1] are as follows:

Traction force : Qlak¼ 33 kN=mð ÞLa,b mð Þ� 1000 kNð Þ
For Load Models 71,SW=0,SW=2, and HSLM

ð3:9Þ

Braking force : Qlbk ¼ 20 kN=mð ÞLa,b mð Þ� 6000 kNð Þ
For Load Models 71,SW=0,SW=2, and HSLM

ð3:10Þ

Qlbk¼ 35 kN=mð ÞLa,b mð Þ
For Load Model SW=2

ð3:11Þ

The characteristic values of traction and braking forces shall not be mul-

tiplied by any other factor.

EC1 [3.1] specifies that for Load Models SW/0 and SW/2, traction and

braking forces need only to be applied to those parts of the bridge that are

loaded according to Figure 3.2 and Table 3.1. Traction and braking may be

neglected for the Load Model “unloaded train.” These characteristic values

are applicable to all types of track construction, e.g., continuous welded rails

or jointed rails, with or without expansion devices. The earlier-mentioned

traction and braking forces for Load Models 71 and SW/0 should be mul-

tiplied by the factor a in accordance with the requirements of Section 3.3.1,

as specified in EC1 [3.1]. For loaded lengths greater than 300 m, additional

requirements for taking into account the effects of braking should be spec-

ified. For lines carrying special traffic (e.g., restricted to high-speed passenger

traffic), the traction and braking forces may be taken as equal to 25% of the

sum of the axle loads (real train) acting on the influence length of the action
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effect of the structural element considered, with a maximum value of

1000 kN for Qlak and 6000 kN for Qlbk. The lines carrying special traffic

and associated loading details may be specified. Traction and braking forces

shall be combined with the corresponding vertical loads. In the case of a

bridge carrying two or more tracks, the braking forces on one track shall

be considered with the traction forces on the other track. Where two or

more tracks have the same permitted direction of travel, either traction

on two tracks or braking on two tracks shall be taken into account. It should

be noted that braking and traction forces may be resisted using special sys-

tems of braking bracing added to the upper or lower wind bracing systems.

In this case, their effect on the bridge components above the bearings can be

neglected since the forces can be transmitted directly to the bearings.

3.4.2.4 Wind Forces
Wind actions on railway bridges fluctuate with time and act directly as pres-

sures on the external surfaces of the main carrying systems of the bridge and

on moving trains. Pressures act on areas of the surface resulting in forces nor-

mal to the surface of the main carrying systems of the bridge. The wind

action is represented by a simplified set of pressures or forces whose effects

are equivalent to the extreme effects of the turbulent wind. Thewind actions

calculated using the rules specified in EC1 (BS EN 1991-1-4) [3.2] are char-

acteristic values determined from the basic values of wind velocity or the

velocity pressure. The response of the bridge to wind actions depends on

the size, shape, and dynamic properties of the bridge. EC1 [3.2] covers

dynamic response due to along-wind turbulence in resonance with the

along-wind vibrations of a fundamental flexural mode shape with constant

sign. The response of the bridge should be calculated from the peak velocity

pressure, qp, at the reference height in the undisturbed wind field, the force

and pressure coefficients, and the structural factor cscd. qp depends on the

wind climate, the terrain roughness and topography, and the reference

height. qp is equal to the mean velocity pressure plus a contribution from

short-term pressure fluctuations.

According to EC1 [3.2], wind forces are calculated for bridges of con-

stant depth and with cross sections as shown in Figure 3.11 consisting of

a single deck with one or more spans.Wind actions for other types of bridges

(e.g., arch bridges, bridges with suspension cables or cable-stayed, roofed

bridges, moving bridges, and bridges with multiple or significantly curved

decks) may be defined in the National Annex. Wind actions on bridges

produce forces in the x-, y-, and z-directions as shown in Figure 3.12, where
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x-direction is the direction parallel to the deck width, perpendicular to the

span; y-direction is the direction along the span; and z-direction is the

direction perpendicular to the deck. The forces produced in the x- and

y-directions are due to wind blowing in different directions and normally

are not simultaneous. The forces produced in the z-direction can result from

the wind blowing in a wide range of directions; if they are unfavorable and

Open or closed
b 

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 3.11 Limitations of cross sections of normal construction decks according to
EC1 [3.2].
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significant, they should be taken into account as simultaneous with the forces

produced in any other direction. The notations used for bridges are L, length

in y-direction; b, width in x-direction; and d, depth in z-direction.

It should be noted, according to EC1 [3.2], whether a dynamic response

procedure for bridges is needed. If a dynamic response procedure is not

needed, the factor cscd may be taken equal to 1.0. For normal road and rail-

way bridge decks of less than 40 m span, a dynamic response procedure is

generally not needed. For the purpose of this categorization, normal bridges

may be considered to include bridges constructed of steel, concrete, alumi-

num, or timber, including composite construction, and whose shape of cross

sections is generally covered by Figure 3.11. Force coefficients for wind

actions on bridge decks in the x-direction are given by

cf ,x ¼ cfx,0 ð3:12Þ
where cfx,0 is the force coefficient without free-end flow specified in EC1

[3.2]. A bridge has usually no free-end flow because the flow is deviated only

along two sides (over and under the bridge deck). For normal bridges, cfx,0
may be taken equal to 1.3. Alternatively, cfx,0 may be taken from Figure 3.13.

Reference areas Aref,x are given (see Figure 3.13) and the following should

be taken into account: for road bridges, a height of 2 m from the level of the

carriageway, on the most unfavorable length, independently of the location

of the vertical traffic loads for roadway bridges, and for railway bridges, a

height of 4 m from the top of the rails, on the total length of the bridge.

The reference height, ze, may be taken as the distance from the lowest

ground level to the center of the bridge deck structure, disregarding other

parts (e.g., parapets) of the reference areas. Where it has been assessed that a

dynamic response procedure is not necessary, the wind force in the

x-direction may be obtained as follows:

Wind 

L

d 

x

y

z

b

Figure 3.12 Directions of wind actions on bridges according to EC1 [3.1].
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Fw¼ 1

2
rv2bCAref,x ð3:13Þ

where vb is the basic wind speed, C is the wind load factor, Aref,x is the

reference area, r is the density of air, which is reasonably assumed as

1.25 kg/m3.

vb ¼ cdir� cseason� vb,0 ð3:14Þ
The fundamental value of the basic wind velocity, vb,0, is the character-

istic 10 min mean wind velocity, irrespective of wind direction and time of

year, at 10 m above ground level in open country terrainwith low vegetation

I II III

Bridge type 

Trusses separately

a)

b)

bbb 

dtot dtot dtot

dtot dtot
dtot

b b b

dtotAref,x = dtot L
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1.5
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2.0

0 1 

2.4
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Cfx,0

b/dtot 

a) Construction phase or open parapets
    (more than 50% open) 

b) With parapets or barrier or traffic

Figure 3.13 Force coefficient for bridges, cfx,0, specified in EC1 [3.1].
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such as grass and isolated obstacles with separations of at least 20 obstacle

heights. The value of the directional factor, cdir, for various wind directions

may be found in theNational Annexwherein the recommended value is 1.0,

whereas the value of the season factor, cseason, may be given in the National

Annex with a recommended value of 1.0. The wind load factor C can be

calculated as follows based on ce, which is the exposure factor given in

EC1 [3.2]:

C¼ ce� cf,x ð3:15Þ
The recommended values for C are shown in Table 3.4 as given by

EC1 [3.2].

3.4.3 Horizontal Forces on Highway Steel and Steel-Concrete
Composite Bridges

3.4.3.1 Braking and Acceleration Forces
Similar to railway bridges, highway steel and steel-concrete composite brid-

ges are subjected to braking and acceleration forces. According to EC1 [3.1],

braking force,Qlk, shall be taken as a longitudinal force acting at the surfac-

ing level of the carriageway. The characteristic value of Qlk limited to

900 kN for the total width of the bridge and should be calculated as a fraction

of the total maximum vertical loads corresponding to the Load Model 1

likely to be applied on Lane Number 1, as follows:

Q1k¼ 0:6 aQ1 2Q1kð Þ+0:1aq1q1kw1L

180aQ1 kNð Þ�Q1k� 900 kNð Þ ð3:16Þ

where L is the length of the deck or part of it under consideration. For exam-

ple,Qlk¼360+2.7L (�900 kN) for a 3 m wide lane and for a loaded length

L>1.2 m, if a factors are equal to unity. The upper limit (900 kN) may be

adjusted in the National Annex. The value 900 kN is normally intended to

cover the maximum braking force expected to pass over the bridge. Hori-

zontal forces associated with Load Model 3 should be defined where appro-

priate. This force should be taken into account as located along the axis of

any lane. However, if the eccentricity effects are not significant, the force

Table 3.4 Values of the Force Factor C for Bridges Recommended by EC1 [3.1]
b/dtot ze�20 m ze¼50 m

�0.5 5.7 7.1

�4.0 3.1 3.8
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may be considered to be applied only along the carriageway axis and uni-

formly distributed over the loaded length. Acceleration forces should be

taken into account with the same magnitude as braking forces, but in the

opposite direction.

In the United States, AASHTO [1.23,1.24] specifies that the braking

force on highway bridges shall be taken as the greater than 25% of the axle

weights of the design truck or design tandem or 5% of the design truck plus

lane load or 5% of the design tandem plus lane load. The braking force shall

be placed in all design lanes carrying traffic heading in the same direction.

The forces shall act horizontally at a distance of 1.8 m above the roadway

surface in either longitudinal direction to cause extreme force effects.

3.4.3.2 Centrifugal Forces
The centrifugal force Qtk, specified in EC1, acting on highway bridges

should be taken as a transverse force acting at the finished carriageway level

and radially to the axis of the carriageway. The characteristic value ofQtk, in

which dynamic effects are included, should be taken fromTable 3.5, where r

is the horizontal radius of the carriageway centerline in meters andQv is the

total maximum weight of vertical concentrated loads of the tandem systems

of LM1, that is,
P

iaQi(2Qik) (see Table 3.2).Qtk should be assumed to act as

a point load at any deck cross section. Where relevant, lateral forces from

skew braking or skidding should be taken into account. A transverse braking

force, Qtrk, equal to 25% of the longitudinal braking or acceleration force,

Q1k, should be considered to act simultaneously withQ1k at the finished car-

riageway level.

In the United States, AASHTO [1.23,1.24] recommends that for the

purpose of computing the radial force or overturning effect on wheel loads,

the centrifugal effect on live load shall be taken as the product of the axle

weights of the design truck or tandem and the factor C, taken as

C¼ f
v2

gR
ð3:17Þ

where v is the highway design speed in m/s, f is equal to 4/3 for load com-

binations other than fatigue and 1.0 for fatigue, g is gravitational acceleration

Table 3.5 Characteristic Values of Centrifugal Forces Recommended by EC1 [3.1]

Qtk¼0.2Qv (kN) If r<200 m

Qtk¼40Qv/r (kN) If 200� r�1500 m

Qtk¼0 If r>1500 m
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(9.807 m/s2), and R is radius of curvature of traffic lane in meters. Centrif-

ugal forces shall be applied horizontally at a distance of 1.8 m above the road-

way surface.

3.5 OTHER LOADS ON STEEL AND STEEL-CONCRETE
COMPOSITE BRIDGES

3.5.1 Fatigue Loads
Steel and steel-concrete composite bridges are subjected to a stress spectrum

and consequently fatigue owing to running traffic on the bridges. The stress

spectrum depends on the geometry of the trains or trucks, the axle loads, the

axle spacing, the composition of the traffic, and its dynamic effects. The cur-

rent codes of practice specify fatigue load models as guidance for the assess-

ment of fatigue load effects on highway and railway steel bridges.

3.5.1.1 Fatigue Loads on Highway Bridges
Specified in EC1 [3.1] are five fatigue load models of vertical forces on high-

way bridges. Fatigue Load Models 1, 2, and 3 are intended to be used to

determine the maximum and minimum stresses resulting from the possible

load arrangements on the bridge of any of these models. Fatigue Load

Models 4 and 5 are intended to be used to determine stress range spectra

resulting from the passage of motortrucks on the bridge. Fatigue Load

Models 1 and 2 are intended to be used to check whether the fatigue life

may be considered as unlimited when a constant stress amplitude fatigue

limit is given. Therefore, they are appropriate for steel constructions and

may be inappropriate for other materials. Fatigue Load Model 1 is generally

conservative and covers multilane effects automatically. Fatigue LoadModel

2 is more accurate than Fatigue Load Model 1 when the simultaneous pres-

ence of several motortrucks on the bridge can be neglected for fatigue ver-

ifications. Fatigue Load Models 3, 4, and 5 are not numerically comparable

to Fatigue Load Models 1 and 2. Fatigue Load Model 3 may also be used for

the direct verification of designs by simplified methods. Fatigue LoadModel

4 is more accurate than Fatigue Load Model 3 for a variety of bridges and of

the traffic when the simultaneous presence of several motortrucks on the

bridge can be neglected. Fatigue Load Model 5 is the most general model,

using actual traffic data. The load values given for Fatigue Load Models 1-3

are appropriate for typical heavy traffic on European main roads or

motorways.
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A traffic category on a bridge should be defined according to EC1, for

fatigue verifications, at least, by the number of slow lane and the number

Nobs of heavy vehicles (maximum gross vehicle weight more than

100 kN), observed or estimated, per year and per slow lane (i.e., a traffic lane

used predominantly by motortrucks). The traffic categories and values may

be defined in the National Annex. Indicative values for Nobs are given in

Table 3.6 for a slow lane when using Fatigue Load Models 3 and 4. On each

fast lane (i.e., a traffic lane used predominantly by cars), additionally, 10% of

Nobs may be taken into account. For the assessment of general action effects

(e.g., in main girders), all fatigue load models should be placed centrally on

the previously defined notional lanes. For the assessment of local action

effects (e.g., in slabs), the models should be centered on notional lanes

assumed to be located anywhere on the carriageway. According to EC1,

fatigue Load Model 1 (similar to LM1) has the configuration of the charac-

teristic Load Model 1, with the values of the axle loads equal to 0.7Qik and

the values of the uniformly distributed loads equal to 0.3qik and (unless oth-

erwise specified) 0.3qrk. The load values for Fatigue LoadModel 1 are similar

to those defined for the Frequent Load Model. However, adopting the

Frequent Load Model without adjustment would have been excessively

conservative in comparison with the other models, especially for large

loaded areas. The maximum and minimum stresses should be determined

from the possible load arrangements of the model on the bridge. Fatigue

Load Model 2 consists of a set of idealized motortrucks, called “frequent”

motortrucks, to be used as defined in the succeeding text. Each “frequent

motortruck” is defined by the number of axles and the axle spacing, the fre-

quent load of each axle, the wheel contact areas, and the transverse distance

between wheels (see Tables 3.7–3.9). The maximum and minimum stresses

Table 3.6 Indicative Number of Heavy Vehicles Expected Per Year and Per Slow Lane
Specified in EC1 [3.1]

Traffic Categories

Nobs Per
year and Per
Slow Lane

1 Roads and motorways with two or more lanes per direction

with high flow rates of motortrucks

2.0�106

2 Roads andmotorways with medium flow rates of motortrucks 0.5�106

3 Main roads andmotorways with low flow rates of motortrucks 0.125�106

4 Local roads andmotorways with low flow rates of motortrucks 0.05�106
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should be determined from the most severe effects of different motortrucks,

separately considered, traveling alone along the appropriate lane. Fatigue

Load Model 3 (single-vehicle model) consists of four axles, each of them

having two identical wheels. The geometry is shown in Figure 3.14. The

weight of each axle is equal to 120 kN, and the contact surface of each wheel

is a square of side 0.4 m. The maximum and minimum stresses and the stress

ranges for each cycle of stress fluctuation, that is, their algebraic difference,

resulting from the transit of the model along the bridge should be calculated.

Fatigue LoadModel 4 (set of “standard” motortrucks) consists of sets of stan-

dardmotortrucks, which together produce effects equivalent to those of typ-

ical traffic on European roads. A set of motortrucks appropriate to the traffic

mixes predicted for the route as defined in Tables 3.7 and 3.8 should be

taken into account. Each standard motortruck is defined by the number

of axles and the axle spacing, the equivalent load of each axle, the wheel con-

tact areas, and the transverse distances between wheels. The calculations

should be based on the following procedure: the percentage of each standard

Table 3.7 Set of Frequent Motortrucks Specified in EC1 [3.1]
1 2 3 4

Motortruck silhouette
Axle spacing
(m)

Frequent axle loads
(kN)

Wheel type
(see table 3.9)

4.5 90 A
190 B

4.2 80 A
1.3 140 B

140 B
3.2 90 A

5.3 180 B
1.3 120 C

1.3 120 C
120 C

3.4 90 A
6.0 190 B

1.8 140 B

140 B
4.8 90 A

3.6 180 B
4.4 120 C

1.3 110 C
110 C
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Table 3.8 Set of Equivalent Motortrucks Specified in EC1 [3.1]
Vehicle Type Traffic Type

1 2 3 4 5 6 7
Long Distance Medium Distance Local Traffic

Motortrucks
Axle spacing
(m)

Equivalent axle
loads (kN)

Motortruck
percentage

Motortruck
percentage

Motortruck
percentage Wheel type

4.5 70 20.0 40.0 80.0 A
130 B

4.2 70 5.0 10.0 5.0 A

1.3 120 B
120 B

3.2 70 50.0 30.0 5.0 A
5.3 150 B

1.3 90 C
1.3 90 C

90 C

3.4 70 15.0 15.0 5.0 A
6.0 140 B

1.8 90 B
90 B

4.8 70 10.0 5.0 5.0 A
3.6 130 B

4.4 90 C
1.3 80 C

80 C 139
A
pplied

Loads
and

Stability
of

Steeland
Steel-Concrete

C
om

posite
Bridges



motortruck in the traffic flow, the total number of vehicles per year to be

considered for the whole carriagewayNobs should be defined, and each stan-

dard motortruck is considered to cross the bridge in the absence of any other

vehicle. Fatigue Load Model 5 (based on recorded road traffic data) consists

of the direct application of recorded traffic data, supplemented, if relevant,

by appropriate statistical and projected extrapolations.

Table 3.9 Definition of Wheels and Axles According to EC1 [3.1]
Wheel/Axle Type Geometric Definition

A

X

2.00 m

320  320  

220 mm 220 mm

mmmm

B

X

2.00 m

320  320  

220 
mm 

220 
mm 

220 
mm 

220 
mm 

mm mm 

C

X

2.00 m

320
mm

320  
mm

270 mm 270 mm

Key 

w1 Lane width 

X Bridge longitudinal axis 

1.2 m 6.0 m 1.2 m 

X

0.4 m

0.4 m2.0 m w1

Figure 3.14 Fatigue Load Model 3 according to EC1 [3.1].
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In the United States, AASHTO [1.23,1.24] specifies that the fatigue

load shall be one design truck or axles but with a constant spacing of

9000 mm between the 145,000 N axles, with the dynamic load allowance

applied to the fatigue load. The frequency of the fatigue load shall be taken

as the single-lane average daily truck traffic (ADTTSL). This frequency

shall be applied to all components of the bridge, even to those located

under lanes that carry a lesser number of trucks. AASHTO specifies that

in the absence of better information, the single-lane average daily truck

traffic shall be taken as

ADTTSL¼ p�ADTT ð3:18Þ
where ADTT is the number of trucks per day in one direction averaged over

the design life and p is the fraction of truck traffic in a single lane, which is

equal to 1.00, 0.85, and 0.8 for the number of lanes available to trucks equal

to 1, 2, and 3 or more, respectively.

3.5.1.2 Fatigue Loads on Railway Bridges
Fatigue loads on railway steel bridges are also covered by EC1 [3.1] that

recommends that a fatigue damage assessment shall be carried out for all

structural elements of railway bridges subjected to fluctuations of stress.

For normal traffic based on the characteristic values of Load Model 71,

including the dynamic factor F, the fatigue assessment should be carried

out on the basis of the traffic mixes, “standard traffic,” “traffic with

250 kN axles,” or “light traffic mix” depending on whether the structure

carries mixed traffic, predominantly heavy freight traffic, or lightweight

passenger traffic in accordance with the requirements specified. Details

of the service trains and traffic mixes considered and the dynamic enhance-

ment to be applied are given in Annex D of EC1. Each of the mixes is based

on an annual traffic tonnage of 25�106 t passing over the bridge on each

track. For bridges carrying multiple tracks, the fatigue loading shall be

applied to a maximum of two tracks in the most unfavorable positions.

The fatigue damage should be assessed over the design working life.

The design working life may be specified in the National Annex and

100 years is recommended. Vertical railway traffic actions including

dynamic effects and centrifugal forces should be taken into account in

the fatigue assessment. Generally, nosing and longitudinal traffic actions

may be neglected in the fatigue assessment.
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3.5.2 Dynamic Loads
3.5.2.1 General
The static stresses and deformations (and associated bridge deck acceleration)

induced in a bridge are increased and decreased under the effects of moving

traffic by the following three main parameters specified in EC1 [3.1]: The

first parameter is the rapid rate of loading due to the speed of traffic crossing

the structure and the inertial response (impact) of the structure. The second

parameter is the passage of successive loads with approximately uniform

spacing that can excite the structure and under certain circumstances create

resonance (where the frequency of excitation (or a multiple thereof) matches

a natural frequency of the structure (or a multiple thereof), there is a possi-

bility that the vibrations caused by successive axles running onto the struc-

ture will be excessive). Finally, the variations in wheel loads result from track

or vehicle imperfections, including wheel irregularities. For determining the

effects (stresses, deflections, bridge deck acceleration, etc.) of railway traffic

actions, the aforementioned parameters shall be taken into account. Accord-

ing to EC1, the main factors that influence dynamic behavior are the speed

of traffic across the bridge; the span L of the structural element and the influ-

ence line length for deflection of the element being considered; the mass of

the structure; the natural frequencies of the whole structure and relevant ele-

ments of the structure and the associated mode shapes (eigenforms) along the

line of the track; the number of axles, axle loads, and the spacing of axles; the

damping of the structure; vertical irregularities in the track; the unsprung/

sprung mass and suspension characteristics of the vehicle; the presence of

regularly spaced supports of the deck slab and/or track (cross girders,

sleepers, etc.); vehicle imperfections (wheel flats, out of round wheels, sus-

pension defects, etc.); and the dynamic characteristics of the track (ballast,

sleepers, track components, etc.).

3.5.2.2 Dynamic Loads on Railway Bridges
Looking at dynamic loads acting on railway bridges, as an example, EC1

[3.1] provides some requirements for determining whether a static or a

dynamic analysis is required based on V, which is the maximum line speed

at the site in km/h; L, which is the span length in meters; n0, which is the first

natural bending frequency of the bridge loaded by permanent actions in Hz;

nT, which is the first natural torsional frequency of the bridge loaded by per-

manent actions in Hz; v, which is the maximum nominal speed in m/s; and

(v/n0)lim, which is given in Annex F of EC1. The requirements are valid for
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simply supported bridges with only longitudinal line beam or simple plate

behavior with negligible skew effects on rigid supports. A dynamic analysis

is required where the frequent operating speed of a real train equals a reso-

nant speed of the bridge. For bridges with a first natural frequency n0 within

the limits given by Figure 3.15 and a maximum line speed at the site not

exceeding 200 km/h, a dynamic analysis is not required. For bridges with

a first natural frequency n0 exceeding the upper limit (1) in Figure 3.15, a

dynamic analysis is required. For a simply supported bridge subjected to

bending only, the natural frequency may be estimated using the following

formula as specified in EC1:

n0¼ 17:75ffiffiffiffiffi
d0

p ð3:19Þ

where n0 is in Hz and d0 is the deflection at midspan due to permanent

actions in millimeters and is calculated, using a short-term modulus for
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Key 
(1) Upper limit of natural frequency 
(2) Lower limit of natural frequency 

(1)

(2)

Figure 3.15 Limits of bridge natural frequency n0 (Hz) as a function of L (m)
recommended by EC1 [3.1].
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steel-concrete composite bridges, in accordance with a loading period

appropriate to the natural frequency of the bridge.

According to EC1, the dynamic factor F takes account of the dynamic

magnification of stresses and vibration effects in the structure but does not

take account of resonance effects. Where a dynamic analysis is required,

there is a risk that resonance or excessive vibration of the bridge may occur

(with a possibility of excessive deck accelerations leading to ballast instability

and excessive deflections and stresses). For such cases, a dynamic analysis shall

be carried out to calculate impact and resonance effects. Quasi-static

methods that use static load effects multiplied by the dynamic factor F
are unable to predict resonance effects from high-speed trains. Dynamic

analysis techniques, which take into account the time-dependent nature

of the loading from the high-speed load model (HSLM) and real trains

(e.g., by solving equations of motion), are required for predicting dynamic

effects at resonance. Bridges carrying more than one track should be consid-

ered without any reduction of dynamic factor F. The dynamic factor F that

enhances the static load effects under Load Models 71, SW/0, and SW/2

shall be taken as either F2 or F3. Generally, the dynamic factor F is taken

as either F2 or F3 according to the quality of track maintenance as follows:

(a) For carefully maintained track,

F2¼ 1:44ffiffiffiffiffiffi
LF

p �0:2
+ 0:82 with : 1:00�F2� 1:67 ð3:20Þ

(b) For track with standard maintenance,

F3 ¼ 2:16ffiffiffiffiffiffi
LF

p �0:2
+ 0:73 with : 1:0�F3� 2:0 ð3:21Þ

where LF is the “determinant” length (length associated with F) defined in

Table 3.10 in meters. The dynamic factors were established for simply sup-

ported girders.The lengthLF allows these factors to be used for other structural

memberswithdifferent support conditions. If nodynamic factor is specified,F3

shall beused.Thedynamic factorF shall notbeusedwith the loadingdue to real

trains, the loading due to fatigue trains, HSLM, and the loadmodel “unloaded

train.” The determinant lengths LF to be used are given in Table 3.10.

3.5.3 Accidental Forces
3.5.3.1 General
Steel and steel-concrete composite bridges may be subjected to forces result-

ing from accidental situations. The situations comprise vehicle collision with
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bridge piers, soffit of bridge, or decks; the presence of heavy wheels or vehi-

cle on footways; and vehicle collisionwith curbs, vehicle parapets, and struc-

tural components. Since the main objective of this book is finite element

analysis and design of steel and steel-concrete composite bridges, accidental

forces can be easily applied as a load case and their effects on the bridges can

be assessed.

3.5.3.2 Collision Forces from Vehicles Under the Bridge
Forces due to the collision of abnormal height or aberrant road vehicles with

piers or with the supporting members of a bridge should be taken into

account. The National Annex may define rules to protect the bridge from

vehicular collision forces. When vehicular collision forces are to be taken

Table 3.10 Determinant Lengths LF According to EC1 [3.1]
Case Structural Element Determinant Length LF

Steel deck plate: closed deckwith ballast bed (orthotropic deck plate) (for local and
transverse stresses)

Deck with cross girders and continuous longitudinal ribs

1.1 Deck plate (for both directions) Three times the cross

girder spacing

1.2 Continuous longitudinal ribs (including small

cantilevers up to 0.50 m)

Three times the cross

girder spacing

1.3 Cross girders Twice the length of the

cross girder

1.4 End cross girders 3.6 m

Deck plate with cross girders only

2.1 Deck plate (for both directions) Three times the cross

girder spacing

2.2 Cross girders Cross girder spacing

+3 m

2.3 End cross girders 3.6 m

Steel grillage: open deck without ballast bed (for local and transverse stresses)

3.1 Rail bearers:

– As an element of a continuous grillage

– Simply supported

Three times the cross

girder spacing

Cross girder spacing

+3 m

3.2 Cantilever of rail bearer 3.6 m

3.3 Cross girders (as part of cross girder/continuous

rail bearer grillage)

Twice the length of the

cross girder

3.4 End cross girders 3.6 m
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into account (e.g., with reference to a safety distance between piers and the

edge of the carriageway), the magnitude and location of vehicular collision

forces and also the limit states should be considered. For stiff piers, the min-

imum values recommended in EC1 [3.1] are an impact force of 1000 kN in

the direction of vehicle travel or 500 kN perpendicular to that direction

with height above the level of adjacent ground surface equal to 1.25 m.

3.5.3.3 Collision Forces on Decks
Vehicle collision forces on bridge decks should also be specified as recom-

mended in EC1. The National Annex may define the collision force on

decks, possibly in relation to vertical clearance and other forms of protection.

Collision loads on bridge decks and other structural components over roads

may vary widely depending on structural and nonstructural parameters and

their conditions of applicability. The possibility of collision by vehicles hav-

ing an abnormal or illegal height may have to be envisaged and a crane

swinging up while a vehicle is moving. Preventive or protective measures

may be introduced as an alternative to designing for collision forces.

3.5.3.4 Actions from Vehicles on the Bridge
Collision forces from vehicles on footways and cycle tracks on road bridges

are also covered by EC1 [3.1]. If a safety barrier of an appropriate contain-

ment level is provided, wheel or vehicle loading beyond this protection need

not be taken into account. Where the protection mentioned is provided,

one accidental axle load corresponding to aQ2Q2k should be so placed

and oriented on the unprotected parts of the deck so as to give the most

adverse effect adjacent to the safety barrier as shown in Figure 3.16. This axle

load should not be taken into account simultaneously with any other vari-

able load on the deck. A single wheel alone should be taken into account if

geometric constraints make a two-wheel arrangement impossible.

3.5.3.5 Collision Forces on Curbs
The action from vehicle collision with curbs or pavement upstands should

be taken as a lateral force equal to 100 kN acting at a depth of 0.05 m below

the top of the curb, following the guidelines of EC1. This force should be

considered as acting on a line 0.5 m long and is transmitted by the curbs to

the structural members supporting them. In rigid structural members, the

load should be assumed to have an angle of dispersal of 45�. When unfavor-

able, a vertical traffic load acting simultaneously with the collision force

equal to 0.75aQ1Q1k (see Figure 3.17) should be taken into account.
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Figure 3.16 Examples showing locations of loads from vehicles on footways and cycle
tracks of road bridges according to EC1 [3.1].
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Figure 3.17 Definition of vehicle collision forces on curbs according to EC1 [3.1].
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3.5.3.6 Collision Forces on Vehicle Restraint Systems
EC1 [3.1] recommends that horizontal and vertical forces transferred to the

bridge deck by vehicle restraint systems should be taken into account for

structural design. EC1 recommends four classes of values for the transferred

horizontal force as given in Table 3.11. The horizontal force, acting trans-

versely, may be applied 100 mm below the top of the selected vehicle

restraint system or 1.0 m above the level of the carriageway or footway,

whichever is the lower, and on a line 0.5 m long. The values of the hori-

zontal forces given for the classes A-D derive from measurements during

collision tests on real vehicle restraint systems used for bridges. There is

no direct correlation between these values and performance classes of vehicle

restraint systems. The proposed values depend rather on the stiffness of the

connection between the vehicle restraint system and the curb or the part of

the bridge to which it is connected. A very strong connection leads to the

horizontal force given for class D. A very weak connection may lead to the

horizontal force given for class A. The vertical force acting simultaneously

with the horizontal collision force may be defined in the National Annex.

The recommended values may be taken equal to 0.75aQ1Q1k. The calcula-

tions taking account of horizontal and vertical forces may be replaced, when

possible, by detailing measures (for example, design of reinforcement). The

structure supporting the vehicle parapet should be designed to sustain locally

an accidental load effect corresponding to at least 1.25 times the character-

istic local resistance of vehicle parapet (e.g., resistance of the connection of

the parapet to the structure) and need not be combined with any other var-

iable load.

3.5.3.7 Collision Forces on Structural Members
Vehicle collision forces on unprotected structural members above or beside

the carriageway levels should be taken into account as recommended by

EC1. The code recommends that the forces may act 1.25 m above the

Table 3.11 Four Classes for the Horizontal Force Transferred by
Vehicle Restraint Systems Recommended by EC1 [3.1]
Recommended Class Horizontal Force (kN)

A 100

B 200

C 400

D 600
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carriageway level. The forces should not be considered to act simultaneously

with any variable load. For some intermediate members where damage to

one of which would not cause collapse (e.g., hangers or stays), smaller forces

may be defined for the studied bridge.

3.5.3.8 Actions on Pedestrian Parapets
Forces that are transferred to the bridge deck by pedestrian parapets should

be taken into account in structural design as variable loads and defined,

depending on the selected loading class of the parapet as stated in EC1.

For loading classes of pedestrian parapets, class C is the recommended min-

imum class. A line force of 1.0 kN/m acting, as a variable load, horizontally

or vertically on the top of the parapet is a recommended minimum value for

footways or footbridges. For service side paths, the recommended minimum

value is 0.8 kN/m. For the design of the supporting structure, if pedestrian

parapets are adequately protected against vehicle collision, the horizontal

actions should be considered as simultaneous with the uniformly distributed

vertical loads. Where pedestrian parapets cannot be considered as adequately

protected against vehicle collisions, the supporting structure should be

designed to sustain an accidental load effect corresponding to 1.25 times

the characteristic resistance of the parapet, exclusive of any variable load.

3.5.4 Actions on Footways, Cycle Tracks, and Footbridges
Load models applicable to footways, cycle tracks, and footbridges are also

covered by EC1. The models comprise a uniformly distributed load qfk
and a concentrated load Qfwk that should be used for road and railway brid-

ges and for footbridges, where relevant. All other variable actions and actions

for accidental design situations defined in this section are intended only for

footbridges. EC1 also specifies that for large footbridges (for example, more

than 6 m width), load models defined in this section may not be appropriate

and then complementary load models, with associated combination rules,

may have to be defined for the individual project. Indeed, various human

activities may take place on wide footbridges. Models and representative

values given in this section should be used for serviceability and ultimate

limit state calculations excluding fatigue limit states. EC1 specifies that

the imposed loads defined in this section result from pedestrian and cycle

traffic, minor common construction and maintenance loads (e.g., service

vehicles), and accidental situations. These loads give rise to vertical and hor-

izontal and static and dynamic forces. Loads due to cycle traffic are generally

much lower than those due to pedestrian traffic, and the values given in this
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section are based on the frequent or occasional presence of pedestrians on

cycle lanes. Special considerationmay need to be given to loads due to horses

or cattle for individual projects. The load models defined in this section do

not describe actual loads. They have been selected so that their effects (with

dynamic amplification included where mentioned) represent the effects of

actual traffic. Actions for accidental design situations due to collision should

be represented by static equivalent loads. Loads on footbridges may differ

depending on their location and on the possible traffic flow of some vehicles.

According to EC1, the same models should be used for pedestrian and cycle

traffic on footbridges, on the areas of the deck of road bridges limited by

pedestrian parapets and not included in the carriageway, and on the foot-

paths of railway bridges. Other appropriate models should be defined for

inspection gangways within the bridges and for platforms on railway bridges.

The recommended models, to be used separately in order to get the most

unfavorable effects, are a uniformly distributed load of 2 kN/m2 and a con-

centrated load of 3 kN applicable to a square surface of 0.20�0.20 m2.

Characteristic loads are intended for the determination of pedestrian or cycle

track static load effects associated with ultimate limit state verifications and

particular serviceability verifications.

According to EC1, three models should be taken into account as relevant

on footways, cycle tracks, and footbridges. They consist of a uniformly dis-

tributed load qfk, a concentrated load Qfwk, and loads representing service

vehicles Qserv. For road bridges supporting footways or cycle tracks, a uni-

formly distributed load qfk should be defined as shown in Figure 3.18. The

recommended value is qfk¼5 kN/m2. For the design of footbridges, a

uniformly distributed load qfk should be defined and applied only in the

qfk

Figure 3.18 Characteristic load on a footway (or cycle track) according to EC1 [3.1].
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unfavorable parts of the influence surface, longitudinally and transversally.

The characteristic value of the concentrated loadQfwk should be taken equal

to 10 kN acting on a square surface of side 0.10 m. Finally, when service

vehicles are to be carried on a footbridge or footway, one service vehicle

Qserv shall be taken into account. This vehicle may be a vehicle for main-

tenance, emergencies (e.g., ambulance and fire), or other services. The char-

acteristics of this vehicle (axle weight and spacing and contact area of

wheels), the dynamic amplification, and all other appropriate loading rules

may be defined for the individual bridge.

The horizontal forces for footbridges are also specified in EC1. A hor-

izontal forceQflk should be taken into account, acting along the bridge deck

axis at the pavement level, as defined in EC1. The characteristic value of the

horizontal force should be taken equal to the greater than 10 percent of the

total load corresponding to the uniformly distributed load and 60 percent of

the total weight of the service vehicle. The horizontal force is considered as

acting simultaneously with the corresponding vertical load and in no case

with the concentrated load Qfwk. EC1 states that this force is normally suf-

ficient to ensure the horizontal longitudinal stability of footbridges. It does

not ensure horizontal transverse stability, which should be ensured by con-

sidering other actions or by appropriate design measures. Accidental design

situations for footbridges are also covered by EC1. Such situations are due to

road traffic under the bridge (i.e., collision) or the accidental presence of a

heavy vehicle on the bridge. Dynamic models of pedestrian loads are also

specified in EC1.

3.5.5 Thermally Induced Loads
Temperature changes in bridges and their accompanied forces induced on

the bridges are covered by EC1 (BS EN 1991-5) [3.3]. For the purposes

of this part, steel and steel-concrete composite bridge decks are grouped into

three types. Type 1 comprises steel bridges with steel decks supported by

steel box girder or steel truss or plate girder main structural supporting sys-

tems (Figure 3.19). Type 2 comprises bridges with composite decks. Type 3

comprises bridges with concrete decks. Representative values of thermal

actions should be assessed by the uniform temperature component and

the temperature difference component.Where a horizontal temperature dif-

ference needs to be considered, a linear temperature difference component

may be assumed in the absence of other information. The uniform temper-

ature component depends on the minimum and maximum temperature that
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a bridge will achieve. This results in a range of uniform temperature changes,

which, in an unrestrained structure, would result in a change in element

length. The following effects should be taken into account: the restraint

of associated expansion or contraction due to the type of construction

(e.g., portal frame, arch, and elastomeric bearings); the friction at roller or

sliding bearings; nonlinear geometric effects (second-order effects); and,

for railway bridges, the interaction effects between the track and the bridge

due to the variation of the temperature of the deck and of the rails that may

induce supplementary horizontal forces in the bearings (and supplementary

forces in the rails). Minimum shade air temperature (Tmin) and maximum

shade air temperature (Tmax) for the site shall be derived from isotherms.

The minimum and maximum uniform bridge temperature components

Te.min and Te.max should be determined. EC1 specifies the recommended

values for Te.min and Te.max.

EC1 [3.3] states that characteristic values of minimum and maximum

shade air temperatures for the site location shall be obtained, for example, from

nationalmaps of isotherms. Information onminimum andmaximum shade air

temperatures to be used in a country may be found in its National Annex.

Elevation

Flange Web StiffenerA 
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End post 
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t

Figure 3.19 Definition of symbols for steel plate girders.
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These characteristic values should represent shade air temperatures for mean

sea level in an open country with an annual probability exceeding 0.02.

Where an annual probability exceeding 0.02 is deemed inappropriate, the

minimum shade air temperatures and the maximum shade air temperatures

should be modified in accordance with Annex A of EC1 [3.3]. The values

of minimum and maximum uniform bridge temperature components for

restraining forces shall be derived from the minimum (Tmin) and maximum

(Tmax) shade air temperatures. The initial bridge temperature To at the time

that the structure is restrained may be taken from Annex A of EC1 [3.3] for

calculating contraction down to the minimum uniform bridge temperature

component and expansion up to the maximum uniform bridge temperature

component. Thus, the characteristic value of the maximum contraction range

of the uniform bridge temperature component DTN,con should be taken as

DTN,con ¼To�Te:min ð3:22Þ
and the characteristic value of the maximum expansion range of the uniform

bridge temperature component DTN,exp should be taken as

DTN,exp¼Te:max�To ð3:23Þ
The overall range of the uniform bridge temperature component is

expressed as follows:

DTN ¼Te:max�Te:min ð3:24Þ
For bearings and expansion joints, the National Annex may specify the

maximum expansion range of the uniform bridge temperature component

and the maximum contraction range of the uniform bridge temperature

component, if no other provisions are required. The recommended values

are (DTN,exp+20) �C and (DTN,con+20) �C, respectively. If the tempera-

ture at which the bearings and expansion joints are set is specified, then

the recommended values are (DTN,exp+10) �C and (DTN,con+10) �C,
respectively. EC1 [3.3] states that for the design of bearings and expansion

joints, the values of the coefficient of expansion given inAnnexC (Table C.1

of EC1 [3.3]) may be modified if alternative values have been verified by

tests or more detailed studies.

According to EC1 [3.3], over a prescribed time period, heating and cool-

ing of a bridge deck’s upper surface will result in a maximum heating (top

surface warmer) and a maximum cooling (bottom surface warmer) temper-

ature variation. The vertical temperature difference may produce effects

within a structure due to restraint of free curvature due to the form of
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the structure (e.g., portal frame and continuous beams), friction at rotational

bearings, and nonlinear geometric effects (second-order effects). EC1 [3.3]

specifies two approaches for vertical linear component (Approaches 1 and 2).

In Approach 1, the effect of vertical temperature differences should be con-

sidered by using an equivalent linear temperature difference component

with DTM,heat and DTM,cool. These values should be applied between the

top and the bottom of the bridge deck. Values of DTM,heat and DTM,cool

to be used in a country may be found in its National Annex. Recommended

values for DTM,heat and DTM,cool are given in Table 3.12.

In Approach 2, vertical temperature components with nonlinear effects

should be considered by including a nonlinear temperature difference com-

ponent. Values of vertical temperature differences for bridge decks to be

used in a country may be found in its National Annex. Recommended

values are given in EC1 [3.3] and are valid for 40 mm surfacing depths

for deck type 1 and 100 mm for deck types 2 and 3. For other depths of sur-

facing, see Annex B of EC1 [3.3]. Vertical temperature differences for bridge

decks depends on “heating,” which refers to conditions such that solar radi-

ation and other effects cause a gain in heat through the top surface of the

bridge deck, and “cooling,” which refers to conditions such that heat is lost

from the top surface of the bridge deck as a result of reradiation and other

effects. In general, the temperature difference component need only be con-

sidered in the vertical direction. In particular cases, however (for example,

when the orientation or configuration of the bridge results in one side being

more highly exposed to sunlight than the other side), a horizontal temper-

ature difference component should be considered. TheNational Annexmay

specify numerical values for the temperature difference. If no other informa-

tion is available and no indications of higher values exist, 5 �C may be

recommended as a linear temperature difference between the outer edges

Table 3.12 Values of Linear Temperature Difference Component for Different Types of
Bridge Decks for Road, Foot, and Railway Bridges Recommended by EC1 [3.3]

Type of Deck
Top Warmer than Bottom Bottom Warmer than Top

DTM,heat (�C) DTM,cool (�C)

Type 1: steel deck 18 13

Type 1: composite deck 15 18

Type 1: concrete deck

Concrete box girder 10 5

Concrete beam 15 8

Concrete slab 15 8
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of the bridge independent of the width of the bridge. EC1 [3.3] recom-

mends that care should be exercised in the design of large concrete box

girder bridges where significant temperature differences can occur between

the inner and outer web walls of such structures. The National Annex may

specify numerical values for the temperature difference. The recommended

value for a linear temperature difference is 15 �C.

3.6 LOAD COMBINATIONS

3.6.1 General
The different loads acting on steel and steel-concrete composite bridges,

previously highlighted, should be grouped and superimposed to determine

the worst case of loading that induce highest straining actions and conse-

quently stresses at critical sections of the bridges. Grouping of the different

loads acting on the bridges is commonly known as load combinations. The

load combinations are dependent on the approaches adopted to design the

bridge components, for example, allowable (permissible) stress design, limit

state design, plastic design, and load and resistance factored design. The

methods of design will be highlighted in the succeeding sections; however,

in general, the concept of grouping different loads acting on the bridge is

based on multiplying nominal or characteristic values of loads by partial

safety factors to obtain the design value of the load. When several loads

are to be grouped or combined, the partial safety factors should be reduced

from their values for individual application of the loads in order to attain the

same probability of occurrence of the combination as that of the individual

loads.

3.6.2 Groups of Traffic Loads for Highway Bridges
Let us look at the grouping of traffic loads for highway bridges adopted in

Europe, which is addressed in EC1 [3.1]. The code recommends that the

simultaneity of the loading systems (Load Model 1, Load Model 2, Load

Model 3, Load Model 4, and horizontal forces) and the loads of footways

should be taken into account by considering the groups of loads defined

in Table 3.13 specified the code. Each of these groups of loads, which are

mutually exclusive, should be considered as defining a characteristic action

for combination with nontraffic loads.The frequent action should consist

only of either the frequent values of LM1 or the frequent value of LM2
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Table 3.13 Assessment of Groups of Traffic Loads (Characteristic Values of the Multicomponent Action) Specified in EC1 [3.1]

Carriageway
Footways and Cycle
Tracks

Load Type Vertical Forces Horizontal Forces Vertical Forces Only

Load system
LM1 (TS and
UDL systems)

LM2 (single
axle)

LM3 (special
vehicles)

LM4 (crowd
loading)

Braking and
acceleration
forces

Centrifugal and
transverse forces

Uniformly distributed
load

Groups

of

loads

gr1a Characteristic

values

Combination value

gr1b Characteristic

value

gr2 Frequent

values

Characteristic

value

Characteristic

value

gr3 Characteristic value

gr4 Characteristic

value

Characteristic value

gr5 See Annex A Characteristic

value



or the frequent values of loads on footways or cycle tracks, without any

accompanying component, as defined in Table 3.14 specified in the code.

In the United States, AASHTO [1.24] adopts the load and resistance fac-

tor design (LRFD) methodology, where the total factored force effect shall

be taken as

Q¼
X

�igiQi ð3:25Þ
where �i is the load modifier, which is a factor relating to ductility, redun-

dancy, and operational importance; gi are load factors specified in Tables 3.15
and 3.16 proposed by the specification; and Qi are force effects from loads.

The loads considered are classified as permanent and transient loads and

forces. The permanent loads comprise downdrag (DD), dead loads of

structural components and nonstructural attachments (DC), dead loads of

wearing surfaces and utilities (DW), horizontal earth pressure load (EH),

and accumulated locked-in force effects resulting from the construction pro-

cess, including secondary forces from posttensioning (EL), earth surcharge

load (ES), and vertical pressure from dead load of earth fill (EV). On the

other hand, transient loads comprise vehicular braking force (BR), vehicular

centrifugal force (CE), creep (CR), vehicular collision force (CT), earth-

quake (EQ), friction (FR), ice load (IC), vehicular dynamic load allowance

(IM), vehicular live load (LL), live load surcharge, pedestrian live load (PL),

settlement (SE), shrinkage (SH), temperature gradient (TG), uniform tem-

perature (TU), water load and stream pressure (WA), wind on live load

(WL), and wind on structure (WS). According to AASHTO [1.24], in

the application of permanent loads, force effects of each of the six load types

should be computed separately. Tables 3.15 and 3.16 present the load

Table 3.14 Assessment of Groups of Traffic Loads (Frequent Values of the
Multicomponent Action) Specified in EC1 [3.1]

Carriageway
Footways and
Cycle Tracks

Load Type
Vertical Forces

Load system
LM1 (TS and
UDL systems) LM2 (Single axle)

Uniformly
distributed load

Groups of loads gr1a Frequent values

gr1b Frequent value

gr3 Frequent value
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Table 3.15 Load Combinations and Load Factors Specified in AASHTO [1.24]

Load combination

DC
DD
DW
EH
EV
ES
EL

LL
IM
CE
BR
PL
LS WA WS WL FR

TU
CR
SH TG SE Use One of These at a Time

Limit State EQ IC CT CV

STRENGTH I

(unless noted)

gp 1.75 1.00 — — 1.00 0.5/1.2 gTG gSE — — — —

STRENGTH II gp 1.35 1.00 — — 1.00 0.5/1.2 gTG gSE — — — —

STRENGTH III gp — 1.00 1.40 — 1.00 0.5/1.2 gTG gSE — — — —

STRENGTH IV

EH, EV, ES, DW

DC ONLY

gp
1.5

— 1.00 — — 1.00 0.5/1.2 — — — — — —

STRENGTH V gp 1.35 1.00 0.40 1.00 1.00 0.5/1.2 gTG gSE — — — —

EXTREME

EVENT I

gp gEQ 1.00 — — 1.00 — — — 1.0 — — —

EXTREME

EVENT II

gp 0.50 1.00 — — 1.00 — — — — 1.0 1.0 1.0

SERVICE I 1.00 1.00 1.00 0.30 1.00 1.00 0.5/1.2 gTG gSE — — — —

SERVICE II 1.00 1.30 1.00 — — 1.00 0.5/1.2 — — — — — —

SERVICE III 1.00 0.80 1.00 — — 1.00 0.5/1.2 gTG gSE — — — —

SERVICE IV 1.00 — 1.00 0.70 — 1.00 0.5/1.2 — 1.0 — — — —

FATIGUE I-LL,

IM & CE ONLY

— 1.50 — — — — — — — — — — —

FATIGUE II-LL,

IM & CE ONLY

— 0.75 — — — — — — — — — — —
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combinations and load factors adopted by AASHTO for different loads and

permanent loads, respectively.

3.6.3 Groups of Traffic Loads for Railway Bridges
The load combinations on railway bridges are also specified in EC1 [3.1]

such that the simultaneity of the loading may be taken into account by con-

sidering the groups of loads defined in Table 3.17 specified in the code. EC1

recommends that each of these groups of loads, which are mutually exclu-

sive, should be considered and applied as defining a single-variable charac-

teristic action for combination with nontraffic loads. In some cases, it is

necessary to consider other appropriate combinations of unfavorable indi-

vidual traffic actions as specified by EC0 (BS EN 1990) [3.4]. The factors

given in the table should be applied to the characteristic values of the

Table 3.16 Load Factors for Permanent Loads, gp, Specified in AASHTO [1.24]

Type of Load

Load Factor

Maximum Minimum

DC: component and attachments 1.25 0.90

DC: STRENGTH IV only 1.50 0.90

DD: downdrag, piles, a Tomlinson method 1.40 0.25

DD: downdrag, l method 1.05 0.30

DD: downdrag, drilled shafts, O’Neil and Reese (1999)

method

1.25 0.35

DW: wearing surfaces and utilities 1.50 0.65

EH: horizontal earth pressure
• Active

• At rest
• AEP for anchored walls

1.50

1.35

1.35

0.90

0.90

N/A

EL: locked-in erection stresses 1.00 1.00

EV: vertical earth pressure

• Overall stability

• Retaining walls and abutments
• Rigid buried structure

• Rigid frames
• Flexible buried structures

○ Metal box culverts and structural plate culverts

with deep corrugations

○ Thermoplastic culverts

○ All others

1.00

1.35

1.30

1.35

1.50

1.30

1.95

N/A

1.00

0.90

0.90

0.90

0.90

0.90

ES: earth surcharge 1.50 0.75
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Table 3.17 Assessment of Groups of Loads for Railway Traffic (Characteristic Values of the Multicomponent Actions) Specified in EC1 [3.1]
Number of
Tracks on
Structure Groups of Loads Vertical Forces Horizontal Forces

1 2 �3 Number

of tracks

Load

group

Loaded

track

LM71

SW/0

HSLM

SW/

2

Unloaded

train

Traction

braking

Centrifugal

force

Nosing

force

1 gr11 T1 1 1 0.5 0.5

1 gr12 T1 1 0.5 1 1

1 gr13 T1 1 1 0.5 0.5

1 gr14 T1 1 0.5 1 1

1 gr15 T1 1 1 1

1 gr16 T1 1 1 0.5 0.5

1 gr17 T1 1 0.5 1 1

2 gr21 T1

T2

1

1

1

1

0.5

0.5

0.5

0.5

2 gr22 T1

T2

1

1

0.5

0.5

1

1

1

1

2 gr23 T1

T2

1

1

1

1

0.5

0.5

0.5

0.5

2 gr24 T1

T2

1

1

0.5

0.5

1

1

1

1

2 gr26 T1

T2 1

1 1

1

0.5

0.5

0.5

0.5

2 gr26 T1

T2 1

1 0.5

0.5

1

1

1

1

� 3 gr31 T1 0.75 0.75 0.75 0.75

Dominant component action as appropriate

To be considered in designing a structure supporting one track

To be considered in designing structure supporting two tracks

To be considered in designing structure supporting three or more tracks
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different actions considered in each group. It should be noted that where

groups of loads are not taken into account, railway traffic actions shall be

combined in accordance with EC0 [3.4].

3.7 DESIGN APPROACHES

3.7.1 General
The design of steel and steel-concrete composite bridges should fulfill the

basic requirements of design, wherein, over its intended life, the bridges

should sustain the applied loads and remain fit for use. Therefore, the current

codes of practice proposed design rules and guides to ensure that the bridges,

like other structures, must have a specified strength, perform in an acceptable

manner, and be durable over the intended life. The design rules and guides

were based on two main design approaches, which are briefly highlighted

in this section. The design approaches are commonly known as allowable (per-

missible) stress design approach and limit state design approach.

3.7.2 Allowable Stress Design Approach
Earlier design rules specified in the current codes of practice were based on

allowable (permissible) stress design approach. In this design approach, a fac-

tor of safety was adopted to account for the uncertainty in the loading, in

material properties, in empirical design equations, and in the construction

process. The allowable stresses were predicted by dividing the failure stress

by the factor of safety. The failure stress may be taken as the yield stress or the

proportional limit stress of the material of construction. In this design

approach, a structural analysis could be performed to evaluate the stresses

at the specified combination of loads, which were then checked against

the specified allowable stresses. The allowable stress design approach was

commonly used in the past owing to its simplicity and safety. Because stres-

ses, and hence deformations/deflections, were kept at low levels, nonlinear-

ity of material and/or structural behavior could be neglected and working

stresses were calculated from linear elastic theories. In performing the struc-

tural analyses, stresses from various loads could be added together. However,

this design approach has some disadvantages, which are mainly due to the

use of a single factor of safety with different applied loads, and the analysis

of the structure under working loads may not provide a realistic assessment

of the behavior of the structure at failure. It should be noted that structures

designed adopting the allowable stress design approach have moderate
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stresses in service conditions, and thus, the serviceability requirements

such as deflections, cracking, slip, and deformations were not generally

critical.

3.7.3 Limit State Design Approach
By gaining better understanding of the behavior of different loads acting on

structures and material properties, which is accompanied by improved cal-

culation and construction techniques, limit state design approach replaced

the traditional allowable stress design approach in most current codes of

practice. Limit state design approach considers that the structure should sus-

tain all loads and deformations liable to occur during its construction, per-

form adequately in normal use, and have adequate durability. For most

structures, the limit states can be classified into two main states that are

the ultimate and serviceability limit states. The ultimate limit states are

related to a collapse of the whole or a substantial part of the structure.

On the other hand, the serviceability limit states are related to the disruption

of the normal use of the structure. Ultimate limit states should have a very

low probability of occurrence since they are considered failure situations.

Examples of ultimate limit states include loss of static equilibrium of a part

or the whole of the structure, loss of load-bearing capacity of a member due

to its material strength being exceeded or due to buckling, or a combination

of these two phenomena, or fatigue, and finally overall instability. While the

serviceability limit states depend on the function of the structures and for

bridges, they correspond to excessive deformation of the structure, or any

of its parts, affecting the appearance and functional use or drainage or causing

damage to nonstructural components like deck joints and surfacing; exces-

sive local damage like cracking, splitting, spalling, yielding, or slipping,

affecting appearance, use, or durability of the structure; and finally excessive

vibration causing discomfort to pedestrians or drivers.

3.7.4 Limit State Design Codes
To provide design methods in the current codes of practice achieving the

basic design requirements of structures, a reliability approach was commonly

adopted. Design values are determined such that they have a known statis-

tical probability of being achieved. The values of actions (loads) have a

known (low) probability of not being exceeded and the values for strength

have a known (high) probability level of being achieved. The design proce-

dure is then to model and evaluate the behavior of a structural model in
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order to verify that calculated effects due to the actions do not exceed the

design strength/deformation limits. The reliability approach is achieved

through the use of limit state design principles adopted nowadays in most

current codes of practice.

The design rules specified in the Eurocode are based on the limit state

design approach. According to EC0 [3.4], the design verification of the ulti-

mate limit states is governed by the following equation:

Ed�Rd ð3:26Þ
where Ed is the design value of the effects of actions (internal moment, axial

force, etc.) and Rd is the design value of the corresponding resistance. At

ultimate limit states, actions (i.e., the internal bending moments and axial

forces due to the applied loadings and displacements) are expressed in terms

of combinations of actions that can occur simultaneously. The basic expres-

sion is expressed as follows:

E
X

gG, jGk, j + gpP + gQ,1Qk,1 +
X
i>1

gQ,ic0,iQk,i

 !
ð3:27Þ

whereGk,j is the characteristic value of the jth permanent action, P is the per-

manent action caused by controlled forces or deformation (prestressing),Qk,1 is

the characteristic value of the “leading” variable action, andQk,i are the accom-

panying variable actions. The E() denotes “the effect of” and the “+” signs

denote the combination of effects due to the separate actions. Permanent

actions are self-weight (typically the weight of steel, concrete, and superim-

posed load such as surfacing and parapets); the partial factors gG applied to each

type of permanent action may be different, hence the summation term and the

j index subscript. The gp factor is related to prestressing actions and may be

ignored. The variable actions are either direct (the weight of traffic, the wind

pressure, etc.) or indirect (expansion/contraction due to temperature). The

partial factors gQ depend on the type of action and its predictability. It is

unlikely that the most adverse loading from one action will occur simulta-

neously with that due to a different action. In recognition of this, EC refers

to one action as a “leading action” and the other actions as “accompanying”;

a reduction factor c is applied to accompanying actions. In principle, each dif-

ferent action should in turn be considered as the leading action, to determine

which combination of leading and accompanying actions is the most onerous,

but for simplified highway bridge design, it may be assumed that the traffic

loading is the leading action. There are similar expressions for combinations
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of actions in accidental and seismic situations, each with a different set of partial

factors, but these are not of concern for simplified design. The design value of

resistance is given by Eurocode and its value is determined from characteristic

resistance values divided by partial factors on material strength gM.
According to EC0 [3.4], the design verification of the serviceability limit

states is governed by the following equation:

Ed �Cd ð3:28Þ
where Ed is the design value of the effects of actions in the serviceability limit

state criterion andCd is the limiting design value of the relevant criterion. At

serviceability limit state, there are in principle three combinations of actions

to consider: characteristic, frequent, and quasi-permanent. For bridges, the

characteristic combination is used for checking that no inelastic response

occurs; the frequent combination is used if deflection needs to be checked

(this includes evaluation of dynamic response). The quasi-permanent com-

bination relates to long-term effects; for bridges, provided that the appropri-

ate modulus of elasticity is used for long-term actions, this combination only

needs to be considered when determining crack widths in concrete. Only

the characteristic combination is relevant to simplified design. For the char-

acteristic loading combination, the same characteristic values of actions are

used at ultimate limit states but all the g factors are taken as unity. Thus, the

expression becomes

E
X

Gk, j +P +Qk,1 +
X
i>1

c0,iQk,i

 !
ð3:29Þ

The serviceability limit state criterion that might need to be considered

in simplified design is the limitation that stresses in steel should not exceed

the yield stress. This limitation would need to be considered if the ultimate

limit state design resistance were based on plastic bending resistance. It must

then be verified that the stress calculated elastically at serviceability limit

states does not exceed yield. No partial factor is applied to yield stress

(strictly, gM¼1).

In the United States, AASHTO [1.23] also specifies that bridges shall be

designed for specialized limit states to achieve the objectives of construct-

ability, safety, and serviceability. AASHTO adopts the load and resistance

factor design, which is based on limit state design approach. Each compo-

nent and connection in the bridge shall satisfy the following condition,

which assumes that all limit states shall be considered of equal importance:
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X
�igiQi�’Rn¼Rr ð3:30Þ

in which for loads for which a maximum value of gi is appropriate

�i ¼ �D�R�I � 0:95 ð3:31Þ
and for loads for which a minimum value of gi is appropriate

�i¼
1

�D�R�I
� 1:0 ð3:32Þ

where �i is the load modifier, which is a factor relating to ductility, redun-

dancy, and operational importance; �D is a factor relating to ductility; �R is a

factor relating to redundancy; �I is a factor relating to operational impor-

tance; gi are load factors specified in Tables 3.15 and 3.16 given by the spec-
ification; Qi are force effects from loads; f is resistance factor; Rn is the

nominal resistance; and Rr is the factored resistance (’Rn). For service

and extreme event limit states, resistance factors shall be taken as 1.0, except

for bolts. According to AASHTO [1.23], the limit states are intended to pro-

vide a buildable, serviceable bridge, capable of safely carrying design loads

for a specified lifetime. The resistances of components and connections

can be determined on the basis of inelastic behavior, although the force

effects are determined using elastic analysis. Equation (3.30) is the basis of

LRFD methodology. Assign resistance factor f¼1.0 to all nonstrength

limit states. Components and connections of a bridge shall satisfy Equa-

tion (3.30) for the applicable combinations of factored extreme force effects

as specified at each of the limit states denoted as STRENGTH I, which is

basic load combinations related to the normal vehicular use of the bridge

without wind; STRENGTH II, which is load combinations related to

the use of the bridge by owner-specified special design vehicles, evaluation

permit vehicles, or both without wind; STRENGTH III, which is load

combinations related to the bridge exposed to wind velocity exceeding

90 km/h; STRENGTH IV, which is load combination related to very high

dead load to live load force effect ratios; STRENGTH V, which is

load combination related to normal vehicular use of the bridge with wind

of 90 km/h velocity; EXTREME EVENT V, which is load combination

including earthquake; EXTREME EVENT II, which is load combination

related to ice load, collision by vessels and vehicles, and certain hydraulic

events with a reduced live load; SERVICE I, which is load combina-

tion related to the normal operational use of the bridge with a 90 km/h,

deflection control in buried metal structures, tunnel liner plate, and slope
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satiability; SERVICE II, which is load combination related to control yield-

ing of steel structures and slip of slip-critical connections due to vehicular

live load; SERVICE III, which is load combination for longitudinal analysis

related to tension in prestressed concrete superstructures with the objective

of crack control; SERVICE IV, which is load combination only to tension

in prestressed concrete structures with the objective of crack control; and

finally, FATIGUE-fatigue and fracture load combination relating to repet-

itive gravitational vehicular live load and dynamic responses under a single

design truck having specific axle spacing. As stated in AASHTO [1.23], the

load factors of various loads comprising a design load combination shall be

taken as specified in Table 3.15. For permanent force effects, the load factor

that produces the more critical combination shall be selected from

Table 3.16.

3.8 STABILITY OF STEEL AND STEEL-CONCRETE COMPOSITE
PLATE GIRDER BRIDGES

3.8.1 General
In order to design the components of steel and steel-concrete composite

bridges, it would helpful to review the design rules specified in the current

codes of practice. As an example, a review of the rules specified in EC3

[1.27,2.11] is presented in this section. However, it should be noted that

the main objective of this book is to highlight the finite element analysis

and design of steel and steel-concrete composite bridges. Therefore, the

finite element analysis results can be compared with the design results

obtained using any current code of practice. According to EC3

[1.27,2.11], the internal forces andmoments may be determined using either

elastic global analysis or plastic global analysis, with elastic global analysis

being used in all cases. Plastic global analysis may be used only where the

structure has sufficient rotation capacity at the actual locations of the plastic

hinges, whether this is in the members or in the joints. Where a plastic hinge

occurs in a member, the member cross sections should be double symmet-

rical or single symmetrical with a plane of symmetry in the same plane as the

rotation of the plastic hinge.Where a plastic hinge occurs in a joint, the joint

should either have sufficient strength to ensure the hinge remains in the

member or should be able to sustain the plastic resistance for a sufficient

rotation.

According to EC3 [1.27,2.11], elastic global analysis should be based on

the assumption that the stress-strain behavior of the material is linear,
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whatever the stress level is. Internal forces and moments may be calculated

according to elastic global analysis even if the resistance of a cross section is

based on its plastic resistance. Elastic global analysis may also be used for cross

sectioning the resistances of which are limited by local buckling. On the

other hand, plastic global analysis allows for the effects of material nonlinear-

ity in calculating the action effects of a structural system. The behavior

should be modeled by elastic-plastic analysis with plastified sections and/

or joints as plastic hinges, by nonlinear plastic analysis considering the partial

plastification of members in plastic zones, or by rigid plastic analysis neglect-

ing the elastic behavior between hinges. Plastic global analysis may be used

where the members are capable of sufficient rotation capacity to enable the

required redistributions of bending moments to develop. Also, plastic global

analysis should only be used where the stability of members at plastic hinges

can be assured. A bilinear stress-strain relationship may be used for different

structural steel grades. Rigid plastic analysis may be applied if no effects of the

deformed geometry (e.g., second-order effects) have to be considered.

The role of cross-sectional classification is to identify the extent to which

the resistance and rotation capacity of cross sections is limited by its local

buckling resistance. Four classes of cross sections are defined in EC3

[2.11]: class 1 cross sections, which are sections that can form a plastic hinge

with the rotation capacity required from plastic analysis without reduction of

the resistance; class 2 cross sections, which are sections that can develop their

plastic moment resistance, but have limited rotation capacity because of local

buckling; class 3 cross sections, which are sections in which the stress in the

extreme compression fiber of the steel member assuming an elastic distribu-

tion of stresses can reach the yield strength, but local buckling is liable to

prevent the development of the plastic moment resistance; and, finally, class

4 cross sections, which are sections in which local buckling will occur before

the attainment of yield stress in one or more parts of the cross section. In class

4 cross sections, effective widths may be used to make the necessary allow-

ances for reductions in resistance due to the effects of local buckling. The

classification of a cross section depends on the width to thickness ratio of

the parts subject to compression. Compression parts include every part of

a cross section that is either totally or partially in compression under the load

combination considered. The various compression parts in a cross section

(such as a web or flange) can, in general, be in different classes. A cross sec-

tion is classified according to the highest (least favorable) class of its compres-

sion parts. The limiting proportions for class 1, 2, and 3 compression parts are

specified in EC3. A part that fails to satisfy the limits for class 3 should be
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regarded as class 4. Where the web is considered to resist shear forces only

and is assumed not to contribute to the bending and normal force resistance

of the cross section, the cross section may be designed as class 2, 3, or 4,

depending only on the flange class. EC3 also specifies cross-sectional

requirements for plastic global analysis.

3.8.2 Bending Moment Resistance of Steel Plate Girders
Steel plate girders are used to carry larger loads over longer spans that are

possible with traditional universal rolled I-sections. Plate girders are used

in bridges mainly as main girders (see Figure 1.20) and as cross girders in

bridges having wide cross sections and bridges carrying multiple traffic

tracks. Steel plate girders are constructed by welding steel plates together

to form I-sections as shown in Figure 3.17. The web of a plate girder is rel-

atively thin, and stiffeners are required mainly to prevent buckling due to

compression from bending and shear. Stiffeners are also required at load

points, supports, and within panels. The depth of a plate girder (h) may

be taken as one-tenth to one-twelfth of the span (L/10 to L/12) for main

girders and as one-seventh to one-ninth of the span (L/7 to L/9) for cross

girders. The breadth of flange plate is made about one-fifth of the depth (h/

5). The deeper the girder is made, the smaller the flange plates required.

However, the web plate must then be made thicker or additional stiffeners

are provided to meet particular design requirements. Flange cover plates can

be kept constant throughout, curtailed as shown in Figure 3.20, or single

flange plates can be reduced in thickness when reduction in bending

moment permits as shown in Figure 3.21. Long plate girders are commonly

divided into parts to facilitate transportation process, connected at the field

of construction using splices, as shown in Figure 3.22. The figure shows typ-

ical welded and bolted splices of plate girders.

Elevation

Cover plate 
B

B

Flange plate 

Section B-B

Figure 3.20 Curtailed cover plates.
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According to EC3 [1.27,2.11], the design value of the bending moment

MEd for rolled beams and plate girders at each cross section shall satisfy

MEd

Mc,Rd

� 1:0 ð3:33Þ

whereMc,Rd is the design resistance for bending about one principal axis of a

cross section considering fastener holes calculated as follows:

Mc,Rd¼Mpl,Rd¼Wpl fy

gM0

for class 1 or 2 cross sections ð3:34Þ

Mc,Rd¼Mel,Rd¼
Wel,min fy

gM0

for class 3 cross sections ð3:35Þ

Mc,Rd¼Mel,Rd¼
Weff ,min fy

gM0

for class 4 cross sections ð3:36Þ

where Wpl is the plastic section modulus, Wel,min is the minimum elastic

section modulus, and Weff,min is the minimum effective section modulus.

Wel,min and Weff,min corresponds to the fiber with the maximum elastic

stress. Fastener holes in the tension flange may be ignored provided that

for the tension flange,

Elevation

Flange plate tapered at splice 

C

C

Flange plate 

Section C-C

Web splice 

Figure 3.21 Constant depth plate girder.

Welded splice

Full strength welds

Bolted splice(b)(a)
Figure 3.22 Welded and bolted splices of plate girders.
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Af ,net0:9fu
gM2

�Af fy

gM0

ð3:37Þ

where Af is the area of the tension flange; gM0 is a partial factor related to the

resistance of cross section whatever the class is, which is taken equal to 1.0;

and gM2 is a partial factor related to the resistance of cross section in tension

to fracture, which is equal to 1.25. Fastener holes in tension zone of the web

need not be allowed for. Fastener holes except for oversize and slotted holes

in the compression zone of the cross section need not be allowed for,

provided that they are filled by fasteners.

3.8.3 Lateral Torsional Buckling of Plate Girders in Bending
When beams and plate girders are subjected to bending moment, the com-

pression flange will be subjected to lateral torsional buckling. The lateral tor-

sional buckling of the compression flange depends on the loading

conditions, lateral restraint conditions, and geometries of the compression

flange. EC3 [1.27,2.11] recommends that a laterally unrestrained member

subject to major axis bending should be verified against lateral torsional

buckling as follows:

MEd

Mb,Rd

� 1:0 ð3:38Þ

whereMEd is the design value of the moment andMb,Rd is the design buck-

ling resistance moment. Beams with sufficient restraint to the compression

flange are not susceptible to lateral torsional buckling. In addition, beams

with certain types of cross sections, such as square or circular hollow sec-

tions, fabricated circular tubes, or square box sections, are not susceptible

to lateral torsional buckling. The design buckling resistance moment of a

laterally unrestrained beam should be taken as

Mb,Rd¼ wLTWy

fy

gM1

ð3:39Þ

where Wy is the appropriate section modulus, which is taken as Wpl,y for

class 1 or 2 cross sections or Wel,y for class 3 cross sections orWeff,y for class

4 cross sections, and wLT is the reduction factor for lateral torsional buckling.
It should be noted that, according to EC3 [1.27,2.11], determiningWy holes

for fasteners at the beam end need not be taken into account. Also, for bend-

ing members of constant cross section, the value of wLT for the appropriate

nondimensional slenderness �lLT should be determined from
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wLT¼
1

FLT +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

LT��l2LT

q but wLT� 1:0 ð3:40Þ

with FLT ¼ 0:5 1+ aLT �lLT�0:2
� �

+ �l2LT
h i

ð3:41Þ

�lLT¼
ffiffiffiffiffiffiffiffiffiffiffi
Wy fy

Mcr

s
ð3:42Þ

where aLT is an imperfection factor andMcr is the elastic critical moment for

lateral torsional buckling.Mcr is based on gross cross-sectional properties and

takes into account the loading conditions, the real moment distribution, and

the lateral restraints. The imperfection factor aLT corresponding to the

appropriate buckling curve can be taken from Table 3.18 as specified in

EC3 [2.11]. The recommendations for buckling curves are given in

Table 3.19 as specified in EC3 [2.11].

3.8.4 Shear Resistance of Steel Plate Girders
Checking the safety of steel plate girders against shear stresses is quite impor-

tant in steel and steel-concrete composite bridges. Maximum shear stresses

are normally located near the supports. Main girders made of steel plate

girders are deep and thin, which make it vulnerable to fail owing to shear

stresses, which is normally concentrate in panels near the supports.

Table 3.18 Recommended Values for Imperfection Factors for Lateral
Torsional Buckling Curves as Given by EC3 [3.5]

Buckling curve a b c d

Imperfection factor aLT 0.21 0.34 0.49 0.76

Table 3.19 Values for Lateral Torsional Buckling Curves for Different Cross
Sections Recommended by EC3 [3.5]
Cross Section Limits Buckling Curve

Rolled I-sections h/b�2

h/b>2

a

b

Welded I-sections h/b�2

h/b>2

c

d

Other cross sections – d
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According to EC3 [1.27,2.11], the design value of the shear force VEd at

each cross section shall satisfy

VEd

Vc,Rd

� 1:0 ð3:43Þ

where Vc,Rd is the design shear resistance. For plastic design, Vc,Rd is the

design plastic shear resistance Vpl,Rd calculated using Equation (3.44):

Vpl,Rd¼
Av fy=

ffiffiffi
3

p� �
gM0

ð3:44Þ

where Av is the shear area, which can be taken conservatively equal to hwt,

and hw and t are the height and plate thickness of the web, respectively.

EC3 (3.6) provides the rules for shear resistance of plates considering

shear buckling at the ultimate limit state where the panels are rectangular;

stiffeners, if any, are provided in the longitudinal or transverse direction

or both; all holes and cutouts are small; and members are of uniform cross

section. Plates with hw/t greater than
72
�
e for an unstiffened web, or 31

�
e
ffiffiffiffi
kt

p
for a stiffened web, should be checked for resistance to shear buckling and

should be provided with transverse stiffeners at the supports, where

e¼
ffiffiffiffiffi
235
fy

q
, where fy is the yield stress in MPa. hw is shown in Figure 3.19

and kt is the minimum shear buckling coefficient for the web panel as given

in Annex A of EC3 [3.5]. The National Annex will define �. The value

�¼1.2 is recommended for steel grades up to and including S460. For

higher steel grades, �¼1.0 is recommended. For unstiffened or stiffened

webs, the design resistance for shear should be taken as

Vb,Rd¼Vbw,Rd +Vbf ,Rd� �fywhwtffiffiffi
3

p
gM1

ð3:45Þ

in which the contribution from the web is given by

Vbw,Rd¼ wwfywhwtffiffiffi
3

p
gM1

ð3:46Þ

For webs with transverse stiffeners at supports only and for webs with

either intermediate transverse stiffeners or longitudinal stiffeners or both,

the factor ww for the contribution of the web to the shear buckling resistance

should be obtained from Table 3.20 according to EC3 based on the type of

end support as shown in Figure 3.23. The slenderness parameter lw
� in

Table 3.20 should be taken as
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l� ¼ 0:76

ffiffiffiffiffiffi
fyw

tcr

s
ð3:47Þ

where tcr¼ktsE and the values for kt and sE may be taken from Annex A of

EC3 [3.5].

When the flange resistance is not completely utilized in resisting the

bending moment (MEd<Mf,Rd), the contribution from the flanges Vbf,Rd

should be obtained as follows:

Vbf ,Rd¼ bf t
2
f fyf

cgM1

1� MEd

Mf,Rd

� �2
 !

ð3:48Þ

where bf and tf are taken for the flange that provides the least axial resistance,

bf being taken as not larger than 15etf on each side of the web, and Mf,Rd is

the moment of resistance of the cross section consisting of the effective area

of the flanges only calculated as follows:

Mf,Rd¼Mf,k

gM0

ð3:49Þ

c¼ a 0:25+
1:6bf t

2
f fyf

th2w fyw

� �
ð3:50Þ

Ae 

e

Rigid end post
a

No end post(a) (b) (c) Nonrigid end post

Figure 3.23 Types of end supports.

Table 3.20 Contribution from the Web ww to Shear Buckling Resistance According
to EC3 [3.6]

Rigid End Post Nonrigid End Post

�lw < 0:83=� � �
0:83=�� �lw < 1:08 0:83=�lw 0:83=�lw
�lw � 1:08 1:37= 0:7+ �lw

� �
0:83=�lw
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The verification should be performed as follows:

VEd

Vb,Rd

� 1:0 ð3:51Þ

where VEd is the design shear force including shear from torque.

3.8.5 Plate Buckling Effects Due to Direct Stresses
3.8.5.1 General
Steel plate girders are vulnerable to buckling owing to direct stresses. As an

example, plate girder panels at midspan where maximum bending moments

are expected are likely to fail due to mainly pure bending stresses. Design

rules accounting for plate buckling effects from direct stresses at the ultimate

limit state are covered by EC3 [3.5]. Rectangular panels should be provided

by stiffeners in the longitudinal or transverse direction or both to avoid plate

buckling. The resistance of plated members may be determined using the

effective areas of plate elements in compression for class 4 sections using

cross-sectional data (Aeff, Ieff, and Weff) for cross-sectional verifications

and member verifications for column buckling and lateral torsional buckling

according to EC3 [3.5]. Effectivep areas should be determined on the basis of

the linear strain distributions with the attainment of yield strain in the mid-

plane of the compression plate. In calculating longitudinal stresses, the com-

bined effect of shear lag and plate buckling should be taken into account.

The effective area Aeff should be determined assuming that the cross section

is subject only to stresses due to uniform axial compression. The effective

section modulus Weff should be determined assuming the cross section is

subject only to bending stresses. The effectivep areas of flat compression ele-

ments should be obtained using Table 4.1, given by EC3, for internal ele-

ments and Table 4.2, recommended by EC3, for outstand elements. The

effectivep area of the compression zone of a plate with the gross cross-

sectional area Ac should be obtained from the following:

For internal compression elements,

r¼ 1:0 for �lp � 0:673 ð3:52Þ

r¼
�lp�0:055 3+cð Þ

�l
2

p

� 1:0 for �lp> 0:673, where 3+cð Þ� 0

For outstand compression elements,

r¼ 1:0 for �lp � 0:748 ð3:53Þ

174 Ehab Ellobody



r¼
�lp�0:188

�l2p
� 1:0 for �lp> 0:748

where

�lp ¼
ffiffiffiffiffiffi
fy

scr

s
¼

�b=t

28:4e
ffiffiffiffiffi
ks

p ð3:54Þ

where c is the stress ratio used in Tables 4.1 and 4.2, �b is the appropriate

width, and ks is the buckling factor corresponding to the stress ratio c
and boundary conditions. For long plates, ks is given in Table 4.1 or

Table 4.2 given in EC3 [3.5] as appropriate, t is the thickness, scr is the elastic
critical plate buckling stress, and e¼

ffiffiffiffiffi
235
fy

q
, where fy is the yield stress inMPa.

According to EC3 [3.5], for aspect ratios a/b<1, a column type of buckling

may occur (see Figures 3.24 and 3.25), and the check should be performed

a

b

Figure 3.24 Definition of aspect ratio a¼a/b of rectangular plates.

Column-like behavior of an unstiffened
plate with a small aspect ratio a

Column-like behavior of plates
without longitudinal supports (a) (b)

(c)
Column-like behavior of a longitudinally
stiffened plate with a large aspect ratio a

Figure 3.25 Column-like behavior according to EC4 [3.6].
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considering the interaction between plate and column buckling using the

reduction factor rc.

3.8.5.2 Stiffened Plate Elements with Longitudinal Stiffeners
According to EC3 [3.5], for plates with longitudinal stiffeners, the effectivep

areas from local buckling of the various subpanels between the stiffeners and

the effectivep areas from the global buckling of the stiffened panel should be

accounted for. The effectivep section area of each subpanel should be deter-

mined by a reduction factor to account for local plate buckling. The stiffened

plate with effectivep section areas for the stiffeners should be checked for

global plate buckling (by modeling it as an equivalent orthotropic plate)

and a reduction factor r should be determined for overall plate buckling.

The effectivep area of the compression zone of the stiffened plate should

be taken as

Ac,eff ¼rcAc,eff,loc +
X

bedge,eff t ð3:55Þ
whereAc,eff,loc is the effective

p section areas of all the stiffeners and subpanels

that are fully or partially in the compression zone except the effective parts

supported by an adjacent plate element with the width bedge,eff (see example

in Figure 3.26). The area Ac,eff,loc should be obtained from

Ac,eff,loc¼Asl,eff +
X
c

rlocbc,loct ð3:56Þ

where
P

c applies to the part of the stiffened panel width that is in compres-

sion except the parts bedge,eff (see Figure 3.26), Asl,eff is the sum of the effec-

tivep sections of all longitudinal stiffeners with gross area Asl located in the

compression zone, bc,loc is the width of the compressed part of each subpa-

nel, and rloc is the reduction factor for each subpanel. According to EC3

b1

b1

b2

b1r2

b3

b3

b1 b2 b3

b1,edge,eff  =

Ac

Ac,eff,loc b3,edge,eff

2

2

b1r1 b2r2

2 2
b2r2

2
b3r3

22

Figure 3.26 An example of stiffened plate under uniform compression according to
EC3 [3.5].
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[3.5], in determining the reduction factor rc for overall buckling, the reduc-
tion factor for column-type buckling, which is more severe than the reduc-

tion factor than for plate buckling, should be considered. Interpolation

should be carried out between the reduction factor r for plate buckling

and the reduction factor wc for column buckling to determine rc. The
reduction of the compressed area Ac,eff,loc through rc may be taken as a uni-

form reduction across the whole cross section.

3.8.5.3 Plate-Type Behavior
The relative plate slenderness �lp of the equivalent plate specified in EC3

[3.5] is defined as

�lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bA,c fy
scr,p

s
ð3:57Þ

with bA,c¼
Ac,eff,loc

Ac

ð3:58Þ

where Ac is the gross area of the compression zone of the stiffened plate and

Ac,eff,loc is the effective area of the same part of the plate with due allowance

made for possible plate buckling of subpanels and/or stiffeners.

3.8.5.4 Column-Type Buckling Behavior
On the other hand, the elastic critical column buckling stress scr,c of an
unstiffened or stiffened plate should be taken as the buckling stress with

the supports along the longitudinal edges removed, as specified in EC3

[3.5]. For an unstiffened plate, the elastic critical column buckling stress

scr,c may be obtained from

scr,c¼ p2Et2

12 1� u2ð Þa2 ð3:59Þ

For a stiffened plate, scr,c may be determined from the elastic critical col-

umn buckling stress scr,sl of the stiffener closest to the panel edge with the

highest compressive stress as follows:

scr,sl ¼ p2EIsl,1
Asl,1a2

ð3:60Þ

where Isl,1 is the second moment of area of the gross cross section of the stiff-

ener and the adjacent parts of the plate, relative to the out-of-plane bending
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of the plate, and Asl,1 is the gross cross-sectional area of the stiffener and the

adjacent parts of the plate according to Annex A of EC3 [3.5]:

�lc ¼
ffiffiffiffiffiffiffiffi
fy

scr,c

s
for unstiffened plates ð3:61Þ

�lc¼
ffiffiffiffiffiffiffiffiffiffiffiffi
bA,c fy
scr,c

s
for stiffened plates ð3:62Þ

withbA,c ¼
Asl,1,eff

Asl,1
ð3:63Þ

whereAsl,1,eff is the effective cross-sectional area of the stiffener and the adja-

cent parts of the plate with due allowance for plate buckling detailed in

Annex A of EC3 [3.5].

The reduction factor wc should be obtained from EC3 [2.11]. For unstif-

fened plates, a¼0.21 corresponding to buckling curve a should be used. For
stiffened plates, its value should be increased to

ae¼ a+
0:09

i=e
ð3:64Þ

with i¼
ffiffiffiffiffiffiffiffiffi
Isl,1

Asl,1

s
ð3:65Þ

where e is the max of (e1, e2), which is the largest distance from the respective

centroids of the plating and the one-sided stiffener (or of the centroids of

either set of stiffeners when present on both sides) to the neutral axis of

the effective column (see Annex A of EC3 [3.5]); a¼0.34 for (curve b)

for closed section stiffeners; and a¼0.49 for (curve c) for open section

stiffeners.

3.8.5.5 Interaction Between Plate and Column Buckling
The final reduction factor rc should be obtained by interpolation between

wc and r:

rc¼ r�wcð Þx 2�xð Þ+ wc ð3:66Þ
where x¼ scr,p

scr,c
�1 but 0� x� 1 ð3:67Þ

where scr,p is the elastic critical plate buckling stress detailed in Annex A of

EC3 [3.5], scr,c is the elastic critical column buckling stress, wc is the
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reduction factor due to column buckling, and r is the reduction factor due to
plate buckling.

3.8.5.6 Verification
Member verification for uniaxial bending should be performed, according

to EC3 [3.5], as follows:

�1 ¼
NEd

fyAeff

gM0

+
MEd +NEdeN

fyWeff

gM0

� 1:0 ð3:68Þ

where Aeff is the effective cross-sectional area, eN is the shift in the position

of neutral axis, MEd is the design bending moment, NEd is the design axial

force, Weff is the effective elastic section modulus, and gM0 is the partial

factor.

3.8.6 Behavior of Steel-Concrete Composite Plate Girders
Steel-concrete composite constructions offer many advantages including

high strength, full usage of materials, high stiffness and ductility, toughness

against seismic loads, and significant savings in construction time. In addition

to the aforementioned advantages, steel-concrete composite constructions

are gaining popularity due to the higher fire resistance compared to the con-

ventional steel constructions that require additional protection against fire.

Mainly in highway bridges, it is very common to benefit from the thick con-

crete deck on top of the floor beams (see Figure 1.21) and join them together

using shear connectors to ensure that the two components act together in

resisting traffic loads. Steel is known for its higher tensile resistance, while

concrete is known for its higher compressive resistance. Therefore, joining

the two components leads to the aforementioned benefits. In addition, steel

parts are thin-walled structures, whichmake it vulnerable to local and overall

buckling failure modes. The presence of a concrete deck on top of the steel

beams eliminates lateral torsional buckling and local buckling of the top

flange of the steel girders.

3.8.6.1 Effective Width of Flanges for Shear Lag
EC4 [3.6] covers steel-concrete composite bridges. The code recommends

that allowance shall be made for the flexibility of steel or concrete flanges

affected by shear in their plane (shear lag) either by means of rigorous analysis

or by using an effective width of flange. The effective width of concrete

flanges should be determined such that when elastic global analysis is used,
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a constant effective width may be assumed over the whole of each span. This

value may be taken as the value beff,1 at midspan for a span supported at both

ends or the value beff,2 at the support for a cantilever. According to EC4

[3.6], at midspan or an internal support, the total effective width beff (see

Figure 3.27) may be determined as

beff ¼ bo +
X

bei ð3:69Þ
where b0 is the distance between the centers of the outstand shear connectors

and bei is the value of the effective width of the concrete flange on each side

of the web and taken as Le/8 (but not greater than the geometric width bi).

The value bi should be taken as the distance from the outstand shear connec-

tor to a point midway between adjacent webs, measured at middepth of the

concrete flange, except that at a free edge bi is the distance to the free edge.

The length Le should be taken as the approximate distance between points of

zero bending moment. For typical continuous composite beams, where a

moment envelope from various load arrangements governs the design,

and for cantilevers, Le may be assumed to be as shown in Figure 3.27.

The effective width at an end support may be determined as

beff ¼ bo +
X

bibei ð3:70Þ
with bi ¼ 0:55+ 0:025Le=beið Þ� 1:0 ð3:71Þ

where bei is the effective width of the end span at midspan and Le is the

equivalent span of the end span according to Figure 3.27. The distribution

of the effective width between supports and midspan regions may be

assumed as shown in Figure 3.27. The transverse distribution of stresses

beff,2
beff,1

beff,2

be1 be2

Key:
1 Le = 0.85 L1 for beff,1
2 Le = 0.25 (L1 + L2)for beff,2
3 Le = 0.70 L2 for beff,1
4 Le = 2 L3 for beff,2

b0

beff,1

L1

b1 b2b0

beff

L2

3

42
1

L3

L1/4 L1/2 L1/4 L2/4 L2/2 L2/4

beff,0

Figure 3.27 Equivalent spans for effective width of concrete flange according to
EC4 [3.6].
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due to shear lag may be taken in accordance with EC3 [3.6] for both con-

crete and steel flanges. For cross sections with bending moments resulting

from the main girder system and from a local system (for example, in com-

posite trusses with direct actions on the chord between nodes), the relevant

effective widths for the main girder system and the local system should be

used for the relevant bending moments.

3.8.6.2 Bending Resistance of Composite Plate Girders
Let us now calculate the bending resistance of composite plate girders,

according to EC4 [3.6]. The design bending resistance shall be determined

by rigid plastic theory only where the effective composite cross section is in

class 1 or 2. On the other hand, elastic analysis and nonlinear theory for

bending resistance may be applied to cross sections of any class. For elastic

analysis and nonlinear theory, it may be assumed that the composite cross

section remains plane if the shear connection and the transverse reinforce-

ment are designed considering appropriate distributions of design longitudi-

nal shear force. The tensile strength of concrete shall be neglected.

According to EC4 [3.6], the calculation of plastic moment resistance Mpl,

Rd can be performed assuming there is full interaction between structural

steel, reinforcement, and concrete; the effective area of the structural steel

member is stressed to its design yield strength fyd in tension or compression;

and the effective areas of longitudinal reinforcement in tension and in com-

pression are stressed to their design yield strength fsd in tension or compres-

sion. Alternatively, reinforcement in compression in a concrete slab may be

neglected; the effective area of concrete in compression resists a stress of 0.85

fcd, constant over the whole depth between the plastic neutral axis and the

most compressed fiber of the concrete, where fcd is the design cylinder com-

pressive strength of concrete. Typical plastic stress distributions are shown in

Figure 3.28 as given in EC4 [3.6]. For composite cross sections with struc-

tural steel grade S420 or S460, where the distance xpl between the plastic

neutral axis and the extreme fiber of the concrete slab in compression

exceeds 15% of the overall depth h of the member, the design resistance

moment MRd should be taken as bMpl,Rd where b is the reduction factor

as shown in Figure 3.29 given by EC4. For values of xpl/h greater than

0.4, the resistance to bending should be determined from nonlinear or elastic

resistance to bending.

Where the bending resistance of a composite cross section is determined

by nonlinear theory, EC4 [3.6] recommends the stress-strain relationships of

the materials shall be taken into account. It should be assumed that the
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composite cross section remains plane and that the strain in bonded rein-

forcement, whether in tension or compression, is the same as the mean strain

in the surrounding concrete. The stresses in the concrete in compression

should be derived from the stress-strain curves given in EC2 [2.27] and

the stresses in the reinforcement should be derived from the bilinear dia-

grams given in the same specification. The stresses in structural steel in

−

+

Nc,f

Npl,a

Mpl,Rd

beff

0.85 fcd

fyd

−

Ns

Na

Mpl,Rd

beff

fsd

fyd

+
Ma

Figure 3.28 Examples of plastic stress distributions for a composite beam with a solid
slab and full shear connection in sagging and hogging bending according to EC4 [3.6].

Nc,f

Na

Mpl,Rd

beff

0.85fcd

fyd

Ma

−

+

Xpl

h

b

h

Xpl

0.85

1.0

0.15 0.4

Figure 3.29 Reduction factor b for Mpl,Rd recommended by EC4 [3.6].
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compression or tension should be derived from the bilinear diagram given

in EC3 [3.5] and should take account of the effects of the method of con-

struction (e.g., propped or unpropped). For class 1 and 2 composite cross

sections with the concrete flange in compression, the nonlinear resistance

to bending MRd may be determined as a function of the compressive force

in the concrete Nc using the following simplified expressions, as shown in

Figure 3.30:

MRd¼Ma,Ed + Mel,Rd�Ma,Ed
� � Nc

Nc,el
for Nc�Nc,el ð3:72Þ

MRd¼Mel,Rd + Mpl,Rd�Mel,Rd

� � Nc�Nc,el

Nc,f �Nc,el
for Nc,el�Nc�Nc, f

ð3:73Þ
Mel,Rd¼Ma,Ed + kMc,Ed ð3:74Þ

whereMa,Ed is the design bending moment applied to structural steel section

before composite behavior,Mc,Ed is the part of the design bending moment

acting on the composite section, and k is the lowest factor such that a stress

limit is reached, where unpropped construction is used, the sequence of

construction should be taken into account, andNc,el is the compressive force

in the concrete flange corresponding to moment Mel,Rd.

Key: 
1 Propped construction 
2 Unpropped construction 
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Figure 3.30 Simplified relationship between MRd and Nc for sections with the concrete
slab in compression recommended by EC4 [3.6].
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3.8.6.3 Resistance to Vertical Shear
To check the safety of composite plate girders against shear stresses,

EC4 [3.6] proposes rules that apply to composite beams with a rolled or

welded structural steel section with a solid web, which may be stiffened.

According to EC4 [3.6], the plastic resistance to vertical shear Vpl,Rd should

be taken as the resistance of the structural steel section Vpl,a,Rd unless the

value for a contribution from the reinforced concrete part of the beam

has been established. The design plastic shear resistance Vpl,a,Rd of the struc-

tural steel section should be determined as previously detailed. The shear

buckling resistance Vb,Rd of an uncased steel web should be determined

in accordance with EC3 [3.5] as previously detailed. No account should

be taken of a contribution from the concrete slab in the calculation of the

shear buckling resistance.

According to EC4 [3.6], where the vertical shear force VEd exceeds half

the shear resistance VRd given by Vpl,Rd or Vb,Rd, whichever is the smaller,

allowance should be made for its effect on the resistance moment. For cross

sections in class 1 or 2, the influence of the vertical shear on the resistance to

bending may be taken into account by a reduced design steel strength (1�r)
fyd in the shear area as shown in Figure 3.31 where

r¼ 2VEd=VRd�1ð Þ2 ð3:75Þ
and VRd is the appropriate resistance to vertical shear. For cross sections in

classes 3 and 4, EC3 [3.5] design rules are applicable using the calculated

stresses of the composite section. No account should be taken of the change

in the position of the plastic neutral axis of the cross section caused by the

reduced yield strength when classifying the web.

VEd

MRd

beff

0.85fcd

fyd

−

+
(1–ρ)fyd

Figure 3.31 Plastic stress distribution modified by the effect of vertical shear according
to EC4 [3.6].
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3.8.6.4 Shear Connection
As mentioned previously, Section 2.6 of Chapter 2, the behavior of shear

connection is of great importance in the design of steel-concrete composite

bridges. The design rules governing shear connection is also covered by EC4

[3.6]. The code recommends that shear connection and transverse reinforce-

ment shall be provided in composite beams to transmit the longitudinal shear

force between the concrete and the structural steel element, ignoring the

effect of natural bond between the two. Shear connectors shall have suffi-

cient deformation capacity to justify any inelastic redistribution of shear

assumed in design. Ductile connectors are those with sufficient deformation

capacity to justify the assumption of ideal plastic behavior of the shear con-

nection in the structure considered. A connector may be taken as ductile if

the characteristic slip capacity duk is at least 6 mm, with the evaluation of duk
given in Annex B of EC4 [2.37].Where two or more different types of shear

connection are used within the same span of a beam, account shall be taken

of any significant difference in their load-slip properties. Shear connectors

shall be capable of preventing separation of the concrete element from

the steel element, except where separation is prevented by other means.

To prevent separation of the slab, shear connectors should be designed to

resist a nominal ultimate tensile force, perpendicular to the plane of the steel

flange, of at least 0.1 times the design ultimate shear resistance of the con-

nectors. If necessary, they should be supplemented by anchoring devices.

Headed stud shear connectors may be assumed to provide sufficient resis-

tance to uplift, unless the shear connection is subjected to direct tension.

Longitudinal shear failure and splitting of the concrete slab due to concen-

trated forces applied by the connectors shall be prevented.

According to EC4 [3.6], for verifications for ultimate limit states, the size

and spacing of shear connectors may be kept constant over any length where

the design longitudinal shear per unit length does not exceed the longitudi-

nal design shear resistance by more than 10%. Over every such length, the

total design longitudinal shear force should not exceed the total design shear

resistance. EC4 [3.6] specifies that for any load combination and arrange-

ment of design actions, the longitudinal shear per unit length at the interface

between steel and concrete in a composite member, vL,Ed, should be deter-

mined from the rate of change of the longitudinal force in either the steel or

the concrete element of the composite section. Where elastic theory is used

for calculating resistances of sections, the envelope of transverse shear force

in the relevant direction may be used. In general, the elastic properties of the

uncracked section should be used for the determination of the longitudinal
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shear force, even where cracking of concrete is assumed in global analysis.

The effects of cracking of concrete on the longitudinal shear force may be

taken into account, if in global analysis, and the effects of tension stiffening

and possible overstrength of concrete for the determination of the longitu-

dinal shear force. Where concentrated longitudinal shear forces occur, the

local effects of longitudinal slip should be taken into account. Otherwise,

the effects of longitudinal slip may be neglected. According to EC4, in

members with cross sections in class 1 or 2, if the total design bending

moment MEd,max¼Ma,Ed+Mc,Ed exceeds the elastic bending resistance

Mel,Rd, the nonlinear relationship between transverse shear and longitudinal

shear within the inelastic lengths of the member should be taken into

account. This applies in regions where the concrete slab is in compression,

as shown in Figure 3.27. Shear connectors should be provided within the

inelastic length LA-B to resist the longitudinal shear force VL,Ed, resulting

from the difference between the normal forcesNcd andNc,el in the concrete

slab at the cross sections B and A, respectively. If the maximum bending

moment MEd,max at section B is smaller than the plastic bending resistance

Mpl,Rd, the normal forceNcd at section B may be determined using the sim-

plified linear relationship according to Figure 3.32.

Mpl,Rd

fc

c

N

N

,

Ncf

Nc,d

MEd,max

VL,Ed

Mel,Rd

Nc,el

M

MEd,max

Ma,Ed

Nc,d

M

X

A B
LA-B

Ma,Ed

Mc,Ed

Mel,Rd

MEd,max

Mpl,Rd

Figure 3.32 Determination of longitudinal shear in beams with inelastic behavior of
cross sections according to EC4 [3.6].
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3.8.6.5 Design Equations for the Evaluation of Headed Stud Capacities
As mentioned previously, Section 2.6 of Chapter 2, headed stud shear con-

nectors are widely used in steel-concrete composite constructions owing to

many advantages including rapid installation, equal strength, and stiffness in

shear in all directions normal to the axis of the stud and high ductility.

Therefore, the development of design equations used in evaluating headed

stud capacities is discussed in the next paragraphs. The capacities depend on

the type of the concrete slab used with the steel beam to form the composite

interaction.

(a) Composite beams with solid reinforced concrete slabs

The strength of shear studs in solid reinforced concrete slab was first

determined by Ollgaard et al. [2.48] and was presented in terms of an empir-

ical formula after carrying out 48 push-off tests. The ultimate shear force

resistance Qu (in N units) of the headed studs was given as follows:

Qu¼ 0:5As

ffiffiffiffiffiffiffiffi
fcEc

p
ð3:76Þ

where As is the cross-sectional area of the stud diameter d (mm2 units), fc is

the concrete cylinder compressive strength (N/mm2), and Ec is the static

modulus of elasticity of the concrete (N/mm2). This equation, which was

adopted in CP 117 [2.34,2.35], assumes concrete crushing failure rather than

a shear failure of the headed stud. Later, in BS 5950 [2.36], data presented by

Menzies [2.46] were used to develop the characteristic shear force resistance

QK. There is no theoretical basis to these data and values given in BS 5950

[2.36] reflect only the size of the stud and strength of the concrete. Cur-

rently, the commonly used design equations for headed stud shear connec-

tors are given in EC4 [3.6]. The resistance of headed stud (PRd) is defined

using two equations. The equations represent concrete and stud failures.

The lower of the following values should be used in design:

PRd¼ 0:8fupd2=4
gv

ð3:77Þ

PRd¼ 0:29ad2
ffiffiffiffiffiffiffiffiffiffiffiffi
fckEcm

p
gv

ð3:78Þ

whichever is smaller with

a¼ 0:2
hsc

d
+1

� �
for 3� hsc=d� 4 ð3:79Þ

a¼ 1 for hsc=d> 4 ð3:80Þ
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where gv is the partial factor; d is the diameter of the shank of the stud,

16�d�25 mm; fu is the specified ultimate tensile strength of the material

of the stud but not greater than 500 N/mm2; fck is the characteristic cylinder

compressive strength of the concrete at the age considered, of density not less

than 1750 kg/m3; and hsc is the overall nominal height of the stud. The value

for gv may be taken as 1.25.

(b) Composite beams with profiled steel sheeting

The experimental investigations, highlighted in Section 2.6 of

Chapter 2, for headed stud shear connectors in composite beams with pro-

filed steel sheeting show that the shear resistance of headed studs is some-

times lower than it is in a solid slab, for materials of the same strength,

because of local failure of the concrete rib. For this reason, EC4 [2.37] spec-

ifies reduction factors, applied to the resistance PRd to determine the capac-

ities of headed studs in composite beams with profiled steel sheeting as

follows:

Pr ¼ kPRd ð3:81Þ
where (Pr) is resistance of a stud in a trough and k is the reduction factor that

depends on the direction of sheeting.

For sheeting with ribs parallel to the beam, the factor (kl) is calculated as

follows:

kl¼ 0:6
bo

hp

hsc

hp
�1

� �
ð3:82Þ

where the dimensions bo, hp, and h are illustrated in Figure 2.15 and hsc is

taken as not greater than hp+75 mm. EC4 rules are discussed by Johnson

and Anderson [2.40]. Systematic theoretical and finite element studies since

1981, mainly by Oehlers [2.51] and initially for solid and haunched slabs,

have been extended to parallel sheeting.

For sheeting with ribs transverse to the beam, the factor (kt) is calculated

as follows:

kt ¼ 0:7ffiffiffiffi
nr

p bo

hp

hsc

hp
�1

� �
ð3:83Þ

where nr is the number of connectors in one rib where it crosses a beam, not

to be taken greater than 2 in calculations. It is recommended that off-center

studs should be placed on alternative sides of the trough, but no other account

was taken of the important influence of dimension (e) in Figure 2.15.

The reinforcement in a composite slab is usually a light welded mesh.
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Tests [2.54] show that when placed below the heads of the studs, the mesh

can increase the shear resistance of the studs. In practice, the control of its

level is poor and its detailing is not related to that of the shear connection.

Johnson and Yuan [3.7–3.9] considered the results of 269 push-off tests in a

study of existing design rules for the static shear resistance of stud connectors

in profiled steel sheeting. It was found [3.9] that test data were scarce for the

influence of the thickness of the profiled sheeting (t) and of lightweight

aggregate and for the influence of the position of the studs in each trough,

values of (bo) less than (2hp) and parallel sheeting. Therefore, the authors

reported the results for 34 push-off tests and identified seven distinct modes

of failure. The design rules for the static shear resistance of stud connectors in

profiled sheeting were studied, and it is found that they are limited in the case

of studs placed off-center in the steel troughs. Developed equations based on

theoretical models were obtained for the observed modes of failure. The

modes are shown to give good performance when compared with reported

test results.

(c) Composite beams with prestressed hollow core concrete slabs

Design equations developed for determining the capacity of the connec-

tors in a composite beam consisting of prestressed hollow-cored concrete

slabs were detailed in Lam et al. [2.61]. Twelve full-scale push-off tests were

carried out to study the effects of the size of the gap between the ends of the

precast slabs, the amount of tie steel placed transversely across the joint, and

the strength of concrete in-fill on the capacity of the shear stud. The follow-

ing design equation, modified from EC4 [2.37], “Equation (3.78),” was

given and there was no modification in Equation (3.77) as the strength of

the shear stud is thought not to be influenced by the precast construction:

PRd¼
0:29abed2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ofcpEcp

p
gv

ð3:84Þ

where b is a factor that takes into account the gap width (g) in millimeters

(see Figure 2.17) and is given as 0.5(g/70+1)�1.0 and g>30 mm, e is a
factor that takes into account the diameter (f) of transverse high tensile steel
(grade 460) and is given by 0.5(f/20+1)�1.0 and f�8 mm, o is the

transverse joint factor¼0.5(o/600+1), o is the width of hollow core con-

crete units, fcp is the average concrete cylinder strength¼0.8� average cube

strength of the in situ and prestressed concrete, and Ecp is the average value of

elastic modulus of the in situ and precast concrete. All other terms are as for

Equation (3.78).
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3.9 STABILITY OF STEEL AND STEEL-CONCRETE COMPOSITE
TRUSS BRIDGES

3.9.1 General
Truss bridges are generally used for spans over 40 m. For spans between 40

and 70 m, parallel chord trusses are used, while for spans greater than 70 m,

polygonal chord trusses are used. Trusses are, normally, designed to carry

axial forces in its members, which are either tension or compression or

reversible tension/compression depending on the worst cases of loading

and load combinations. Truss members are connected at joints using welds

or bolts. Joints are designed as pins and the forces in truss members are in full

equilibrium at the joints. In practice, gusset plates are used at the joints to

collect the forces in the members meeting at the joints, where equilibrium

takes place. Therefore, the size of the gusset plates should be as small as pos-

sible to simulate the behavior of pins. If the maximum force in a truss is less

than 3000 kN, single gusset plate trusses are used and truss members are

designed as angles. On the other hand, if the maximum force in truss mem-

bers is greater than 3000 kN, double gusset plate trusses are used and chord

members are designed as box sections, while diagonals and verticals are

designed as I-sections or box sections in case of long diagonals carrying com-

pressive forces. Cross girders are located at the joints of trusses to eliminate

bending moments on truss members. Figure 1.21 shows an example of a

highway truss bridge.

3.9.2 Design of Tension Members
The design of tension members is covered by EC3 [1.27,2.11]. The code

recommends that the design value of the tension forceNEd at each cross sec-

tion shall satisfy

NEd

Nt,Rd

� 1:0 ð3:85Þ

For sections with holes, the design tension resistance Nt,Rd should be

taken as the smaller of the following:

(a) The design plastic resistance of the gross cross section:

Npl,Rd¼ Afy

gM0

ð3:86Þ

(b) The design ultimate resistance of the net cross section at holes for

fasteners:
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Nu,Rd¼ 0:9Anetfu

gM2

ð3:87Þ

where Anet is the net area of a cross section (its gross area A less appropriate

deductions for all holes and other openings) and fy and fu are the yield and

ultimate stresses of steel, respectively. Where capacity design is requested,

the design plastic resistance Npl,Rd should be less than the design ultimate

resistance of the net section at fasteners holes Nu,Rd. In category C connec-

tions, detailed in EC3 (BS EN 1993-1-8) [2.13], the design tension resis-

tance Nt,Rd of the net section at holes for fasteners should be taken as

Nnet,Rd, where

Nnet,Rd¼Anetfy

gM0

ð3:88Þ

3.9.3 Design of Compression Members
Similar to tension members, the design of compression members is also cov-

ered by EC3 [1.27,2.11]. The code recommends that the design strength of

the compression force NEd at each cross section shall satisfy

NEd

Nc,Rd

� 1:0 ð3:89Þ

The design resistance of the cross section for uniform compressionNc,Rd

should be determined as follows:

Nc,Rd¼ Afy

gM0

for class 1, 2, or 3 cross sections ð3:90Þ

Nc,Rd¼Aeff fy

gM0

for class 4 cross sections ð3:91Þ

According to EC3 [2.11], a compression member should be verified

against buckling as follows:

NEd

Nb,Rd

� 1:0 ð3:92Þ

where NEd is the design value of the compression force and Nb,Rd is the

design buckling resistance of the compression member. The design buckling

resistance of a compression member should be taken as

Nb,Rd¼ wAfy
gM1

for class 1, 2, and 3 cross sections ð3:93Þ
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Nb,Rd¼ wAeff fy

gM1

for class 4 cross sections ð3:94Þ

where w is the reduction factor for the relevant buckling mode. In determin-

ing A and Aeff, holes for fasteners at the column ends need not be taken into

account. For axial compression in members, the value of w for the appropri-
ate nondimensional slenderness �l should be determined from the relevant

buckling curve according to

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0 ð3:95Þ

where F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
ð3:96Þ

and �l¼
ffiffiffiffiffiffiffi
Afy

Ncr

s
for class 1, 2, and 3 cross sections ð3:97Þ

�l¼
ffiffiffiffiffiffiffiffiffiffiffi
Aeff fy

Ncr

s
for class 4 cross sections ð3:98Þ

where a is an imperfection factor and Ncr is the elastic critical force for the

relevant buckling mode based on the gross cross-sectional properties. The

imperfection factor a corresponding to the appropriate buckling curve

should be obtained from Tables 6.1 and 6.2, given in EC3 [2.11]. The non-

dimensional slenderness �l is given by

�l¼
ffiffiffiffiffiffiffi
Afy

Ncr

s
¼Lcr

i

1

l1
for class 1, 2, and 3 cross sections ð3:99Þ

�l¼
ffiffiffiffiffiffiffiffiffiffiffi
Aeff fy

Ncr

s
¼Lcr

i

ffiffiffiffiffiffi
Aeff

A

q
l1

for class 4 cross sections ð3:100Þ

where Lcr is the buckling length in the buckling plane considered and i is the

radius of gyration about the relevant axis, determined using the properties of

the gross cross section. The nondimensional slenderness l1 is given by

l1 ¼ p

ffiffiffiffi
E

fy

s
¼ 93:9e ð3:101Þ

with

ffiffiffiffiffiffiffiffi
235

fy

s
and fy in MPa.
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3.10 DESIGN OF BOLTED AND WELDED JOINTS

3.10.1 General
The previously mentioned brief survey of the design rules specified in the

current codes of practice provided a general background to the design of

main components of steel and steel-concrete composite bridges. However,

in order to get a complete background, it is also important to review the

design rules on how these components are connected together, that is,

the design of joints connecting the different components. Therefore, in

the succeeding sections, it is decided to highlight the design rules specified,

as an example, in the Eurocodes on bolted and welded joints. According to

EC3 (BS EN 1993-1-8) [2.13], all joints shall have a design resistance such

that the structure is capable of satisfying all the basic design requirements

given in EC3 (BS EN 1993-1-1) [2.11]. The partial safety factors gM for

joints are given in Table 3.21. The forces and moments applied to joints

at the ultimate limit state shall be determined according to the principles

in EC3 (BS EN 1993-1-1) [2.11]. EC3 (BS EN 1993-1-8) [2.13] specifies

that the resistance of a joint should be determined on the basis of the resis-

tances of its basic components. Linear-elastic or elastic-plastic analysis may

be used in the design of joints. Joints shall be designed on the basis of a real-

istic assumption of the distribution of internal forces and moments. The

main assumptions used to determine the distribution of forces are as follows:

(a) the internal forces and moments assumed in the analysis are in equilib-

rium with the forces and moments applied to the joints, (b) each element

Table 3.21 Partial Safety Factors for Joints Specified in EC3 (BS EN 1993-1-8) [2.13]

Resistance of members and cross sections gM1, gM1, and gM2

Resistance of bolts gM2

Resistance of rivets

Resistance of pins

Resistance of welds

Resistance of plates in bearing

Slip resistance

– At ultimate limit state (category C)

– At serviceability limit state (category B)

gM3

gM3,ser

Bearing resistance of an injection bolt gM4

Resistance of joints in hollow section lattice girder gM5

Resistance of pins at serviceability limit state gM6,ser

Preload of high-strength bolts gM7

Resistance of concrete gc
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in the joint is capable of resisting the internal forces and moments, (c) the

deformations implied by this distribution do not exceed the deformation

capacity of the fasteners or welds and the connected parts, (d) the assumed

distribution of internal forces shall be realistic with regard to relative stiff-

nesses within the joint, (e) the deformations assumed in any design model

based on elastic-plastic analysis are based on rigid body rotations and/or

in-plane deformations that are physically possible, and (f) any model used

is in compliance with the evaluation of test results.

3.10.2 Connections Made with Bolts or Pins
Let us now review the design rules specified in Eurocode for connections

made with bolts or pins. The rules specified in EC3 (BS EN 1993-1-8)

[2.13] are valid for the bolt classes given in Table 2.6 of EC3 (BS EN

1993-2) [1.27]. The yield strength fyb and the ultimate tensile strength fub
for different bolt classes are given in Table 2.6. These values should be

adopted as characteristic values in design calculations.

3.10.2.1 Bolted Connections
According to EC3 (BS EN 1993-1-8) [2.13], bolted connections loaded in

shear should be designed as categories A, B, and C. In category A (bearing

type), all bolts from class 4.6 up to and including class 10.9 can be used. No

preloading and special provisions for contact surfaces are required. The

design ultimate shear load should not exceed the design shear resistance

nor the design bearing resistance. In category B (slip-resistant at serviceabil-

ity limit state), preloaded bolts should be used. Slip should not occur at the

serviceability limit state. The design serviceability shear load should not

exceed the design slip resistance. The design ultimate shear load should

not exceed the design shear resistance nor the design bearing resistance.

Finally, in category C (slip-resistant at ultimate limit state), preloaded bolts

should be used. Slip should not occur at the ultimate limit state. The design

ultimate shear load should not exceed the design slip resistance nor the

design bearing resistance. In addition, for a connection in tension, the design

plastic resistance of the net cross section at bolt holes Nnet,Rd should be

checked at the ultimate limit state. The design checks for these connections

are summarized in Table 3.22 specified in EC3 (BS EN 1993-1-8) [2.13].

Bolted connection loaded in tension should be designed as categories D

and E. In category D (non-preloaded), bolts from class 4.6 up to and includ-

ing class 10.9 can be used. No preloading is required. This category should

not be used where the connections are frequently subjected to variations of
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tensile loading. However, they may be used in connections designed to

resist normal wind loads. On the other hand, in category E (preloaded), pre-

loaded 8.8 and 10.9 bolts with controlled tightening should be used. The

design checks for these connections are also summarized in Table 3.22 spec-

ified in EC3 (BS EN 1993-1-8) [2.13]. Bolt holes should have limiting

values for the spacing between two adjacent holes and for the distance

between a hole and an adjacent edge to avoid local failures. EC3 (BS EN

1993-1-8) [2.13] specifies the minimum and maximum spacing and end

and edge distances for bolts as given in Table 3.23. Minimum and maximum

spacing and end and edge distances for structures subjected to fatigue are

detailed in EC3 (BS EN 1993-1-9) [3.10].

The design shear resistance of bolts per shear plane can be calculated,

adopting EC3 (BS EN 1993-1-8) [2.13], as follows:

Fv,Rd¼ aVfubA
gM2

ð3:102Þ

wherein for the shear plane that passes through the threaded portion of the

bolt (A is the tensile stress area of the boltAs), av¼0.6 for classes 4.6, 5.6, and

8.8 and av¼0.5 for classes 4.8, 5.8, 6.8, and 10.9, and for the shear plane that

passes through the unthreaded portion of the bolt (A is the gross cross section

of the bolt), av¼0.6.

Table 3.22 Categories of Bolted Connections Specified in EC3 (BS EN 1993-1-8) [2.13]
Category Criteria Remarks

Shear connections

A

Bearing type

Fv,Ed�Fv,Rd

Fv,Ed�Fb,Rd

No preloading required

Bolt classes from 4.6 to 10.9

can be used

B

Slip-resistant at

serviceability

Fv,Ed,ser�Fs,Rd,ser

Fv,Ed�Fv,Rd

Fv,Ed�Fb,Rd

Preloaded 8.8 or 10.9 bolts should

be used

C

Slip-resistant at

ultimate

Fv,Ed�Fs,Rd

Fv,Ed�Fb,Rd

Fv,Ed�Nnet,Rd

Preloaded 8.8 or 10.9 bolts should

be used

Tension connections

D

Non-preloaded

Ft,Ed�Ft,Rd

Ft,Ed�Bp,Rd

No preloading required

Bolt classes from 4.6 to 10.9 can

be used

E

Preloaded

Ft,Ed�Ft,Rd

Ft,Ed�Bp,Rd

Preloaded 8.8 or 10.9 bolts should

be used
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Table 3.23 Minimum and Maximum Spacing and End and Edge Distances Specified in EC3 (BS EN 1993-1-8) [2.13]
Distances and
Spacings

Minimum Maximum

Structures Made from Steels Conforming to EN 10025 Except Steels
Conforming to EN 10025-5 Structures Made from Steels

Conforming to EN 10025-5
Steel exposed to the weather or
other corrosive influences

Steel not exposed to the weather or
other corrosive influences Steel used unprotected

End distance e1 1.2do 4t+40 mm The larger of 8t or 125 mm

Edge distance

e2

1.2do 4t+40 mm The larger of 8t or 125 mm

Distance e3 in

slotted holes

1.5do

Distance e4 in

slotted holes

1.5do

Spacing p1 2.2do The smaller of 14t or 200 mm The smaller of 14t or 200 mm The smaller of 14tmin or

175 mm

Spacing p1,0 The smaller of 14t or 200 mm

Spacing p1,i The smaller of 28t or 400 mm

Spacing p2 2.4do The smaller of 14t or 200 mm The smaller of 14t or 200 mm The smaller of 14tmin or

175 mm
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The design bearing resistance of bolts can be calculated according to EC3

(BS EN 1993-1-8) [2.13] as follows:

Fb,Rd¼ k1abfudt
gM2

ð3:103Þ

where ab is the smallest of ad;
fub

fu
or 1.0

in the direction of load transfer : ad ¼ e1

3do
for end bolts

ad ¼ p1

3do
�1

4
for inner bolts

ð3:104Þ

perpendicular to the direction of load transfer

k1 is the smallest of 2:8
e2

do
�1:7 or 2:5 for edge bolts

k1 is the smallest of 1:4
p2

do
�1:7 or 2:5 for inner bolts

ð3:105Þ

where do is the hole diameter for a bolt (see Figure 3.33). It should be noted

that according to EC3 (BS EN 1993-1-8) [2.13], the bearing resistance Fb,Rd

for bolts in oversized holes is 0.8 times that of bolts in normal holes and, in

slotted holes, where the longitudinal axis of the slotted hole is perpendicular

to the direction of the force transfer, and is 0.6 times that of bolts in round,

normal holes. For countersunk bolt, the bearing resistance Fb,Rd should be

based on a plate thickness t equal to the thickness of the connected plate

minus half the depth of the countersinking.

The design tension resistance of bolts specified in EC3 (BS EN 1993-

1-8) [2.13] can be calculated as follows:

Ft,Rd¼ k2fubAs

gM2

ð3:106Þ

where k2¼0.63 for countersunk bolt; otherwise, k2¼0.9. The punching

shear resistance can be calculated as follows:

Bp,Rd¼ 0:6pdmtpfu
gM2

ð3:107Þ

where dm is the mean of the across points and across flats dimensions of the

bolt head or the nut, whichever is smaller, and tp is the thickness of the plate

under the bolt or the nut. For bolts in combined shear and tension, the fol-

lowing interaction equation should be satisfied:
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Fv,Ed

Fv,Rd

+
Ft,Ed

1:4Ft,Rd

� 1:0 ð3:108Þ

where Fv,Ed and Ft,Ed are the design shear and tensile forces per bolt for the

ultimate limit state, respectively.

EC3 (BS EN 1993-1-8) [2.13] also specifies design rules for preloaded

bolts. The design preload, Fp,Cd, to be used in design calculations should

be taken as

Fp,Cd¼ 0:7 fubAs=gM7 ð3:109Þ

In single-lap joints with only one bolt row, the bolts should be provided

with washers under both the head and the nut. The design bearing resistance

Fb,Rd for each bolt should be limited to

p1 p1 e1

e2

p2

L

p2

p2

p1 p1,0

p1,i

e4

do

e3

0.5do

Staggered rows of fasteners

Symbols for spacing of fasteners Symbols for staggered spacing(b)(a)

(c) (d)

(e)

p2 ≥ 1.2do

L≥ 2.4do

p1≤14t and ≤ 200 mm p2 ≤ 14t and ≤ 200 mm p1,0≤ 14t and ≤ 200 p1,i ≤ 28t and ≤ 400 mm

Staggered spacing in compression members Staggered spacing in tension members

End and edge distances for slotted holes

Figure 3.33 Symbols for end and edge distances and spacing of fasteners specified in
EC3 (BS EN 1993-1-8) [2.13].
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Fb,Rd� 1:5fudt

gM2

ð3:110Þ

where d is the nominal bolt diameter. In the case of class 8.8 or 10.9 bolts,

hardened washers should be used for single-lap joints with only one bolt or

one row of bolts. Where bolts transmitting load in shear and bearing pass

through packing of total thickness tp greater than one-third of the nominal

diameter d, the design shear resistance Fv,Rd should be multiplied by a reduc-

tion factor bp given by

bp ¼
9d

8d+3tp
with bp � 1:0 ð3:111Þ

For double-shear connections with packing on both sides of the splice, tp
should be taken as the thickness of the thicker packing.

For slip-resistant connections using class 8.8 or 10.9 bolts, EC3 (BS EN

1993-1-8) [2.13] specifies that the design slip resistance of a preloaded class

8.8 or 10.9 bolt should be taken as

Fs,Rd ¼ ksnm
gM3

Fp,C ð3:112Þ

where ks is given in Table 3.24, n is the number of the friction surfaces, and m
is the slip factor obtained either by specific tests for the friction surface or

when relevant as given in Table 3.25. For class 8.8 and 10.9 bolts with con-

trolled tightening, the preloading force Fp,C to be used in Equation (3.112)

should be taken as

Fp,C¼ 0:7fubAs ð3:113Þ

Table 3.24 Values of ks Specified in EC3 (BS EN 1993-1-8) [2.13]
Description ks

Bolts in normal holes 1.00

Bolts in either oversized holes or short slotted holes with the

axis of the slot perpendicular to the direction of load transfer

0.85

Bolts in long slotted holes with the axis of the slot perpendicular

to the direction of load transfer

0.70

Bolts in short slotted holes with the axis of the slot parallel to the

direction of load transfer

0.76

Bolts in long slotted holes with the axis of the slot parallel to the

direction of load transfer

0.63
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If a slip-resistant connection is subjected to an applied tensile force, Ft,Ed
or Ft,Ed,ser, in addition to the shear force, Fv,Ed or Fv,Ed,ser, tending to pro-

duce slip, the design slip resistance per bolt should be taken as follows:

for a category B connection :Fs,Rd,ser ¼
ksnm Fp,C�0:8Ft,Ed,ser

� �
gM3,ser

ð3:114Þ

for a category B connection :Fs,Rd¼
ksnm Fp,C�0:8Ft,Ed

� �
gM3

ð3:115Þ
If, in a moment connection, a contact force on the compression side

counterbalances the applied tensile force, no reduction in slip resistance is

required.

3.10.2.2 Connections Made with Pins
Connectionsmadewithpinsare also coveredbyEC3(BSEN1993-1-8) [2.13].

The code provides rules for designing connections with pins. According to the

code, wherever there is a risk of pins becoming loose, they should be secured.

Pin connections in which no rotation is required may be designed as single-

bolted connections, provided that the length of the pin is less than three times

thediameter of the pin. In pin-connectedmembers, the geometry of the unstif-

fened element that contains a hole for the pin should satisfy the dimensional

requirements given inTable 3.26. Pin-connectedmembers should be arranged

to avoid eccentricity and should be of sufficient size to distribute the load from

the area of the member with the pin hole into the member away from the pin.

The design of solid circular pins specified in EC3 (BS EN 1993-1-8)

[2.13] is dependent on the failure mode expected. The shear resistance of

the pin can be calculated as follows:

Fv,Rd¼ 0:6Afup=gM2�Fv,Ed ð3:116Þ
The bearing resistance of the plate and the pin specified in EC3 (BS EN

1993-1-8) [2.13] can be calculated as follows:

Table 3.25 Slip Factor m for Preloaded Bolts Specified in EC3
(BS EN 1993-1-8) [2.13]
Class of Friction Surfaces Slip Factor m

A 0.5

B 0.4

C 0.3

D 0.2
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Fb,Rd¼ 1:5tdfy=gM0�Fb,Ed ð3:117Þ
It should be noted that if the pin is intended to be replaceable, EC3 (BS

EN 1993-1-8) [2.13] specifies that the following requirement should also be

satisfied:

Fb,Rd,ser ¼ 0:6tdfy=MM6,ser �Fb,Ed,ser ð3:118Þ
The bending resistance of the pin should be calculated based on EC3 (BS

EN 1993-1-8) [2.13] as follows:

MRd¼ 1:5Welfyp=gM0�MEd ð3:119Þ
If the pin is intended to be replaceable, the following requirement should

also be satisfied:

MRd,ser ¼ 0:8Welfyp=gM6,ser �MEd,ser ð3:120Þ

Table 3.26 Geometric Requirements for Pin-Connected Members Specified in EC3 (BS
EN 1993-1-8) [2.13]

32
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For pins subjected to combined shear and bending, the following inter-

action equation specified inEC3 (BSEN1993-1-8) [2.13] should be satisfied:

MEd

MRd

� �2
+

Fv,Ed

Fv,Rd

� �2
� 1 ð3:121Þ

where d is the diameter of the pin, fy is the lower of the design strengths of

the pin and the connected part, fup is the ultimate tensile strength of the pin,

fyp is the yield strength of the pin, t is the thickness of the connected part, and

A is the cross-sectional area of a pin. The moments in a pin should be cal-

culated on the basis that the connected parts form simple supports. It should

be generally assumed that the reactions between the pin and the connected

parts are uniformly distributed along the length in contact on each part as

indicated in Figure 3.34. If the pin is intended to be replaceable, the contact

bearing stress should satisfy

sh,Ed� fh,Rd ð3:122Þ

with, sh,Ed¼ 0:591

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFEd,ser d0�dð Þ

d2t

r
ð3:123Þ

)24(
8

acb
F

M Ed
Ed ++=

b

0.5FEd 0.5FEd 

ddo

aa cc

FEd 

Figure 3.34 Bending moment in a pin specified in EC3 (BS EN 1993-1-8) [2.13].
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fh,Ed¼ 2:5fy
gM6,ser

ð3:124Þ

where d is the diameter of the pin, d0 is the diameter of the pin hole, and FEd,

ser is the design value of the force to be transferred in the bearing, under the

characteristic load combination for serviceability limit states.

3.10.3 Design of Welded Joints
The design of welded joints is also covered by EC3 (BS EN 1993-1-8)

[2.13]. The code provides rules applicable to weldable structural steels con-

forming to EC3 (BS EN 1993-1-1) [2.11] and to material thicknesses of

4 mm and over. The rules also apply to joints in which the mechanical prop-

erties of the weld metal are compatible with those of the parent metal. For

stud welding, reference should be made to EC4 (BS EN 1994-1-1) [2.37].

Welds subject to fatigue shall also satisfy the principles given in EC3 (BS EN

1993-1- 9) [3.10]. EC3 (BS EN 1993-1-8) requires that lamellar tearing

should be avoided, with guidance on lamellar tearing given in EC3 (BS

EN 1993-1-10) [2.16]. Also, the specified yield strength, ultimate tensile

strength, elongation at failure, and minimum Charpy V-notch energy value

of the filler metal should be equivalent to or better than that specified for the

parent material. Generally, EC3 (BS EN 1993-1-8) [2.13] recommends to

use electrodes that are overmatched with regard to the steel grades being

used. This code covers the design of fillet welds, fillet welds all round, butt

welds, plug welds, and flare groove welds. Butt welds may be either full pen-

etration butt welds or partial penetration butt welds. Both fillet welds all

round and plug welds may be either in circular holes or in elongated holes.

According to EC3 (BS EN 1993-1-8) [2.13], fillet welds may be used for

connecting parts where the fusion faces form an angle between 60� and

120�. Angles smaller than 60� are also permitted. However, in such cases,

the weld should be considered to be a partial penetration butt weld. For

angles greater than 120�, the resistance of fillet welds should be determined

by testing. Fillet welds finishing at the ends or sides of parts should be

returned continuously, full size, around the corner for a distance of at least

twice the leg length of the weld, unless access or the configuration of the

joint renders this impracticable. End returns should be indicated on the

drawings. Intermittent fillet welds should not be used in corrosive condi-

tions. In an intermittent fillet weld, the gaps (L1 or L2) between the

ends of each length of weld Lw should fulfill the requirement given in
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Figure 3.35. In an intermittent fillet weld, the gap (L1 or L2) should be taken

as the smaller of the distances between the ends of the welds on opposite

sides and the distance between the ends of the welds on the same side. In

any run of intermittent fillet weld, there should always be a length of weld

at each end of the part connected. In a built-up member in which plates are

connected by means of intermittent fillet welds, a continuous fillet weld

should be provided on each side of the plate for a length at each end equal

to at least three-quarters of the width of the narrower plate concerned as

shown in Figure 3.35. Fillet welds all round, comprising fillet welds in cir-

cular or elongated holes, may be used only to transmit shear or to prevent the

buckling or separation of lapped parts. The diameter of a circular hole, or

width of an elongated hole, for a fillet weld all round should not be less than

four times the thickness of the part containing it. The ends of elongated holes

should be semicircular, except for those ends that extend to the edge of the

L1 Lwe Lw 

b

t b1

t1

b

t b1

t1

Lwe Lw 

Ft,Ed Ft,Ed 

Ft,Ed Ft,Ed 

Fc,Ed Fc,Ed 

t b1

t1

b

L1 

L2

L2 Lw Lwe

The smaller of Lwe ≥ 0.75b and 0.75b

For build-up members in tension:
The smallest of L1 ≤ 16t and 16t1 and 200 mm 

For build-up members in compression or shear:
The smallest of L2 ≤ 12t and 12t1 and 0.25b and 200 mm 

Figure 3.35 Intermittent fillet welds specified in EC3 (BS EN 1993-1-8) [2.13].
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part concerned. The center-to-center spacing of fillet welds all round should

not exceed the value necessary to prevent local buckling.

Also, according to EC3 (BS EN 1993-1-8) [2.13], a full penetration butt

weld is defined as a weld that has complete penetration and fusion of weld

and parent metal throughout the thickness of the joint. A partial penetration

butt weld is defined as a weld that has joint penetration that is less than the

full thickness of the parent material. Intermittent butt welds should not be

used. Plug welds may be used to transmit shear, to prevent the buckling or

separation of lapped parts, and to interconnect the components of built-up

members but should not be used to resist externally applied tension. The

diameter of a circular hole, or width of an elongated hole, for a plug weld

should be at least 8 mm more than the thickness of the part containing it.

The ends of elongated holes either should be semicircular or should have

corners that are rounded to a radius of not less than the thickness of the part

containing the slot, except for those ends that extend to the edge of the part

concerned. The thickness of a plug weld in parent material up to 16 mm

thick should be equal to the thickness of the parent material. The thickness

of a plug weld in parent material over 16 mm thick should be at least half

the thickness of the parent material and not less than 16 mm. The center-

to-center spacing of plug welds should not exceed the value necessary to

prevent local buckling. For solid bars, the design effective throat thickness

of flare groove welds, when fitted flush to the surface of the solid section of

the bars, is defined in Figure 3.36. In the case of welds with packing, the

packing should be trimmed flush with the edge of the part that is to be

welded. Where two parts connected by welding are separated by packing

having a thickness less than the leg length of weld necessary to transmit the

force, the required leg length should be increased by the thickness of the

packing. Where two parts connected by welding are separated by packing

having a thickness equal to, or greater than, the leg length of weld necessary

a

Figure 3.36 Effective throat thickness of flare groove welds in solid sections specified in
EC3 (BS EN 1993-1-8) [2.13].

205Applied Loads and Stability of Steel and Steel-Concrete Composite Bridges

Figure 3.36


to transmit the force, each of the parts should be connected to the packing

by a weld capable of transmitting the design force.

The design of fillet welds requires the calculation of required lengths (l)

of weld and the effective throat thickness (a). Following the design rules

specified in EC3 (BS EN 1993-1-8) [2.13], the effective length of a fillet

weld l should be taken as the length over which the fillet is full-sized. This

may be taken as the overall length of the weld reduced by twice the effective

throat thickness (a). Provided that the weld is full size throughout its length

including starts and terminations, no reduction in effective length need be

made for either the start or the termination of the weld. A fillet weld with an

effective length less than 30 mm or less than six times its throat thickness,

whichever is larger, should not be designed to carry load. On the other hand,

the effective throat thickness (a) of a fillet weld should be taken as the height

of the largest triangle (with equal or unequal legs) that can be inscribed

within the fusion faces and the weld surface, measured perpendicular to

the outer side of this triangle (see Figure 3.37). The effective throat thickness

of a fillet weld should not be less than 3 mm. In determining the design resis-

tance of a deep penetration fillet weld, its additional throat thickness may be

taken of (see Figure 3.38), provided that preliminary tests show that the

required penetration can consistently be achieved.

aa
aa

Figure 3.37 Throat thickness of a fillet weld specified in EC3 (BS EN 1993-1-8) [2.13].

a

Figure 3.38 Throat thickness of a deep penetration fillet weld specified in EC3 (BS EN
1993-1-8) [2.13].
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The design resistance of a fillet weld specified in EC3 (BS EN 1993-1-8)

[2.13] should be determined using either the directional method given or the

simplified method. In the directional method, the forces transmitted by a

unit length of weld are resolved into components parallel and transverse

to the longitudinal axis of the weld and normal and transverse to the plane

of its throat. The design throat area Aw should be taken as Aw¼
P

aleff. The

location of the design throat area should be assumed to be concentrated in

the root. A uniform distribution of stress is assumed on the throat section

of the weld, leading to the normal stresses and shear stresses shown in

Figure 3.39. The normal stresses are denoted as s? (the normal stress per-

pendicular to the throat) and sk (the normal stress parallel to the axis of the

weld). The shear stresses are denoted as t? (the shear stress, in the plane of

the throat, perpendicular to the axis of the weld) and tk (the shear stress, in

the plane of the throat, parallel to the axis of the weld). The normal stress sk
parallel to the axis is not considered when verifying the design resistance of

the weld. The design resistance of the fillet weld will be sufficient if the fol-

lowing are both satisfied:

s?2 + 3 t?2 + tk2� �	 
0:5� fu= bwgM2ð Þ and s?� 0:9fu=gM2 ð3:125Þ
where fu is the nominal ultimate tensile strength of the weaker part joined

and bw is the appropriate correlation factor taken from Table 3.27 as recom-

mended by EC3. Welds between parts with different material strength

grades should be designed using the properties of the material with the lower

strength grade.

EC3 (BS EN 1993-1-8) [2.13] also specifies a simplified method for

design resistance of fillet weld. In the simplified method of weld design,

the design resistance of a fillet weld may be assumed to be adequate if, at

s⊥

t⊥

t �

s �

Figure 3.39 Stresses on the throat section of a fillet weld specified in EC3 (BS EN 1993-
1-8) [2.13].
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every point along its length, the resultant of all the forces per unit length

transmitted by the weld satisfies the following criterion:

Fw,Ed�Fw,Rd ð3:126Þ
where Fw,Ed is the design value of the weld force per unit length and Fw,Rd is

the design weld resistance per unit length. Independent of the orientation of

the weld throat plane to the applied force, the design resistance per unit

length Fw,Rd should be determined from

Fw,Rd¼ fvw:da ð3:127Þ
where fvw.d is the design shear strength of the weld. The design shear strength

fvw.d of the weld should be determined from

fvw:d¼ fu=
ffiffiffi
3

p

bwgM2

ð3:128Þ

According to EC3 (BS EN 1993-1-8) [2.13], the distribution of forces in

a welded connection may be calculated on the assumption of either elastic or

plastic behavior. It is acceptable to assume a simplified load distribution

within the welds. Residual stresses and stresses not subjected to the transfer

of load need not be included when checking the resistance of a weld.

Table 3.27 Correlation Factor bw for Fillet Welds Recommended by EC3 (BS EN 1993-
1-8) [2.13]

Standard and Steel Grade
Correlation
Factor bwEN 10025 EN 10210 EN 10219

S 235

S 235 W

S 235H S 235H 0.8

S 275

S 275 N/NL

S 275 M/ML

S 275H

S 275 NH/NLH

S 275H

S 275 NH/NLH

S 275 MH/MLH

0.85

S 355

S 355 N/NL

S 355 M/ML

S 355 W

S 355H

S 355 NH/NLH

S 355H

S 355 NH/NLH

S 355 MH/MLH

0.9

S 420 N/NL

S 420 M/ML

S 420 MH/MLH 1.0

S 460 N/NL

S 460 M/ML

S 460 Q/QL/QL1

S 460 NH/NLH S 460 NH/NLH

S 460 MH/MLH

1.0
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This applies specifically to the normal stress parallel to the axis of a weld.

Welded joints should be designed to have adequate deformation capacity.

However, ductility of the welds should not be relied upon. In joints where

plastic hinges may form, the welds should be designed to provide at least the

same design resistance as the weakest of the connected parts. In other joints

where deformation capacity for joint rotation is required due to the possi-

bility of excessive straining, the welds require sufficient strength not to rup-

ture before general yielding in the adjacent parent material. If the design

resistance of an intermittent weld is determined by using the total length ltot,

the weld shear force per unit length Fw,Ed should be multiplied by the factor

(e+ l )/l (see Figure 3.40).

3.11 DESIGN OF BRIDGE BEARINGS

3.11.1 General
This section provides a brief review for the types and design of bearings

commonly used in steel bridges. The bearings used in steel bridges can be

classified according to its main supply source to proprietary and steel-

fabricated bearings. Proprietary bearings are commonly made of elastomeric

material, which is either natural or synthetic rubber. Elastomeric materials

are flexible when subjected to shearing forces; however, they are very stiff

against volumetric change. On the other hand, steel-fabricated bearings are

made of designed steel parts preventing or allowing applied translations and

rotations. Proprietary bearings are efficiently used with most of steel bridges.

However, steel-fabricated bearings can be economic in uplift situations or

in situations where large rotations are expected to occur. Bearings used in

bridges can be also classified according to their restraint performance to

fixed, hinged, and expansion bearings. Fixed bearings prevent rotations

and translations of the supported structure at their locations, while hinged

bearings allow rotations and prevent translations of the supported structure

l l l

ltot 

e e

Figure 3.40 Calculation of weld forces for intermittent welds specified in EC3 (BS EN
1993-1-8) [2.13].
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at their locations. Finally, expansion bearings allow rotations of the sup-

ported structure at their locations and allow translations in particular direc-

tions. Expansion bearings can be sliding, roller, or rocker bearings.

Table 3.28 shows the main types of bearings commonly used in steel bridges.

The most frequently used type of bearing for highway bridges is the propri-

etary pot or disk type, which is able to accommodate rotation and, where

required, lateral movement in either longitudinal or transverse directions

or in both directions. Such bearings are particularly suitable for continuous

and curved bridges. While for railway bridges or footbridges, fabricated line

rocker bearings are often suitable at both ends of bridges. For rail bridges of

span greater than 20 m, fabricated roller/rocker bearings can be used at the

free end. For footbridges, elastomeric bearings are often used.

3.11.2 Examples of Proprietary Bearings
Proprietary pot or disk bearings are commonly used in practice all over the

world. The bearings comprise a circular elastomeric disk confined by a metal

housing (forming a cylinder and piston). The bearings can be combined with

Table 3.28 Brief Comparisons of Commonly Used Bridge Bearings

Type
Capacity
(kN) Supply Friction Use Limitations

Pot or disk 500-30,000 Proprietary 0.05 Span >20 m Rotation

0.01 rad

Elastomeric

laminated

100-1000 Proprietary 0.5-6

kN/mm

Short spans Heavy loads

Cylindrical

roller

1000-1500 Proprietary 0.01 Minimal

friction

Nil lateral

translation

or rotation

Multiple

roller

1000-

10,000

Fabricated 0.25 Roller

bearing/

railway

bridges

High-

friction, nil

lateral

rotation

Line rocker 1000-

10,000

Fabricated 0.25 Hinged

bearing/

railway

bridges

High-

friction, nil

lateral

rotation

Spherical

sliding

1000-

12,000

Proprietary 0.05 Span >20 m More

expensive

than pot
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a sliding element to accommodate translational movements in one or any

direction. This can be achieved by a PTFE (polytetrafluoroethylene)/stain-

less steel interface, usually arranged as shown in Figure 3.41. The coefficient

of friction on the sliding surface depends on the PTFE interface pressure and

is typically 5%. Pot bearings may be fixed, or guided, by providing suitable

lateral restraints between the top and bottom plates. Proprietary elastomeric

bearings may be of strip, rectangular pad, or laminated type. Laminated elas-

tomeric bearings (see Figure 3.42) are economic for loads up to 1000 kN

capacity. For loads greater than 1000 kN, the bearings may become uneco-

nomically large. Therefore, elastomeric bearings are rarely used for steel

highway or railway bridges. The design of elastomeric bearings is governed

by serviceability limit state requirements, to control excessive distortion of

the material. Movements and rotations are achieved by deformation of the

elastomeric material (see Figure 3.43). Movement is restricted to about

40 mm from the mean position.

Proprietary cylindrical bearings consist of a backing plate with a convex

cylindrical surface (rotational element) and a backing plate with a concave

Top plate

Sliding plate 
(stainless steel) 

Piston (with PTFE 
bonded on top) 

Bottom plate
Elastomer

Figure 3.41 Pot bridge bearings.

Figure 3.42 Laminated elastomeric bridge bearings.
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cylindrical surface between which a PTFE sheet and the mating material

form a curved sliding surface. Cylindrical PTFE bearings are also used in

combination with flat sliding elements and guides to form free or guided

bearings. On the other hand, spherical PTFE bearing consist of a backing

plate with a convex spherical surface (rotational element) and a backing plate

with a concave spherical surface between which a PTFE sheet and the mat-

ing material form a curved sliding surface. Spherical bearings allow three-

dimensional movements. They are designed for very high vertical, horizon-

tal, and lateral loads and also for large rotational displacements. Like pot

bearings, they can be fixed, free sliding, or guided sliding depending on

the design. Spherical bearings have been structurally improved and designed

for use as incremental launch bearing, which is applicable for bridge con-

struction by launching system; force measuring bearing, which can be used

for measuring and monitoring forces acting on the structure electronically;

and uplift protection bearing, which can be used to accommodate high

uplift loads encountered during construction or service life of a struc-

ture. Figure 3.44 shows an example of spherical bearings.

3.11.3 Examples of Steel-Fabricated Bearings
Steel-fabricated bearings are the oldest types of bearing. The most common

types of steel bearings are the roller/rocker bearings, which may be hinged

or expansion bearings. Roller/rocker bearings can support high loads and

can be used where pot, spherical, and other high-capacity bearings cannot

be used due to limited space. Roller/rocker bearings are applicable for con-

ditions where only longitudinal movement is allowed and where transverse

movement is to be prevented. They operate by the movement of a roller/

rocker in between a sole plate and a lower bearing plate (see Figure 3.45). As

an example of fabricated steel hinged bearing, Figure 3.46 shows fabricated

line rocker bearings. The bearings provide a very economic solution in that

they can be supplied by the steelwork fabricator and ensure a good match

between hole positions in bearings, upper bearing plates, and girder flanges.

Figure 3.43 Deformations of elastomeric bridge bearings.
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Stainless steel convex surface plate (a)

(b) concave surface plate 

Figure 3.44 Concave and concave components of a spherical bearing (www.mageba.
ch).

Sole plate
Upper bearing plate

A

A

Roller

Lower bearing plate

Section A-A

Figure 3.45 Detailing of twin roller-fabricated steel bridge bearings.
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When designing a line rocker, the maximum eccentricity of the reaction

(due to the restraining torque that the bearing provides) needs to be consid-

ered carefully (there is no tensile restraint at the line of contact).

3.11.4 Design Rules for Bearings
The current technical specifications for designing different bearings are

given in EC3 (BS EN 1993-2) [1.27]. The code gives guidance for designing

bearings, which comply with BS EN 1337-1 [3.11]. Five bearings are not

covered by the code, which are bearings that transmit moments as a primary

function, bearings that resist uplift, bearings for moving bridges, bearings for

concrete hinges, and bearings for seismic devices. According to the code

[1.27], hinged (fixed) bearings prevent movements but other bearings such

as guided bearings allow movements in one direction while free bearings

allow movements in all directions. Detailed information on bearings is pre-

sented in 11 parts of BS EN 1337-1 [3.11]. Part 1 of the code provides gen-

eral design rules for bearings. Parts 2-8 cover design rules for sliding

elements, elastomeric bearings, roller bearings, pot bearings, rocker bearings,

spherical and cylindrical PTFE bearings, and guided bearings and restraint

bearings, respectively. Part 9 covers protection, part 10 covers inspection

and maintenance, and finally, part 11 provides guides on transport, storage,

and installation. According to EC3 (BS EN 1993-2) [1.27], the bearing lay-

out should be designed to permit the specified movement of a bridge with

the minimum possible resistance to such movements. The arrangement of

bearings for a structure should be considered in conjunction with the design

Socket

Figure 3.46 Detailing of hinged line rocker-fabricated steel bridge bearings.
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of the bridge as a whole. The forces and movements in bearings should be

given to the bearing manufacturer to ensure that the bearings provided meet

the requirements. A drawing showing the bearing layout should include the

following: a simplified general arrangement of the bridge showing the bear-

ings in plan, details at the bearing location, a clear indication of the type of

bearing at each location, a table giving the detailed requirements for each

bearing, and bedding and fixing details. Bearings should not normally be

expected to resist moments due to rotational movement. Uplift may cause

excessive wear in bearings if such conditions occur frequently. Where uplift

is unavoidable, prestressing may be used to provide the necessary additional

vertical force. Bearings and supports should be designed in such a way that

they can be inspected, maintained, and replaced if necessary.

EC3 (BS EN 1993-2) [1.27] requires that for line rocker and single roller

bearings, the full implications of uneven pressure along the length of the

roller or rocker should be taken into account in the design of the structure

and the bearing. Also, particular care should be taken in the design of bridges

curved in plan, bridges with slender piers, bridges without transverse beams,

bridges with transverse beams where the line rocker or single roller could

effectively act as a built-in support for the transverse beam, and bridges with

a transverse temperature gradient. Anchorages of bridge bearings shall be

designed at the ultimate limit state. Where the position of a bearing or part

of a bearing is retained either completely or partially by friction, its safety

against sliding shall be checked in accordance with the following:

VEd�VRd ð3:129Þ
where VEd is the design value of the shear force acting at the bridge bearing

VRd¼mK
gm

NEd +Vpd ð3:130Þ

where NEd is the minimum design force acting normal to the joint in con-

junction with VEd, Vpd is the design value of shear resistance of any fixing

device in accordance with the Eurocodes, mK is the characteristic value of the
friction coefficient (see Table 3.29), and gm is the partial factor for friction.
The code [1.27] recommends the following values: gm¼2.0 for steel on steel

and gm¼1.2 for steel on concrete. For dynamically loaded structures, the

value of NEd should be determined, taking into account any dynamic var-

iations in traffic loads. For railway bridges and structures subjected to seismic

situations, friction should not be taken into account (NEd¼0). Where

the bearings are designed to resist horizontal forces, some movements will
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take place before clearances are taken up. The total clearance between the

extremes of movements may be up to 2 mm unless otherwise specified or

agreed with the manufacturer.

3.11.5 Design Rules for Fabricated Steel Bearings
The design rules for fabricated steel roller bearing are provided in EC1 (BS

EN 1337-4) [3.12]. According to the code, only ferrous materials (see

Table 3.30) shall be used in the manufacture of rollers and roller plates. Rol-

lers and roller plates shall have a surface hardness less than that specified by

the code. Carbon steel shall be in accordance with the requirements of EN

10025 [3.13] or EN 10083-1 [3.14] and EN 10083-2 [3.15], with a mini-

mum yield strength of 240 N/mm2. Stainless steel shall be in accordance

with EN 10088-2 [3.16], with a minimum tensile strength of 490 N/

mm2 for any component. Cast steel shall be in accordance with ISO

3755 [3.17]. The design of roller bearings is based on the assumption that

load passes through a Hertzian contact area between two surfaces with dis-

similar radii. Design verification with respect to loading and rotation (move-

ment) should be determined in accordance with BS EN 1337-1 [3.11]. The

design values of the effects (forces, deformations, and movements) from the

actions at the supports of the structure shall be calculated from the relevant

Table 3.30 Ferrous Material Classes According to BS EN 1337-4 [3.12]

Material
Class

Tensile
Strength
(Minimum)
(N/mm2)

Yield
Strength
(Minimum)
(N/mm2)

Impact/At
Temperature
(Minimum) (J)

Surface
Hardness
(Maximum)
(HV 10)

Elongation
(Minimum)
(%)

Friction
Coefficient
(Maximum)

A 340 240 27/0 �C 150 25 0.05

B 490 335 27/�20 �C 250 21 0.05

C 600 420 27/�20 �C 450 14 0.02

D 1350 1200 11/�20 �C 480 12 0.02

Table 3.29 Characteristic Values of the Friction Coefficient mK Recommended by EC3
(BS EN 1993-2) [1.27]
Surface Treatment of Steel Components Steel on Steel Steel on Concrete

Uncoated and free from grease 0.4 0.6

Metal-sprayed

Coated with fully hardened zinc silicate

Other treatments From tests From tests
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combination of actions according to BS EN 1990 [3.4]. Sliding elements

should be designed and manufactured in accordance with EN 1337-2

[3.18]. The recommended material partial safety factor gm¼1. Roller bear-

ings provide for translation in one direction only. Single rollers permit rota-

tion about the line of contact but multiple rollers require additional elements

to accommodate rotation. Roller bearings for use in curved parts of struc-

tures shall have additional sliding elements and/or rotation elements to

ensure uniform distribution of load across the roller. The axis of rotation

shall be perpendicular to the direction of movement. The curved surfaces

shall be of cylindrical shape. Surfaces in contact shall have the same nominal

strength and hardness. The length of a roller shall not be less than twice its

diameter nor greater than six times its diameter. Guidance shall be provided

to ensure that the axis of rolling is maintained correctly. Location shall be

such that true rolling occurs during movement. Where gearing is used as

security, the pitch circle diameter of the gear teeth shall be the same as

the diameter of the rollers. The design axial force per unit length of roller

contactN 0
Sd specified in BS EN 1337-1 [3.11] shall meet the following con-

dition under the fundamental combination of actions:

N 0
Sd�N 0

Rd ð3:131Þ
whereN 0

Rd is the design value of resistance per unit length of roller contact,

which is calculated as

N 0
Rd ¼

N 0
Rk

g2m
ð3:132Þ

whereN 0
Rk is the characteristic value of resistance of the contact surface per

unit length calculated as

N 0
Rk ¼ 23�R� f 2u

Ed

ð3:133Þ

where R is the radius of contact surface (mm), fu is the ultimate strength of

material (N/mm2), and Ed is the design modulus of elasticity (N/mm2). In

determining the values of N 0
Sd, the effects of asymmetrical loading due to

transverse eccentricities and applied moments shall be considered. Roller

plates shall be dimensioned in the direction of displacement to allow for

movement calculated for the fundamental combination of actions plus an

additional roller design movement of 2� tp, the thickness of the roller bear-

ing plate, or 20 mm whichever is greater. The length of the plates parallel to

the roller axis shall not be less than the length of the roller. In determining
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the thickness of the roller plates, the following shall be satisfied using the load

distribution shown in Figure 3.48 under the fundamental combination of

actions:

NSd �NRd ð3:134Þ

where NRd¼NRk

gm
ð3:135Þ

and NRk¼ fy 2tp + b
� �

L ð3:136Þ
where b can be calculated according to Hertzian stress analysis principles or

taken as equal to 0, L is the effective length of roller (mm), and gm¼1.1.

BS EN 1337-4 [3.12] specifies that for roller bearings, the stiffness of the

supporting plates is of paramount importance; therefore, the roller plates

shall be so proportioned that loads are adequately distributed to adjacent

components (Figure 3.47). The maximum load dispersion through a com-

ponent shall be taken as 45� unless a greater angle is justified by calculations
that take into account the characteristics of the adjacent components and

materials. In no case shall load dispersion be assumed beyond a line drawn

at 60� to the vertical axis (see Figure 3.48). Where movement requirements

permit, flat-sided rollers may be used. Such rollers shall be symmetrical about

the vertical plane passing through the axis of the roller. The minimumwidth

shall not be less than one-third of the diameter nor such that the bearing con-

tact area falls outside the middle third of the rolling surface when the roller is

Horizontal force
Normal force

Roller plate

Roller
Roller plate

(a)

(b)

 Single roller bearing

 Flat-sided roller bearing

Figure 3.47 Cylindrical and flat-sided roller bearings.
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at the extremes of movement determined in accordance with EN 1337-1

[3.11]. It should be noted that according to the code, flat-sided rollers

can be mounted at closer centers than circular rollers of the same load capac-

ity resulting in more compact bearings. Where a bearing has more than one

roller, an additional bearing in accordance with other parts of EN 1337 shall

be included to accommodate rotation (see Figure 3.45). The effects of any

rotation moments from this element shall be included when calculating the

roller forces by taking into account the corresponding eccentricities. The

load per roller shall be calculated at the extreme of the expected movement.

In addition, where a bearing has more than two rollers, the limiting values

for design load effects shall be taken as two-thirds of N 0
Rd. The design fric-

tion coefficient md shall be taken as 0.02 for steel with a hardness �300 HV

and 0.05 for all other steels.

Hinged line rocker bearings (see Figure 3.46) are capable of transferring

applied vertical and horizontal forces between the superstructure and the

substructure. Hinged line rockers permit rotation in one direction about

the rocker axis. Hinged line rocker bearings resist horizontal forces by means

of positive mechanical restraint such as shear dowels. The design of rocker

bearings is covered by BS EN 1337-6 [3.19]. The rotation capability of the

rocker bearing is an inherent characteristic of the system based on its

b 

45° 

60° 

Figure 3.48 Load distribution to components according to BS EN 1337-4 [3.12].
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geometry and shall be declared by the manufacturer. Its maximum value

shall be 0.05 rad. The radius of the curved part of the liner rocker bearing

is determined in the same way as roller bearing.
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CHAPTER44
Design Examples of Steel
and Steel-Concrete Composite
Bridges
4.1 GENERAL REMARKS

The previous Chapters 1–3 highlighted the main issues regarding the general

background, layout, classification, literature review, nonlinear material

behavior of the bridge components, shear connection behavior, applied

loads, and stability and design of steel and steel-concrete composite bridges.

Therefore, it is now possible in this chapter to present detailed design exam-

ples for the bridges. The design examples were carefully chosen to cover rail-

way and highway bridges, plate girder steel bridges, truss steel bridges, and

steel-concrete composite bridges. The presented examples cover the design

of the bridge components comprising stringers (longitudinal floor beams),

cross girders (lateral floor girders), main girders, connections, bracing mem-

bers, stiffeners, splices, and bearings. The design examples are calculated, as

an example, based on the design rules specified in EC3 [1.27, 2.11], which

were previously highlighted in Chapter 3. The examples addressed in this

chapter represent hand calculations performed by the author. Overall, the

design examples detail how the cross sections are initially assumed, how

the straining actions are calculated, and how the stresses are checked and

assessed against the design rules. One of the designed bridges presented in

this chapter will be modeled using the finite element method in

Chapter 6, which is credited to this book. Once again, the main objective

of this book is to introduce a complete piece of work regarding both the

design and finite modeling of the bridges.

This chapter starts with a brief introduction of the presented design

examples for steel and steel-concrete composite bridges. After that, the

chapter details five detailed design examples for the bridges. The first design

example presented is for a double-track open-timber floor plate girder deck

railway steel bridge; the second, for a through truss highway steel bridge; the

third, for a highway steel-concrete composite bridge; the fourth, for a

double-track open-timber floor plate girder pony railway steel bridge;

finally, the fifth, for a deck truss highway steel bridge. The author hopes that
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the chapter provides readers with sufficient background needed for future

studies. It should be noted that the design examples are presented for specific

bridges; however, the design procedures can be adopted for different steel

and steel-concrete composite bridges. It should also be noted that the author

purposely avoided complex bridge geometries, supports, and long spans to

use hand calculations, whichmake it easy for readers to apply the design rules

highlighted in Chapter 3. Finally, the author hopes that the presented design

examples in this Chapter provide all the basic fundamentals for students

interested in the structural analysis and design of steel and steel-concrete

composite bridges.

4.2 DESIGN EXAMPLE OF A DOUBLE-TRACK PLATE GIRDER
DECK RAILWAY STEEL BRIDGE

Let us start by presenting the first design example, which is for a double-

track open-timber floor plate girder deck railway steel bridge. The general

layout of the double-track railway bridge is shown in Figures 4.1 and 4.2,

with a brief introduction of the bridge components previously highlighted

in Figure 1.20. The bridge has simply supported ends, a length between

supports of 30 m and an overall length of 31 m. The width of the bridge

(spacing between main plate girders) is 7.2 m as shown in Figure 4.1. It is

required to design the bridge components adopting the design rules spec-

ified in EC3 [1.27]. The steel material of construction of the double-track

railway bridge conformed to standard steel grade EN 10025-2 (S 275) hav-

ing a yield stress of 275 MPa and an ultimate strength of 430 MPa. The

bridge has upper and lower wind bracings of K-shaped truss members as

well as cross bracings of X-shaped truss members as shown in Figure 4.1.

In addition, the bridge has lateral shock (nosing force) bracing for the

stringers as well as braking force bracing at the level of upper wind bracing

as shown in Figure 4.2. The lateral shock bracing eliminates bending

moments around the vertical axis of the stringers, while the braking force

bracing eliminates bending moments around the vertical axis of the cross

girder. The plate girder web is stiffened by vertical stiffeners, to safeguard

against shear stresses and web buckling, spaced at a constant distance of

1.667 m. The expected live loads on the bridge conform to Load Model

71, which represents the static effect of vertical loading due to normal rail

traffic as specified in EC1 [3.1]. The bolts used in connections and field

splices are M27 high-strength pretensioned bolts of grade 8.8.
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4.2.1 Design of the Stringers (Longitudinal Floor Beams)
Let us start by designing the stringers, the longitudinal steel beams, support-

ing the track as shown in Figure 4.1.

Dead Loads

Half weight of the track load¼ 3kN=m

Weight of stringer bracing¼ 0:3kN=m

Own weight of stringer¼ 1:5 kN=m

Total dead load¼ gvk¼ 4:8 kN=m

L = 6×5000 = 30,000 mm

5000 1667

3000

3500

7200 mm

Elevation

S

S

Cross-section S-S

Plan of upper wind bracing (Section S1-S1) 

S1 S1

S2 S2

Plan of lower wind bracing (Section S2-S2) 

1800

30,000

72
00

72
00

Figure 4.1 General layout of a double track open-timber floor plate girder deck railway
steel bridge (the first design example).
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Assuming the stringers are simply supported by the cross girders (lateral

floor girders), we can calculate the maximum shear force and bending

moment due to dead loads on a stringer (see Figure 4.3) as follows:

QD:L:¼ gvk�L=2¼ 4:8�5=2¼ 12 kN

MD:L:¼ gvk�L2=8¼ 4:8�52=8¼ 15 kNm

Live Loads
Considering the axle live loads on the bridge components according to Load

Model 71, which represents the static effect of vertical loading due to normal

L = 6×5000 = 30,000 mm

5000 1667

3000

3500

7200 mm

Elevation

S

S

Cross-section S-S

S3 S3

S1 S1

1800

30,000
Plan of upper wind bracing with braking

force bracing (Section S1-S1)

30,000

Plan of lateral shock (nosing force) bracing
(Section S3-S3) 

1700

1800

1800

950

950

1700

1800

1800

950

950

Figure 4.2 General layout of a double track open-timber floor plate girder deck railway
steel bridge (the first design example).
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rail traffic as specified in EC1 [3.1] (see Figure 4.4), three cases of loading for

the evaluation of maximum bending moment due to the live loads on a

stringer can be studied. The first case of loading is that the centerline at mid-

span of a stringer divides the spacing between the resultant of the concen-

trated live loads and the closest load, with maximum bending moment

located at the closest load (point a in Figure 4.5), while the second case

of loading is that the centerline of the stringer is located under one of

the intermediate concentrated loads, with maximum bending moment

located at the midspan, and finally, the third case of loading is that the

stringer span is covered by the distributed live loads, withmaximum bending

moment located at the midspan. The three cases of loading are shown in

Figure 4.5:

ML:L: case of loading 1ð Þ¼ 217:5�2:1�125�1:6¼ 256:75 kNm

ML:L: case of loading 2ð Þ¼ 187:5�2:5�125�1:6¼ 268:75 kNm

ML:L: case of loading 3ð Þ¼ 40�52=8¼ 125 kNm

gvk = 4.8 kN/m

5 m

+
–

S.F.D.

+

B.M.D.

12 kN

12 kN

15 kN.m

Figure 4.3 Straining actions from dead loads acting on a stringer.

1600

800800 800

1600

250 250 250 250 kN
qvk = 80 kN/m qvk = 80 kN/m

800

Figure 4.4 Axle live loads on the bridge conforming to Load Model 71 specified in
EC1 [3.1].
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Dynamic Factor F
Assuming a track with standard maintenance, therefore,

LF¼ 5+ 3¼ 8m

F3¼ 2:16ffiffiffi
8

p �0:2
+ 0:73¼ 1:552, F3� 1:0 and � 2:0:

Bending Moment Due to Dead and Live Loads with Dynamic Effect
Added (MD+L+F)

MD+L+F ¼MD:L:� gg +F�ML:L:�gq
¼ 15�1:2+ 1:552�268:75�1:45¼ 622:8 kNm

It should be noted that the load factors adopted in this study are that of

the ultimate limit state. This is attributed to the fact that the finite element

0.5

a

125 kN125 kN125 kN

1.6 0.4 1.2 1.3

5 m

Case of loading 1A B

YA = 217.5 kN YB = 157.5 kN

0.9 

125 kN125 kN

1.6 0.9 1.6 

5 m

Case of loading 2A B

YA = 187.5 kN YB = 187.5 kN

125 kN

qvk = 40 kN/m

5 m

A B Case of loading 3

YA = 100.0 kN YB = 100.0 kN

Figure 4.5 Cases of loading for the maximum bending moment acting on a stringer.
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models presented in Chapters 6 and 7 can be used to analyze the bridges and

provide more accurate predictions for the deflections and other serviceabil-

ity limit state cases of loading.

Shearing Force Due to Dead and Live Loads with Dynamic
Effect Added (QD+L+F)
There is only a single case of loading for live loads to produce a maximum

shear force at the supports of the stringer, which is shown in Figure 4.6:

QL:L:¼ 260 kN

QD+L+F¼QD:L:� gg +F�QL:L:� gq
¼ 12�1:2+ 1:552�260�1:45¼ 599:5 kN

Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼MD+L+F¼ 622:8 kNm

QEd¼QD+L+F¼ 599:5kN

Design of Stringer Cross Section

Mc,Rd¼Wpl� fy

gM0

for classes 1 and 2

622:8�106 ¼Wpl�275

1:0

WPL¼ 2,264,727mm3 ¼ 2264:7 cm3

Choose UB 533�210�92 (equivalent to American W21�62), shown

in Figure 4.7. WPL around x-x¼2360 cm3. To classify the cross section

chosen,

0.2

125 kN125 kN125 kN

1.6 1.6 1.6

5 m

Case of loading 1A B

YA =  260.0 kN YB =  240.0 kN

125 kN

Figure 4.6 Cases of loading for the maximum shear force acting on a stringer.
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e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1 ¼ 86:9mm, tfl ¼ 15:6,C1=tfl¼ 86:9=15:6¼ 5:6� 9�0:924
¼ 8:316 Stringer flange is class 1ð Þ

C2 ¼ 476:5mm, tw ¼ 10:1,C1=tfl¼ 476:5=10:1¼ 47:2� 72�0:924
¼ 66:5 Stringer web is class 1ð Þ

Check of Bending Resistance

Mc,Rd ¼Wpl� fy

gM0

¼ 2360�103�275

1:0
¼ 649,000,000Nmm

¼ 649:0 kNm>MEd¼ 622:8 kNm Then O:K:ð Þ

Check of Shear Resistance

Vpl,Rd¼
Av fy=

ffiffiffi
3

p� �
gM0

¼ 501:9�10:1ð Þ� 275=
ffiffiffi
3

p� �
1:0

¼ 804,842N

¼ 804:8 kN>QEd¼ 599:5 kN Then O:K:ð Þ

209.3 mm

12.7

15.6

15.6

53
3.

1 
m

m

50
1.

9

C
2 
=

 4
76

.5
10.1

C1 = 86.9

x x

Figure 4.7 The cross-section of stringers (UB 533�210�92).
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4.2.2 Design of the Cross Girders (Lateral Floor Girders)
The cross girders, the lateral floor beams, carry concentrated loads from the

stringers as shown in Figure 4.1. Therefore, we can analyze an intermediate

cross girder as follows:

Dead Loads

Reaction from stringers due to dead loads¼ 4:8�5¼ 24 kN

Own weight of cross girder¼ 3:0 kNm�1

Assuming the cross girders are simply supported by the main plate

girders, we can calculate the maximum shear force and bending moment

due to dead loads on an intermediate cross girder (see Figure 4.8) as follows:

QD:L:¼ 3�7:2=2+ 2�24¼ 58:8kN
MD:L: ¼ 3�7:22=8+ 24�0:95+ 24�2:75¼ 108:24 kNm

gvk = 3.0 kN/m

7.2 m

4.8×5=24 kN 24 kN 24 kN 24 kN

0.95 0.951.8 1.80.85 0.85

YA = 58.8 kN YB =  58.8 kN

BA

S.F.D.

58.8 kN 55.95

31.95 26.55

2.55

2.55

26.55
31.95

55.95 58.8 kN

+

–

B.M.D.

54.51 kN.m

107.16 108.24 107.16

54.51
+

Figure 4.8 Straining actions from dead loads acting on an intermediate cross girder.
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Live Loads
To determine the maximum reactions due to live loads transferred by

the stringers to the cross girders, the case of loading shown in Figure 4.9

is studied. The maximum reaction RL.L. can be calculated as follows:

RL:L: ¼ 125+ 2�125� 5�1:6ð Þ=5+ 125� 5�3:2ð Þ=5+ 40�1

�0:5=5+ 40�2:6�1:3=5
¼ 371:04 kN

The maximum straining actions due to live loads on an intermediate

cross girder can be then calculated (see Figure 4.10) as follows:

QL:L: ¼ 2�371:04¼ 742:08 kN
ML:L: ¼ 371:04�0:95+ 371:04�2:75¼ 1372:85 kNm

Dynamic Factor F

LF¼ 2�7:2¼ 14:4m

F3 ¼ 2:16ffiffiffiffiffiffiffiffiffi
14:4

p �0:2
+ 0:73¼ 1:331, F3� 1:0 and� 2:0:

Bending Moment Due to Dead and Live Loads with Dynamic Effect Added
(MD+L+F)

MD+L+F¼MD:L:�gg +F�ML:L:� gq
¼ 108:24�1:2+ 1:331�1372:85�1:45¼ 2779:42 kNm

125 kN 125 kN 125 kN 125 kN

qvk = 40 kN/m qvk = 40 kN/m

5.0 m 5.0 m

2.6 0.8 1.6 1.6 1.6 0.8 1.0

RL.L =  371.04 kN

Figure 4.9 The case of loading producingmaximum straining actions from live loads on
an intermediate cross girder.
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Shearing Force Due to Dead and Live Loads with Dynamic
Effect Added (QD+L+F)

QD+L+F ¼QD:L:� gg +F�QL:L:� gq
¼ 58:8�1:2+ 1:331�742:08�1:45¼ 1502:7 kN

Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼MD+L+F¼ 2779:42 kNm

QEd¼QD+L+F ¼ 1502:7kN

Design of the Cross Girder Cross Section

Mc,Rd¼Wpl� fy

gM0

for classes 1 and 2

2779:42�106 ¼Wpl�275

1:0

WPL ¼ 10,106,981:8mm3 ¼ 10,107 cm3

7.2 m

371.04 kN

0.95 0.951.8 1.80.85 0.85

YA = 742.08 kN YB =  742.08 kN

BA

371.04 371.04 371.04

S.F.D.

B.M.D.

+

–

+

742.08 kN

371.04 kN

371.04 kN

742.08 kN

704.976 kN m 704.976

1372.848 1372.848

Figure 4.10 Straining actions from live loads acting on an intermediate cross girder.
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Choose UB 914�305�253 (equivalent to American W36�170),

shown in Figure 4.11. WPL around x-x¼10,940 cm3. To classify the cross

section chosen,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1 ¼ 125mm, tfl¼ 27:9,C1=tfl¼ 125=27:9¼ 4:48� 9�0:924
¼ 8:316 Cross girder flange is class 1ð Þ

C2¼ 824:4mm, tw ¼ 17:3,C1=tfl¼ 824:4=17:3¼ 47:7� 72�0:924
¼ 66:5 Cross girder web is class 1ð Þ

Check of Bending Resistance

Mc,Rd¼Wpl� fy

gM0

¼ 10940�103�275

1:0
¼ 3,008,500,000Nmm

¼ 3008:5kNm>MEd¼ 2779:42 kNm Then O:K:ð Þ

Check of Shear Resistance

Vpl,Rd¼
Av fy=

ffiffiffi
3

p� �
gM0

¼ 862:6�17:3ð Þ� 275=
ffiffiffi
3

p� �
1:0

¼ 2,369,341N

¼ 2369:3kN>QEd¼ 1502:7kN Then O:K:ð Þ

305.5 mm

19.1

27.9

27.9

91
8.

4 
m

m

86
2.

6

C
2 
=

 8
24

.4
17.3

C1 = 125

x x

Figure 4.11 The cross-section of cross girders (UB 914�305�253).
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4.2.3 Design of the Main Plate Girders
Let us now design the main plate girders supporting the cross girders as

shown in Figure 4.1. We can estimate the dead and live loads acting on a

main plate girder as follows:

Dead Loads

Weight of steel structure¼ 9+ 0:5�30¼ 24 kNm�1

Track load¼ 6 kNm�1

Total dead load¼ gvk¼ 1:8�24=2+ 6¼ 27:6 kNm�1

The main plate girders are simply supported; hence, we can calculate the

maximum shear force and bending moment due to dead loads on a main

plate girder (see Figure 4.12) as follows:

QD:L:¼ gvk�L=2¼ 27:6�30=2¼ 414kN

MD:L:¼ gvk�L2=8¼ 27:6�302=8¼ 3105 kNm

Live Loads
Considering the axle loads on the bridge components according to Load

Model 71 (see Figure 4.4), two cases of loading for the evaluation of maxi-

mum bendingmoment due to live loads on a main plate girder can be studied.

gvk = 27.6 kN/m

30.0 m
YB = 414 kN

A B 

YA = 414 kN

+

–
S.F.D.

+
B.M.D.

3105 kN.m

414 kN

414 kN

Figure 4.12 Straining actions from dead loads acting on one main plate girder.
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The first case of loading is that the centerline of themain plate girder is located

under one of the intermediate concentrated live loads, with maximum bend-

ing moment calculated at midspan (see Figure 4.13). On the other hand, the

second case of loading is that the centerline of a main plate girder divides the

spacing between the resultant of the concentrated live loads and the closest

load, with maximum bending moment located at the closest load (point a

in Figure 4.14). The maximum bending moment under the first case of load-

ing is calculated using the influence line method (by multiplying the concen-

trated loads by the companion coordinates on the bending moment diagram

and by multiplying the distributed loads by the companion areas on the bend-

ingmoment diagram),while that under the second case of loading is calculated

30.0 m

A B

1.6 0.80.8

250 250 250 250 kN

qvk = 80 kN/m qvk = 80 kN/m

1.6

6.3
5.5

6.7
5.9

6.7
7.5

I.L. for
B.M.D.

Case of loading 1

12.6 111.6

Figure 4.13 Determination of themaximumbendingmoment on onemain plate girder
due to live loads using the influence line method (case of loading 1).

30.0 m

YB = 1450.5 kN

A B

YA = 1437.5 kN

1.6
0.80.8

250 250 250 250 kN
qvk = 80 kN/m

1.61.20.4

Case of loading 2

11.412.2

a

qvk = 80 kN/m

Figure 4.14 Determination of themaximumbendingmoment on onemain plate girder
due to live loads using the analytical method (case of loading 2).
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analytically using structural analysis. Hence, the bending moments due to live

loads can be calculated as follows:

ML:L: case of loading 1ð Þ¼ 250� 2�6:3+ 2�7:1½ �+2�80�0:5
�11:8�5:9

¼ 12295:2kNm

ML:L: case of loading 2ð Þ¼ 1437:5�14:6�80�12:2�8:5�250�1:6
¼ 12291:5 kNm

There is only a single case of loading for the live loads to produce a maxi-

mum shear force at the supports of a main plate girder, which is shown in

Figure 4.15. Once again, we can use the influence line method to calculate

the maximum shear force due to this case of loading or analytically by taking

moment at support B and evaluate the reaction at A:

QL:L:¼ 1713:8 kN

Dynamic Factor F

LF¼ 30m

F3 ¼ 2:16ffiffiffiffiffi
30

p �0:2
+ 0:73¼ 1:139, F3� 1:0 and � 2:0:

Bending Moment Due to Dead and Live Loads with Dynamic Effect
Added (MD+L+F)

MD+L+F¼MD:L:� gg +F�ML:L:� gq
¼ 3105�1:2+ 1:139�12,295:2�1:45¼ 24,032kNm

30.0 m

A B 

1.6

250 250 250 250 kN

qvk = 80 kN/m

1.6

1.0 0.95 0.84 0.810.89

I.L. for
S.F.D.

Case of loading 1

24.41.6 0.8

Figure 4.15 Determination of the maximum shear force on one main plate girder due
to live loads using the influence line method (case of loading 1).
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Shearing Force Due to Dead and Live Loads with Dynamic Effect
Added (QD+L+F)

QD+L+F ¼QD:L:� gg +F�QL:L:� gq
¼ 414�1:2+ 1:139�1713:8�1:45¼ 3327:2kN

Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼MD+L+F¼ 24,032 kNm

QEd ¼QD+L+F¼ 3327:2 kN

Design of the Main Plate Girder Cross Section
Let us assume the main plate girder cross section shown in Figure 4.16. The

cross section consists of two flange plates for the upper and lower flanges and

a web plate. The web plate height is taken as equal to L/10¼30,000/

10¼3000 mm, with a plate thickness of 16 mm. The width of the bottom

30
0
cm

56

60

3
3

29
8.

4

1.6

0.4×95
= 38

0.
6×

95
 =

 5
7

28.4

Figure 4.16 Reduced cross-section of plate girder.
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plate of the upper and lower flanges of the cross section is taken as 0.2

the web height, which is equal to 600 mm, while the top plate width is

taken as 560 mm, to allow for welding with the bottom flange plate. The

flange plates have the same plate thickness of 30 mm. The choice of two

flange plates for the upper and lower flanges is intended to curtail the

top flange plate approximately at quarter-span as detailed in the coming sec-

tions. It should be noted that the web height value (L/10) is an acceptable

recommended [1.9] value for railway steel bridges constructed in Great Brit-

ain and Europe. This value is an initial value for preliminary cross-sectional

estimation. The cross section has to be checked, classified, designed, and

assessed against deflection limits set by serviceability limit states. To classify

the cross section chosen,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1 ¼ 284mm, tfl¼ 60,C1=tfl¼ 284=60¼ 4:73� 9�0:924
¼ 8:316 Main plate girder flange is class 1ð Þ:

C2¼ 2984mm, tw ¼ 16,C1=tfl¼ 2984=16¼ 186:5> 124�0:924
¼ 114:58 Main plate girder web is class 4ð Þ:

To calculate the bending moment resistance, the effective area should be

used. Considering web plate buckling, the effective area of the web part in

compression (see Figure 4.16) can be calculated as follows:

ks ¼ 23:9

�lp ¼ 300=1:6

28:4�0:924� ffiffiffiffiffiffiffiffiffi
23:9

p ¼ 1:462> 0:673

r¼ 1:462�0:055 3�1ð Þ
1:4622

¼ 0:633

beff ¼ 0:633�300=2¼ 95 cm,

Then, beff1¼0.6�95¼57 cm and beff2¼0.4�95¼38 cm as shown in

Figure 4.17.

To calculate the elastic section modulus, the elastic centroid of the sec-

tion has to be located by taking the first area moment, as an example, around

axis y0-y0 shown in Figure 4.17, as follows:

A¼ 60�3�2+ 56�3�2+ 207�1:6+ 38�1:6¼ 1088 cm2
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yc ¼
56�3�1:5+ 60�3�4:5+ 60�3�307:5+ 56�3�310:5+ 207

�1:6�109:5+ 38�1:6�287

� �
1088

yc ¼ 149:2 cm

Inertia about y1-y1 ¼ 56�33=12+ 56�3�147:72½ �
+ 60�33=12+ 60�3�144:72½ �
+ 1:6�2073=12+ 1:6�207�39:72½ �
+ 1:6�383=12+1:6�38�137:82½ �
+ 60�33=12+ 60�3�158:32½ �
+ 56�33=12+ 56�3�162:82½ � ¼ 19,264,063 cm4

Weff ,min¼ 19,264,063=162:8¼ 118,330 cm3

Check of Bending Resistance

Mc,Rd¼Weff ,min� fy

gM0

¼ 118,330�103�275

1:0
¼ 32,540,750,000Nmm

¼ 32,541 kNm>MEd¼ 24,032 kNm Then O:K:ð Þ

30
0
cm

56

60

3
3

1.6

38

57

y y

y1

55

16
2.

8
14

9.
2

150

y1

y0y0

Figure 4.17 Calculation of properties of area for main plate girder.
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Check of Shear Resistance

Vb,Rd¼Vbw,Rd +Vbf ,Rd� � fywhwtwffiffiffi
3

p
gM1

By neglecting the flange contribution,

Vb,Rd¼Vbw,Rd� 1:2�275�3000�16ffiffiffi
3

p �1:1
¼ 8,313,843:9N

Vbw,Rd¼ ww fywhwtwffiffiffi
3

p
gM1

�lw ¼ 0:76

ffiffiffiffiffiffi
fyw

tcr

s
, tcr ¼ ktsE

sE¼ 190,000 16=3000ð Þ2 ¼ 5:404Nmm�2

kt¼ 4+ 5:34 3000=1666:7ð Þ2 ¼ 21:3

�lw ¼ 0:76

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
275

21:3�5:404

r
¼ 1:175> 1:08

Then, ww ¼ 1:37

0:7+ �lw
¼ 1:37

0:7+ 1:175
¼ 0:731

Vbw,Rd¼ 0:731�275�3000�16ffiffiffi
3

p �1:1
¼ 5,064,516:6N¼ 5064:5kN

< 8313:8 kN

�3¼
VEd

Vb,Rd

¼ 3327:2

5064:5
¼ 0:657< 1:0 Then O:K:ð Þ

It should be noted that for this type of bridges, it is recommended that

further checks regarding the assessment of fatigue loading have to be per-

formed. However, this can be done using advanced finite element modeling

of the bridge.

4.2.4 Curtailment (Transition) of the Flange Plates
of the Main Plate Girder

The critical cross section of the main plate girder at midspan, which is sub-

jected to the maximum bending moment, was designed previously with two

flange plates. Since the main plate girder is simply supported, the bending
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moment is decreased towards the supports. Therefore, we can stop the top

flange plate at a certain distance to get the most benefit from the material.

This process is commonly called as curtailment (transition) of flange plates.

It should be noted that, theoretically, curtailment (transition) of flange plates

can be conducted by reducing the flange plate width, thickness, or both.

However, in practice, fabricators prefer to keep the flange widths constant

and vary the thickness because this option costs much less than reducing the

flange width that might require a very heavy grinding work. To avoid lateral

torsional buckling of the compression top flange at the reduction zone, it is

recommended practically to reduce the width or thickness by 40% of the

original with a smooth transition zone sloping at 1 (vertical) to 10 (horizon-

tal). It is also recommended that bridges with lengths of 20-30 m are cur-

tailed (transitioned) in one step. While for bridges with spans greater than

30 m, two steps of curtailment (transition) are recommended. For the inves-

tigated design example, we can conduct one-step curtailment (transition) by

reducing the top flange plate of the upper and lower flanges, as shown in

Figure 4.18. To classify the reduced cross section,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

30
0
cm

60

3

1.6

38

57

y y

y1 y1

y0 y0

55

16
2.

9
14

3.
1

150

Figure 4.18 Calculation of properties of area for curtailed main plate girder.
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C1¼ 284mm, tfl¼ 30,C1=tfl ¼ 284=30¼ 9:47� 14�0:924
¼ 12:94 Class 3ð Þ:

C2¼ 2984mm, tw ¼ 16,C1=tfl¼ 2984=16¼ 186:5> 124�0:924
¼ 114:58 Class 4ð Þ:

To calculate the bending moment resistance, the effective area should be

used. Considering web plate buckling, the effective area of the part of web

plate in compression (see Figure 4.18) can be calculated as follows:

ks ¼ 23:9

�lp ¼ 300=1:6

28:4�0:924� ffiffiffiffiffiffiffiffiffi
23:9

p ¼ 1:462> 0:673

r¼ 1:462�0:055 3�1ð Þ
1:4622

¼ 0:633

beff ¼ 0:633�300=2¼ 95 cm,

Then, beff1¼0.6�95¼57 cm and beff2¼0.4�95¼38 cm as shown in

Figure 4.18.

To calculate the elastic section modulus, the elastic centroid of the sec-

tion has to be located by taking the first area moment, as an example, around

axis y0-y0 shown in Figure 4.18, as follows:

A¼ 60�3�2+ 245�1:6¼ 752 cm2

yc ¼ 60�3�1:5+ 207�1:6�106:5+ 38�1:6�284+ 60�3�304:5½ �
752

yc ¼ 143:1 cm

Inertia about y1-y1 ¼ 60�33=12+ 60�3�141:62½ �
+ 60�33=12+ 60�3�161:42½ �
+ 1:6�2073=12+ 1:6�207�36:62½ �
+ 1:6�383=12+ 1:6�38�140:92½ �
¼ 11,139,025:4 cm4

Weff ,min ¼ 11,139,025:4=162:9¼ 68,379:5 cm3
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Bending Moment Resistance

Mc,Rd¼Weff ,min� fy

gM0

¼ 68,379:5�103�275

1:0
¼ 18,804,362,500Nmm

¼ 18,804:4kNm

Length of Flange Plates
Assuming the overall bending moment diagram of the main plate girder

is a second-degree parabola (see Figure 4.19), we can determine the

length of the curtailed top flange plate of the upper and lower flanges

as follows:

x

L=2

� �2

¼ 24,032�18,804:4

24,032
¼ 5221:6

24,032

x

15
¼ 0:466, then x¼ 6:99m taken as 7m:

Hence, the length of the smaller top plate is 14 m.

4.2.5 Design of the Fillet Weld Between Flange
Plates and Web

To determine the size of fillet weld connecting the bottom flange plates of

the upper and lower flanges with the web plate for the investigated bridge,

we can calculate the maximum shear flow at the support for the reduced

cross section, shown in Figure 4.20, as follows:

Inertia about y-y¼1.6�3003/12+2� [60�33/12+60�3�151.52]

¼11,863,080 cm4.

24
,0

32
 k

N
m

18,804.4 

x m 

15 m 

D

Figure 4.19 Calculation of curtailed flange plate lengths.
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Shear flow at section s-s:

q¼Q Ed�Sss

Iyy
¼ 2� a� fvw,d

fvw,d¼ fu=
ffiffiffi
3

p

bwgM2

¼ 430=
ffiffiffiffiffi
30

p

0:85�1:25
¼ 233:7N=mm2

q¼ 3327:2�103� 60�3�151:5ð Þ�103

11,863,080�104
¼ 2� a�233:7

Then, a¼1.64 mm, taken as 8 mm, which is the minimum size.

4.2.6 Check of Lateral Torsional Buckling of the Plate
Girder Compression Flange

To check the safety of the upper compression flange against lateral tor-

sional buckling, we have to calculate the elastic critical moment for lateral

30
0
cm

60

3

1.6

y y

s

3

s

Figure 4.20 Calculation of flange fillet weld size at supports.
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torsional buckling (Mcr). Considering the cross section at midspan shown

in Figure 4.21, we can calculate Mcr as follows:

Mcr ¼Cb

p
klb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pEy

klb

� �2

CwIz +EzIzGJ

s

Given: Cb¼1.13, E¼210 GPa, G¼81 GPa, lb¼5000 mm, and k¼1

Inertia about z-z Izð Þ¼ 2�3�603=12+ 2�3�562=12+ 300�1:63=12

¼ 195,910 cm4

Cw¼ h2� Iz

4
¼ 31202�195,910�104

4
¼ 4:76766576�1015 mm6

j¼ 1

3
2�600�303 + 2�560�303 + 3120�163
� �¼ 25,139,840mm2

30
0
cm

56

60

3
3

1.6

y y

z

z

Figure 4.21 Check of lateral torsional buckling of plate girder.
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Mcr ¼ 1:13
3:14

5000

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:14�210

5000

 !2

4:76766576�1015�195,910�104

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+210�195,910�104�81�25,139,840

p
Mcr ¼ 0:00070964

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:624502122�1023 + 8:377673439�1020

p

Mcr ¼ 286,757,770Nmm¼ 286,758 kNm

We can now check the safety against lateral torsional buckling following

the rules specified in EC3 [1.27, 2.11] as follows:

MEd

Mb,Rd

� 1:0

Given: MEd¼24,026 kN m and Wy¼118,330 cm3

Mb,Rd¼ wLTWy

fy

gM1

�lLT¼
ffiffiffiffiffiffiffiffiffiffiffi
Wy fy

Mcr

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32,541

286,758

r
¼ 0:337

FLT ¼ 0:5 1+ aLT �lLT�0:2
� �

+ �l
2

LT

h i
¼ 0:5 1+ 0:76 0:337�0:2ð Þ+0:3372

	 
¼ 0:609

wLT ¼
1

FLT +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

LT��l
2

LT

q but wLT � 1:0

wLT ¼
1

0:609+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6092�0:3372

p but wLT� 1:0

wLT ¼ 0:896

Mb,Rd¼ 0:896�32,541

1:0
¼ 29,156:7 kNm> 24,032 kNm

4.2.7 Design of Web Stiffeners
There are two types of stiffeners used to strengthen the thin web plate of

the main plate girder against buckling due to shear stresses, bending stresses,

or both. The stiffeners at the supports are commonly known as load bearing

stiffeners, while intermediate stiffeners are commonly known as stability

stiffeners (intermediate transverse stiffeners). The design of the stiffeners

can be performed as follows:
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4.2.7.1 Load Bearing Stiffeners
To design the load bearing stiffener at supports (see Figure 4.22), we can also

follow the design rules specified in EC3 [1.27, 2.11] for concentrically

loaded compression members. The axial force in the stiffener is the maxi-

mum reaction at supports (NEd¼RD+L+F), which is equal to 3327.2 kN.

The design procedures can be performed as follows:

NEd

Nb,Rd

� 1:0

where, Nb,Rd¼ wAfy
gM1

A¼ 2�25�2:4+ 46:4�1:6¼ 194:24 cm2

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i

�l¼
ffiffiffiffiffiffiffi
Afy

Ncr

s

Ncr ¼ p2�EI

L2
¼ 3:142�210,000�27,492:6�104

30002
¼ 63,248,742N

�l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
194:24�100�275

63,248,742

r
¼ 0:29

F¼ 0:5 1+ 0:49 0:29�0:2ð Þ+0:292
	 
¼ 0:564

2.4
25 cm

2.422 22

1.6

25 cm

xx

Figure 4.22 Load bearing web stiffeners at supports.
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w¼ 1

0:564+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5642�0:292

p ¼ 0:954 but w� 1:0

Then, Nb,Rd¼ 0:954�194:26�100�275

1:1
¼ 4,633,101N

Nb,Rd¼ 4633:1 kN>NEd¼ 3327:2 kN Then O:K:ð Þ

4.2.7.2 Intermediate Stiffeners
Intermediate stiffeners (see Figure 4.23) can be designed by choosing its

dimensions such that

a1

hw
¼ 1667

3000
¼ 0:556<

ffiffiffi
2

p
¼ 1:414 Then O:K:ð Þ

and Ist� 1:5h2wt
3
w

a21
¼ 1:5�3003�1:63

166:72
¼ 5969:6 cm4

Ist¼ 46�1:63=12+ 2� 2�253=12+ 50�13:32
	 
¼ 22913 cm4

> 5969:6 cm4 Then O:K:ð Þ

4.2.8 Design of Stringer Bracing (Lateral Shock or Nosing Force
Bracings)

The stringer bracings are subjected to lateral moving reversible force of

100 kN. The bracing members carry either tensile or compressive forces

according to the changing direction of the lateral shock force (transverse

horizontal force) (see Figure 4.24). The cross section of the bracing member

can be determined from designing the critical diagonal member for the com-

pressive force as follows:

2.0 
25 cm

2.0 22 22 

1.6 
25 cm

xx

Figure 4.23 Intermediate stability web stiffeners.
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Assume the cross section of the stringer bracing as two angles back-to-

back 80�80�8 (see Figure 4.24); then,

a¼ tan�1 1:8

1:667
¼ 47:2

�

lb ¼ 2453mm

e¼
ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

�l¼Lcr

i

1

l1

l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 2435

24:3

1

86:7636
¼ 1:163

100 kN

100 kN

Fsina

F

Fcosa

X.G. web X.G. web

Stringer web

Stringer web

10 mm

x x

y

y

166.7 cm166.7 cm166.7 cm

Plan
s

s

Bracing cross section s-s 2 angles back-to-back
80×80×8

18
0 

cm
Figure 4.24 Lateral shock (nosing force) bracing for stringers.

248 Ehab Ellobody

Figure 4.24


The axial compressive force in the diagonal bracing member

(NEd¼90.9 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

A¼ 2�12:3¼ 24:6 cm2

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 1:163�0:2ð Þ+1:1632

	 
¼ 1:34

w¼ 1

1:34+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:342�1:1632

p ¼ 0:499 but w� 1:0

Then, Nb,Rd¼ 0:499�24:6�100�275

1:1
¼ 306,885N

Nb,Rd¼ 306:9kN>NEd¼ 90:9kN Then O:K:ð Þ

4.2.9 Design of Wind Bracings
Wind forces acting on the double-track railway bridge (see Figure 4.25) as

well as any other lateral forces directly applied to the bridge are transmitted

to the bearings by systems of upper and lower wind bracings as well as cross

bracings. The upper wind bracing carries wind forces on the moving train,

4 m

7200 mm

1.5 m

1.5 m

Fw

Figure 4.25 Design heights for upper and lower wind bracings.
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wind forces on upper half of the main plate girder, and lateral shock (nosing

force) applied to the tracks (see Figure 4.26). On the other hand, wind forces

acting on the lower half of the main plate girder are transmitted by the lower

wind bracing (see Figure 4.27). Wind bracings are quite important to the

lateral stability of the bridges, and therefore, it is recommended to use iden-

tical cross sections for the upper and lower wind bracings. Wind forces

applied to this bridge can be sufficiently estimated using the design rules

specified in EC1 [3.2] as follows:

Fw ¼ 1

2
rv2bCAref ,x

vb ¼ cdir� cseason� vb,0 ¼ 1:0�1:0�26¼ 26m=s

Aref ,x¼ 7�31¼ 217m2

Fw ¼ 1

2
�1:25�262�5:7�217¼ 522,590:3N¼ 522:6kN

30 mRA

3.
6 

m
3.

6 
m

7.
2 

m

A B

RB

qWL = 23.27 kN/m

a
Fsina

F

100 kN

s

s

Figure 4.26 Loads on the upper wind bracing.

7.2 m

3.6 m

3.6 m

RA

A B 

30 m

qWL 
= 6.34 kN/m

RB

Figure 4.27 Loads on the lower wind bracing.
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Considering the structural analysis for the upper wind bracing system

shown in Figure 4.26, the critical design wind force in the diagonal bracing

members can be calculated as follows:

Distributed wind loads ðq
WL
Þ¼ 522:6� 5:5=7ð Þ=30¼ 13:69 kN=m

Factored distributed wind loads¼ q
WL

�gq¼ 13:69�1:7¼ 23:27 kN=m

RA ¼ 100+ 23:27�15¼ 449:05 kN

a¼ tan�1 3:6=5ð Þ¼ 35:75�

FD¼ 349:05= 2� sin35:75ð Þ¼ 298:7 kN

The cross section of the bracing member (see Figure 4.28) can be deter-

mined as follows:

lbx¼ 6160mm, lby¼ 1:2�6160¼ 739:2mm

Choose two angles back-to-back 150�150�15, with 10 mm gusset plate

between them:

A¼ 2�43:2¼ 86:4 cm2, ix ¼ 4:59 cm, e¼ 4:26 cm,

iy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:592 + 4:26+ 1=2ð Þ2

q
¼ 6:61 cm

e¼
ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

�l¼Lcr

i

1

l1

10 mm

x x

y

y

2 angles back-to-back
150 × 150 × 15 

e = 42.6 mm

Figure 4.28 Upper wind bracing cross section s-s.
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l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 6160

45:9

1

86:7636
¼ 1:547

The axial compressive force in the diagonal bracing member

(NEd¼298.7 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

A¼ 2�43:2¼ 86:4 cm2

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 1:547�0:2ð Þ+1:5472

	 
¼ 1:926

w¼ 1

1:926+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:9262�1:5472

p ¼ 0:325 but w� 1:0

Then, Nb,Rd¼ 0:325�86:4�100�275

1:1
¼ 702,000N

Nb,Rd¼ 702 kN>NEd¼ 298:7kN Then O:K:ð Þ

4.2.10 Design of Stringer-Cross Girder Connection
The stringer is designed as a simply supported beam on cross girders; there-

fore, the connection is mainly transferring shear forces (maximum reaction

from stringers of 599.5 kN) (see Figure 4.29). UsingM27 high-strength pre-

tensioned bolts of grade 8.8, having fub of 800 MPa, shear area A of

4.59 cm2, and gross area Ag of 5.73 cm2, we can determine the required

number of bolts, following the rules specified in EC3 (BS EN 1993-1-8)

[2.13], as follows:

Fv,Rd¼ aVfubA
gM2

Fv,Rd¼ 0:6�800�459

1:25
¼ 176,256N
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Then, Fv,Rd equals 176 kN (for bolts in single shear) and 353 kN (for bolts

in double shear):

Fs,Rd¼ ksnm
gM3

Fp,C

Fp,C¼ 0:7fubAs ¼ 0:7�800�573¼ 320,880N

Fs,Rd,ser ¼ 1:0�1:0�0:4

1:1
320,880¼ 116,683:6N:

Then, Fs,Rd¼117 kN (for bolts in single shear at serviceability limit

states) and Fs,Rd¼234 kN (for bolts in double shear at serviceability limit

states). At ultimate limit states, Fs,Rd,ult can be calculated as follows:

Fs,Rd,ult ¼ 1:0�1:0�0:4

1:25
320,880¼ 102,682N:

Then, Fs,Rd¼103 kN (for bolts in single shear at ultimate limit states) and

Fs,Rd¼206 kN (for bolts in double shear at ultimate limit states):

N1 ¼ 599:5

206
¼ 2:9 taken as 3 bolts,

N2¼ 599:5

103
¼ 5:8 taken as 6 bolts

4.2.11 Design of Cross Girder-Main Plate Girder connection
The cross girder is designed as a simply supported beam on main plate

girders; therefore, once again, the connection is mainly transferring

shear forces (maximum reaction from cross girders of 1502.7 kN) (see

Figure 4.30). We can determine the required number of bolts as follows:

QD+L+f = 599.5 kN

N1N2

QD+L+f = 599.5 kN

Figure 4.29 The connection between stringer and cross girder.
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N3 ¼ 1502:7

206
¼ 7:3 taken as 8 bolts,

N2 ¼ 1502:7

103
¼ 14:9 taken as 16 bolts

4.2.12 Design of Field Splices
Figure 4.31 shows the locations of filed splices for the investigated bridge.

Designing the splice requires determination of size of connecting plates as

well as the number of bolts of the filed splice shown in Figure 4.32. The area

of the flange plate equals to 60�3¼180 cm2; this can be compensated by

three flange splice plates having a cross-sectional area of 60�1.6 and

2�27�1.6 cm2 with a total area of 182.4 cm2, which is greater than the

original area, while the area of web plate¼300�1.6¼480 cm2 can be com-

pensated by two web splice plates having cross-sectional area of

2�290�1.0 cm2 with a total area of 580 cm2, which is governed by the

minimum thickness (10 mm) of plates used in railway steel bridges.

QD+L+f = 1502.7 kN

N3
N4

Figure 4.30 The connection between cross girder and main plate girder.
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The top row of bolts in the web (see Figure 4.32) is subjected to horizontal

shear from the bending moment distribution, assuming the yield stress

reached at the extreme and lower fibers of the flanges, and vertical shear from

the applied loads. Using a spacing of 10 cm between two adjacent bolts,

an edge spacing of 5 cm, and a hole of 3 cm (2.7 cm bolt diameter plus

70008500 85007000

6 × 5000 = 30,000 mm

31,000 mm

7700 770015600

Field splice position Field splice position

Figure 4.31 Positions of field splices in the main plate girder.

300 cm

60

3

1.6

y y

3

275 MPa

140 cm

290 cm

10 cm

27

251.6 MPa

Figure 4.32 The field splice of the main plate girder.
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0.3 cm clearance), we can determine the horizontal shear force (H) per bolt

and the vertical shear per bolt (V ) as follows:

H ¼Area from centrelines between bolts

� average stress at the bolt location favð Þ
fav¼ 140�275=153¼ 251:6MPa

H ¼ 100�30ð Þ�16�251:6=2¼ 140896N¼ 140:9kN

V¼maximum shear resisted by web/total number of bolts.

Maximum shear resisted by web was previously calculated in the check

of the safety of the plate girder against shear stresses and was 8313.8 kN.

The total number of bolts in one side of the splice is 58 bolts:

V ¼ 8313:8=58¼ 143:3kN

The resultant of the forces per bolt (R) is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
140:92 + 143:32

p
¼ 201 kN, which is less than 206 kN (the resistance of

the bolt in double shear). Then O.K.

Flange Splices

Maximum force in the upper flange¼ 180�275�100=1000¼ 4950 kN

N flangeð Þ¼ 4950=206¼ 24 bolts 6 rows of four bolts in double shearð Þ

4.2.13 Design of Roller Steel Fabricated Bearings
Let us now design the roller steel fabricated bearings shown in Figure 4.1 and

detailed in Figure 4.33. The maximum vertical reaction at the supports of

the main plate girder was previously calculated under dead and live loads

with dynamic effect (RD+L+F), which was 3327.2 kN. The material of

construction for the bearings is cast iron steel (ISO 3755) 340-550 having

a yield stress of 340 MPa and an ultimate stress of 550 MPa.

Design of the Sole Plate
The reaction (RD+L+F) can be assumed as two equal concentrated loads at

two points, which are the centers of gravity of half of the load bearing

stiffener section shown in Figure 4.33. To determine the centers of gravity

(distance e), we can take the first area moment around the axis z-z, shown in

Figure 4.33, as follows:

e¼ 2�25�1:2�0:6+ 23:2�1:6�11:6

2�25�1:2+ 23:2�1:6
¼ 466:592

97:12
¼ 4:8 cm
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1.225 cm

1.2
22

1.6

25 cm

60 cm 55

2
2

2
2

6 1212 cm 6

36 cm
Sole plate 

3
3

R=17 cm

(d+10)/2 (d+10) (d+10)/2
a3 = 48

60 cm 5 555

e

3
3

2

Upper bearing plate
R

80 cm

14 cmd = 14 cm
Rollers

24 cm 1313
2.5 2.52.52.5

4
4

6.93 MPa
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R/2 R/2

112,266 N mm 62370 

80 cm
Lower bearing plate

112,266 N mm

z

z

Figure 4.33 Detailing of the twin roller fabricated steel bridge bearings.
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Assuming that the thickness of the sole plate is t1, with detailed dimen-

sions shown in Figure 4.33 based on the flange plate girder dimensions,

we can determine the maximum moment applied to the sole plate (M) as

follows:

M ¼RD+L+F� e=2¼ 3,327,200�48=2¼ 78,952,800Nmm:

Section plastic modulus Wpl

� �¼ b1t
2
1=4¼ 700� t21=4¼ 175� t21

The plate thickness t1 can be calculated now as follows:

M

Wpl

¼ fy

gM0

79,852,800

175� t21
¼ 340

1:0

Then, t1¼36.6 mm, taken as 40 mm, as shown in Figure 4.33.

Design of the Rollers
The design of rollers requires determination of the diameter, length, and

number of rollers that can resist the vertical load, as well as the arrangement,

and allowed movement in the direction of rollers. The design axial force

per unit length of roller contact NSd

0
specified in BS EN 1337-1 [3.11]

shall satisfy

N
0
Sd �N

0
Rd

where NRd

0
is the design value of resistance per unit length of roller contact,

which is calculated as

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

Assume the number of rollers is 2 and their length is 800 mm as shown in

Figure 4.33:

N
0
Sd ¼

RD+L+F

2�800
¼ 3,327,200

1600
¼ 2079:5N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

2079:5¼ 33:131�R

Then, R¼62.8 mm, taken as 70 mm and the diameter D is 140 mm.
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Design of Upper Bearing Plate
The upper bearing plate is shown in Figure 4.33. The width and length of

the plate are dependent on the spacing between rollers and the length of rol-

lers as well as the allowed movement in the direction of rollers. The thick-

ness of the upper bearing plate can be determined as follows:

M ¼RD+L+F

2
� D+100ð Þ

2
¼ 3327:2�103

2
�240

2
¼ 199,632,000Nmm:

Wpl ¼ b2t
2
2

4
¼ 800t22

4
¼ 200� t22 mm3

The plate thickness t2 can be calculated now as follows:

M

Wpl

¼ fy

gM0

199,632,000

200� t21
¼ 340

1:0

Then, t1¼54.2 mm, taken as 60 mm, as shown in Figure 4.33.

The radius of the curved part of the upper bearing plate, which has a

length of 600 mm as shown in Figure 4.33, can be determined the same

way as that adopted for the design of the rollers:

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

N
0
Sd ¼

RD+L+F

600
¼ 3,327,200

600
¼ 5545:33N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

5545:33¼ 33:131�R

Then, R¼167.4 mm, taken as 170 mm.

Design of Lower Bearing Plate
The lower bearing plate is shown in Figure 4.33. The width and length of

the plate are dependent on the strength of concrete and are dependent on

the spacing between rollers and the length of rollers as well as the allowed

movement in the direction of rollers. The thickness of the upper bearing

plate can be determined as follows:
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fc ¼RD+L+F

a3b3
¼ 3327:2�103

600�800
¼ 6:93MPa <

fc

gc
¼ 40

1:5
¼ 26:7 MPa for a typical concrete in bridges of C40=50 with fckð Þ
The plate thickness t3 can be calculated from the distribution of

bending moment, caused by the pressure on the concrete foundation, as

follows:

M ¼ 112,266 N mm per unit width of the plate:

Wpl ¼ b3t
2
3

4
¼ 1� t23

4
¼ 0:25� t22 mm3

M

Wpl

¼ fy

gM0

112,266

0:25� t23
¼ 340

1:0

Then, t3¼36.3 mm, taken as 40 mm, as shown in Figure 4.33.

4.2.14 Design of Hinged Line Rocker Steel Fabricated Bearings
Finally, we can now design the hinged line rocker steel fabricated bearings

shown in Figure 4.1 and detailed in Figure 4.34. The maximum vertical

reaction at the support of the main plate girder was previously calculated

under dead and live loads with dynamic effect (RD+L+F), which was

3327.2 kN. The bearing is also subjected to a lateral force from the braking

and traction forces from tracks as well as subjected to a longitudinal force

from the reactions of the upper and lower wind bracings, which cause

moments around longitudinal and lateral directions of the bearing base,

respectively. Similar to the roller bearing, the material of construction for

the bearings is cast iron steel (ISO 3755) 340-550 having a yield stress of

340 MPa and an ultimate stress of 550 MPa. It should be noted that the over-

all height of the hinged bearing must be exactly the same as that of the roller

bearing. The general layout and assumed dimensions of the hinged line

rocker bearing are shown in Figure 4.34. It should be noted that the hinged

line rocker bearings may not be the best hinged bearings for use nowadays.

However, the main advantage of choosing this bearing is to illustrate for

readers the applied loads on hinged bearings and review of the fundamentals

of checking the stresses on hinged bearing. Steel fabricated bearings consist

of designed parts, which are the best for teaching purposes. The tractionQlak

and braking Qlbk forces can be calculated as follows:
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Qlak ¼ 33�La,b¼ 33�30¼ 990kN� 1000 kN½ �, for Load Models 71

Qlbk¼ 20�La,b ¼ 20�30¼ 600� 6000 kN½ �,
for Load Models 71,SW=0,SW=2 and HSLM

Total the braking and traction forces (Qtot)¼1590 kN (see Figure 4.34

for the direction of the forces). Also, the reactions from upper and lower

Socket

60 cm 55

2
24

4

17 cm 2.52.5 77

60 cm 5 555

16.5

2

R = 17 cm

15

16.5

Socket

15 cm 30.0 1010 30.0

80 cm

90 cm 1010

7.5

40.0 cm40.0 cm 15

fmax = 6.17 MPa 3.65 MPa
fmin = 0.19 MPa

-

10

90

10

80

xx

y

y

1590 kN
544.15 kN

3327.2 kN

s

s

s1 s1

Figure 4.34 Detailing of the hinged line rocker fabricated steel bridge bearings.
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wind bracings (Rtot) (see Figure 4.34 for the direction of the forces) were

previously calculated as follows:

Rtot¼ 449:05+ 95:1¼ 544:15 kN

We can now determine the normal stress distribution due to the applied

loads, shown in Figure 4.34, on the concrete foundation as follows:

f ¼�N

A
�Mx

Ix
y�My

Iy
x

N

A
¼ 3,327,200

950�1100
¼ 3:18MPa

Mx

Ix
y¼ 544:15�103�240

950�11003=12
550¼ 0:68MPa

My

Iy
x¼ 1590�103�240

1100�9503=12
475¼ 2:31MPa

fmax ¼�3:18�0:68�2:31¼�6:17MPa

fmin ¼�3:18+ 0:68+ 2:31¼�0:19MPa

The critical bending moment on the base plate of the hinged bearing is at

section s-s, shown in Figure 4.34:

M ¼ 0:5�400�3:65ð Þ�1100�400=3+ 0:5�400�6:17ð Þ�1100

�400�2=3
¼ 469,040,000Nmm

Wpl ¼ 1100� t24=4¼ 275t24

M

Wpl

¼ fy

gM0

469,040,000

275t24
¼ 340

1:0

Then, t4¼70.8 mm, taken as 75 mm.

The normal stresses at section s1-s1, shown in Figure 4.34, of the line

rocker bearing can be checked as follows:

Mx¼ 544:15�103�165¼ 89,784,750Nmm:

My ¼ 1590�103�165¼ 262,350,000Nmm:
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N

A
¼ 3,327,200

150�800
¼ 27:73MPa

Mx

Ix
y¼ 89,784,750

150�8003=12
400¼ 5:61MPa

My

Iy
x¼ 262,350,000

800�1503=12
75¼ 87:45MPa

fmax¼� 27:73+ 5:61+ 87:45ð Þ¼�120:79MPa< 340MPa Then O:K:ð Þ

4.3 DESIGN EXAMPLE OF A THROUGH TRUSS HIGHWAY
STEEL BRIDGE

The second design example presented in this chapter is for a through truss

highway steel bridge (Figure 4.35). The general layout of the through bridge

is shown in Figures 4.36 and 4.37, with a brief introduction to the bridge

components previously explained in Figure 1.21. This type of trusses is a

Pratt truss bridge first designed by Thomas and Caleb Pratt in 1844. A Pratt

truss has parallel top and bottom chords and is an efficient form of a truss

arranged such that long diagonals are subjected to tension and verticals in

compression. The truss bridge has simply supported ends with a length

between supports of 60 m. The truss bridge has an N-shaped truss with

10 equal panels of 6 m. It is required to design the bridge adopting the design

rules specified in EC3 [1.27]. The steel material of construction of the bridge

conformed to standard steel grade EN 10025-2 (S 275) having a yield stress

of 275 MPa and an ultimate strength of 430 MPa. The dimensions and gen-

eral layout of the bridge are shown in Figures 4.36 and 4.37. The bridge has

upper and lower wind bracings of K-shaped truss members. The expected

live loads on the highway bridge conform to Load Model 1, which

4

16.5

7.5

4

6

14

4

28 cm

Figure 4.35 The designed roller and hinged line rocker fabricated steel bearings.
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represents the static and dynamic effects of vertical loading due to normal

road traffic as specified in EC1 [3.1]. The bolts used in connections and

field splices are M27 high-strength pretensioned bolts. The unit weight

of reinforced concrete slab decks used is 25 kN/m3.

4.3.1 Design of the Stringers (Longitudinal Floor Beams)
Let us start by designing the stringers, the longitudinal steel beams, support-

ing the reinforced concrete slab deck as shown in Figure 4.36.

Dead Loads
The general layout of an intermediate stringer is shown in Figure 4.38. The

dead loads acting on an intermediate stringer can be calculated as follows:

Flooring 1:75 kN=m2
� �¼ 1:75�2¼ 3:5 kN=m

Reinforced concrete slab deck 0:2m thicknessð Þ¼ 5�2¼ 10 kN=m

7500 mm

2000
1000

2000 2000 1000 1000 2000 2000 1000 2000

12,000 mm

150200

Elevation

7500

6000S

S 10 × 6000 = 60000

U1 U3U2 U4 U5

V1 V3V2
V4 V5 V6

L5L4L3L2L1

Figure 4.36 General layout of a through truss highway steel bridge (the second design
example).
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Upper wind bracing

Lower wind bracing

6000

6000

6000

6000

2000

2000

10 × 6000 = 60,000

10 × 6000 = 60,000

Elevation

7500

6000

SS

10 × 6000 = 60,000

U1 U3U2 U4 U5

V1 V3V2 V4 V5 V6

L5L4L3L2L1

S1 S1

Figure 4.37 General layout of a through truss highway steel bridge (the second design
example).

2m

R.C. haunched
slab deck 

Road finishing

An intermediate
stringer 

Figure 4.38 General layout of a an intermediate stringer.
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Haunch Equivalent to 1 cm slab thicknessð Þ¼ 0:25�2¼ 0:5kN=m

Own weight of stringer¼ 1:5kN=m

Total dead load¼ gvk¼ 15:5kN=m

Assuming the stringers are simply supported by the cross girders, we can

calculate the maximum shear force and bending moment due to dead loads

on an intermediate stringer (see Figure 4.39) as follows:

QD:L:¼ gvk�L=2¼ 15:5�6=2¼ 46:5kN

MD:L:¼ gvk�L2=8¼ 15:5�62=8¼ 69:75 kNm

Live Loads
The live loads acting on the highway bridge conform to Load Model 1,

which represents the static and dynamic effects of vertical loading due to

normal road traffic as specified in EC1 [3.1]. To determine the worst cases

of loading on an intermediate stringer due to live loads, we can study a lateral

section through vehicles and a lateral section through distributed loads of

Load Model 1 acting on the bridge, as shown in Figure 4.40. From the sec-

tion through vehicles, we find that the maximum concentrated load trans-

ferred to the stringer is 200 kN, while from the section through distributed

loads, we find that themaximum distributed load transferred to the stringer is

14.34 kN/m. Therefore, the load distribution transferred to the stringer in

the longitudinal direction is as shown in Figure 4.41. Two cases of loading

for the evaluation of maximum bending moment due to live loads on a

gvk = 15.5 kN/m 

6 m

+
–

S.F.D.

+

B.M.D.

46.5 kN

46.5 kN

69.75 kN.m

Figure 4.39 Straining actions from dead loads acting on an intermediate stringer.
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stringer can be studied. The first case of loading is that the centerline of the

stringer divides the spacing between the resultant of the concentrated live

loads and the closest load, with maximum bending moment calculated at

the closest load (point a in Figure 4.42), while the second case of loading

is that the centerline of the stringer is located in the middle between the

200 kN 200 kN

14.34 kN/m

Figure 4.41 Transferred live loads on an intermediate stringer.

150 kN150 kN
100 kN

2m 1m 1m

200 kN

2m 0.5m 1m

14.34 kN/m

qvk = 9 kN/m qvk = 2.5 kN/m

0.5m

Section through vehicles

Section through distributed loads

Figure 4.40 Calculation of straining actions from live loads transferred on an
intermediate stringer.
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concentrated live loads, with maximum bending moment located at

midspan as shown in Figure 4.42:

ML:L: case of loading 1ð Þ¼ 223:02�2:7�14:34�2:72=2¼ 549:9 kNm

ML:L: case of loading 2ð Þ¼ 200�2:4+ 14:34�62=8¼ 544:5 kNm

There is a single case of loading for live loads to produce a maximum

shear force at the supports of the stringer, which is shown in Figure 4.43:

QL:L:¼ 403:02 kN

200 kN200 kN

1.2 4.8

6 m

Case of loading 1A B 

YA = 403.02 kN YB = 83.02 kN

14.34 kN/m

Figure 4.43 Cases of loading for the maximum shear force acting on a stringer.

a

200 kN200 kN

2.7 0.3 0.9 2.1

6m

Case of loading 1A B

YA = 223.02 kN YB = 263.02 kN

200 kN200 kN

0.6 2.4

6 m

Case of loading 2A B

YA = 243.02 YB = 243.02 kN

0.6

14.34 kN/m

2.4

14.34 kN/m

Figure 4.42 Cases of loading for the maximum bending moment acting on an
intermediate stringer.
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Bending Moment Due to Dead and Live Loads with Dynamic
Effect Added (MEd)

MEd¼MD:L:� gg +ML:L:� gq ¼ 69:75�1:3+ 549:9�1:35

¼ 833:04 kNm

It should be noted that, according to EC0 (BS EN 1990) [3.4], the

permanent actions of steel self-weight and superimposed load should be

multiplied by 1.2 at the ultimate limit state, while the permanent actions

of concrete weight should be multiplied by 1.35. Therefore, the total dead

load is calibrated and multiplied by 1.3. On the other hand, variable actions

comprising road traffic actions are multiplied by 1.35 at the ultimate limit

state. Once again, it should be noted that the load factors adopted in this

study are that of the ultimate limit state. This is attributed to the fact that

the finite element models presented in Chapters 6 and 7 can be used to ana-

lyze the bridges and provide more accurate predictions for the deflections

and other serviceability limit state cases of loading.

Shearing Force Due to Dead and Live Loads with Dynamic Effect Added (QEd)

QEd ¼QD:L:� gg +QL:L:� gq¼ 46:5�1:3+ 403:02�1:35¼ 604:5kN

Design Bending Moment (MEd) and Shear Force (QEd)

MEd ¼ 833:04 kNm

QEd¼ 604:5kN
for classes 1 and 2

Design of Stringer Cross Section

Mc,Rd¼Wpl� fy

gM0

833:04�106¼Wpl�275

1:0

WPL¼ 3,029,236mm3 ¼ 3029 cm3

ChooseUB610�229�113(equivalent toAmericanW24�76), shownin

Figure 4.44.WPL around x-x¼3281 cm3. To classify the cross section chosen,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924
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C1 ¼ 95:85mm, tfl¼ 17:3, C1=tfl ¼ 95:85=17:3¼ 5:54� 9�0:924
¼ 8:316 Stringer flange is class 1ð Þ

C2¼ 547:6mm, tw¼ 11:1, C1=tfl ¼ 547:6=11:1¼ 49:3� 72�0:924
¼ 66:5 Stringer web is class 1ð Þ

Check of Bending Resistance

Mc,Rd ¼Wpl� fy

gM0

¼ 3281�103�275

1:0
¼ 902,275,000Nmm

¼ 902:3 kNm>MEd¼ 833:04 kNm Then O:K:ð Þ

Check of Shear Resistance

Vpl,Rd¼
Av fy=

ffiffiffi
3

p� �
gM0

¼ 573�11:1ð Þ� 275=
ffiffiffi
3

p� �
1:0

¼ 1,009,833N

¼ 1009:8kN>QEd¼ 604:5 kN Then O:K:ð Þ

4.3.2 Design of the Cross Girders (Lateral Floor Girders)
The cross girders (the lateral floor beams) carry concentrated loads from the

stringers as shown in Figure 4.45. Therefore, the dead and live loads acting

on an intermediate cross girder can be calculated as follows:

228.2 mm

12.7

17.3

17.3

60
7.

6 
m

m

57
3 C2 =

547.6

11.1

x x

C1 = 95.85

Figure 4.44 The cross-section of stringers (UB 610�229�113).
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Dead Loads

Intermediate reactions from stringers due to dead loads¼ 15:5�6¼ 93kN

Reactions from stringers near supports due to dead loads¼ 93�2:5=2
¼ 116kN

Reactions from stringers at edges due to dead loads¼ 93�1:5=2¼ 70 kN

Own weight of cross girder¼ 3:0 kN=m

Assuming the cross girders are simply supported by the main plate

girders, we find that the maximum shear force and bending moment due

to dead loads on an intermediate cross girder (see Figure 4.45) are as follows:

QD:L: ¼ 320kN

MD:L: ¼ 768kNm

3 kN/m
70 kN

116 116
93 93 93 93

70

2 m 1 2 2 1 2 2 1

S.F.D.
+

+

+

–
–

–– B.M.D.

320 kN

70
76

317

201

195
102

96
3

3
96

102
195

201

317 320

76
70

146 kN.m 146 kN.m

172.5 172.5

568.5 568.5
766.5 766.5768

21

Figure 4.45 Straining actions from dead loads acting on an intermediate cross girder.
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Live Loads
To determine the worst cases of loading on an intermediate cross girder due

to live loads, we can study different longitudinal sections through vehicles,

distributed loads, and sidewalks of Load Model 1 acting on the bridge, as

shown in Figure 4.46. From the different sections, we can find that the max-

imum concentrated and distributed loads transferred to the intermediate

cross girder are shown in Figure 4.46. The case of loading for the evaluation

of maximum positive bending moment due to live loads on an intermediate

cross girder can be studied, as shown in Figure 4.46. The case of loading is

that the larger concentrated load from vehicles transferred is located at the

centerline (midspan) of an intermediate cross girder, with maximum bend-

ing moment located at the midspan as shown in Figure 4.46. The maximum

positive bending moment is calculated as follows:

ML:L: maximum positive bending momentð Þ
¼ 623:25�6�270�2�54�2:5�1:25�15�2:5�3:75�30�1

�5:5¼ 2725:1 kNm

The case of loading for the evaluation of maximum negative bending

moment due to live loads on an intermediate cross girder can be also studied,

as shown in Figure 4.47. The maximum negative bending moment is

calculated as follows:

15 kN/m

270

2 m 1.0 2 2 2.51 21.0

0.5

0.5 0.5
1.0

270
180180

9090

6 m 6 m

150

150

6 m

1.2

4.8

9 kN/m

100

100

6 m

1.2

4.8

2.5 kN/m

30 kN/m30 kN/m

783.75 kN 623.25 kN

A B

15 kN/m

a

54 kN/m

Figure 4.46 Case of loading for maximum positive bending moment from live loads
acting on an intermediate cross girder.
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ML:L: maximum negative bending momentð Þ¼ 30�2�1¼ 60 kNm

The case of loading for live loads to produce a maximum shear force at

the supports of an intermediate cross girder is shown in Figure 4.48. It should

be noted that for this through bridge, cars are not allowed to go on top of the

supports, which are the main trusses, by the presence of sidewalks to avoid

direct collision forces with the main trusses, as shown in Figure 4.48:

QL:L:¼ 877:6 kN

Bending Moment Due to Dead and Live Loads with Dynamic Effect
Added (MEd)

MEd ¼MD:L:� gg +ML:L:� gq ¼ 768�1:3+ 2725:1�1:35¼ 4677:3 kNm

Shearing Force Due to Dead and Live Loads with Dynamic Effect Added (QEd)

QEd ¼QD:L:� gg +QL:L:� gq ¼ 320�1:3+ 877:6�1:35¼ 1600:8 kN

6 m 6 m2 m 2 m

30 kN/m30 kN/m

–

60 kN m60 kN m

B.M.D.

Figure 4.47 Case of loading for maximum negative bending moment from live loads
acting on an intermediate cross girder.

15 kN/m

270

2 m 1 2 2 2 2
0.5 0.5 0.5

1

270
180 180

90 90

12 m

1

30 kN/m30 kN/m

937.625 kN 529.375 kN

A B

54 kN/m

0.5

Figure 4.48 Case of loading for maximum shearing force from live loads acting on an
intermediate cross girder.
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Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼ 4677:3 kNm

QEd¼ 1600:8 kN

Design of the Cross Girder Cross Section
The cross girder is designed as a welded plate girder as shown in Figure 4.49.

Theweb height is taken as equal to 1500 mm,which conforms to the recom-

mended values L/(7�9)¼12,000/(7�9)¼1714�1333 mm. The web

plate thickness is assumed to be 14 mm. The flange width is taken as equal

to 360 mm, with a thickness of 24 mm. To classify the cross section chosen,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 165mm, tfl ¼ 24, C1=tfl¼ 165=24¼ 6:9� 9�0:924
¼ 8:316 Cross girder flange is class 1ð Þ:

C2¼ 1464mm, tw ¼ 14, C1=tfl ¼ 1464=14¼ 104:6< 124�0:924
¼ 114:58 Cross girder web is class 3ð Þ:

15
0
cm

36 

2.4

1.4

y y

2.4

C1 = 16.5 

146.4

Figure 4.49 Welded plate girder section of cross girders.
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To calculate the bending moment resistance, the elastic section modulus

should be used:

Inertia about y-y¼ 1:4�1503=12+ 2� 36�2:43=12+ 36�2:4�76:22
	 


¼ 1,397,185:8 cm4

Weff ,min¼ 1,397,185:8=77:4¼ 18,051:5 cm3

Check of Bending Resistance

Mc,Rd ¼Wel,min� fy

gM0

¼ 18,051:5�103�275

1:0
¼ 4,964,162,500Nmm

¼ 4964:2 kNm>MEd¼ 4677:3kNm Then O:K:ð Þ

Check of Shear Resistance

Vb,Rd¼Vbw,Rd +Vbf ,Rd� � fywhwtwffiffiffi
3

p
gM1

By neglecting the flange contribution,

Vb,Rd¼Vbw,Rd� 1:2�275�1500�14ffiffiffi
3

p �1:1
¼ 3,637,306:7N¼ 3637:3 kN

Vbw,Rd¼ ww fywhwtwffiffiffi
3

p
gM1

�lw ¼ 0:76

ffiffiffiffiffiffi
fyw

tcr

s
, tcr ¼ ktsE

sE ¼ 190,000 14=1500ð Þ2 ¼ 16:55N=mm2

kt ¼ 5:34+ 4 1500=2000ð Þ2 ¼ 7:59

�lw ¼ 0:76

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
275

7:59�16:55

r
¼ 1:125> 1:08

Then, ww ¼ 1:37

0:7+ �lw
¼ 1:37

0:7+ 1:125
¼ 0:751
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Vbw,Rd¼ 0:751�275�1500�14ffiffiffi
3

p �1:1
¼ 2,276,347:8N¼ 2276:3kN

< 3637:3kN

�3¼
VEd

Vb,Rd

¼ 1600:8

2276:3
¼ 0:703< 1:0 Then O:K:ð Þ

4.3.3 Calculation of Forces in Truss Members
4.3.3.1 General
To calculate the design forces in the truss members, we need to calculate the

dead and live loads acting on the main truss in the longitudinal direction,

which is addressed as follows.

Dead Loads
Weight of steel structure for part of bridge between the main trusses:

ws1 ¼ 1:75+ 0:04L +0:0003L2 � 3:5kN=m2

ws1 ¼ 1:75+ 0:04�60+ 0:0003�602¼ 5:23> 3:5kN=m2

taken as 3:5kN=m2

Weight of steel structure for part of bridge outside the main trusses:

ws2 ¼ 1+ 0:03L kN=m2

ws2 ¼ 1+ 0:03�60¼ 2:8kN=m2

ws¼ 3:5�12=2+ 2:8�2¼ 26:6kN=m

Weight of reinforced concrete decks and haunches:

wRC¼ 0:2+ 0:01ð Þ�25�5+ 0:15+ 0:01ð Þ�25�3¼ 38:25 kN=m

Weight of finishing (assume weight of finishing is 1.75 kN/m2 for parts

between sidewalks and 1.5 kN/m2 for sidewalks):

wF¼ 1:75�5+ 1:5�3¼ 13:25 kN=m

We can now calculate the total dead load acting on themain trusses in the

longitudinal direction (see Figure 4.50) as follows:

wD:L: ¼ 26:6+ 38:25+ 13:25¼ 78:1 kN=m

gvk  = 78.1 kN/m 

Figure 4.50 Dead loads acting on main trusses.
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Live Loads
To determine the live loads acting on main trusses in the longitudinal direc-

tions, we can study different lateral sections through vehicles, distributed

loads, and sidewalks of Load Model 1 acting on the bridge, as shown in

Figure 4.51. From the lateral section shown in Figure 4.51, we can find that

the maximum concentrated and distributed loads transferred to a main truss

are 375 kN and 43.8 kN/m, respectively, as shown in Figure 4.52. We can

also calculate the negative distributed reactions acting on a main truss in the

longitudinal direction by investigating the case of loading shown in

Figure 4.53. The negative distributed load acting on a main truss is

0.83 kN/m as shown in Figure 4.54. The calculated dead and live loads

2.5 kN/m2

150 kN

2 m 1 2 2 2 2 
0.5 0.5 0.5

1

150
100 100

50 50

12 m

1

5 kN/m25 kN/m2

Reaction from concentrated loads = 375 kN

A B 

9 kN/m2

0.5

Reaction from distributed loads = 43.8 kN/m

Figure 4.51 Maximum reactions due to live loads transferred by cross girders on main
trusses.

qvk = 43.8 kN/m 

375 kN 375 kN

1.2 m

Figure 4.52 Live loads acting on main trusses.

12 m2 m 2 m

5 kN/m2

Negative reaction from distributed loads = –0.83 kN/m

Figure 4.53 Negative reactions due to live loads transferred by cross girders on main
trusses.
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can be now used to determine the forces in the members of main trusses

using the influence line method as shown in the coming sections.

4.3.3.2 Calculation of Force in the Upper Chord Member U5

To determine the force in the upper chord trussmemberU5 (see Figure 4.55)

using the influence linemethod, we can follow the simple procedures of put-

ting a unit concentrated moving load at midspan (point a), and using the sec-

tioning method, we take a section s-s, as shown in Figure 4.55, and then take

themoment at point a to calculate the force in themember due to the applied

unit load. After that, we can put the previously calculated dead and live loads

acting on a main truss in the longitudinal direction. The total force in the

member will be the summation of the concentrated loads multiplied by

the companion vertical coordinate in the influence line diagram and the

summation of the distributed loads multiplied by the companion areas in

the diagram. Hence, the forces due to the dead and live loads can be calcu-

lated as follows:

FD:L: U5ð Þ¼�0:5�60�2�78:1¼�4686 kN

qvk = –0.83 kN/m 

Figure 4.54 Negative distributed live loads acting on main trusses.

7.5

30 m 

U5 U6

A
Ba

qvk = 43.8 kN/m
375 kN 375 kN

1.2 m

–

1.92

30 m 
gvk = 78.1 kN/m

s

s

30 × 30/(60 × 7.5) = 2

J6

Figure 4.55 Determination of the compressive force in upper chord member U5 using
the influence line method.

278 Ehab Ellobody

Figure 4.54
Figure 4.55


FL:L: U5ð Þ¼�375� 2+ 1:92ð Þ�0:5�60�2�43:8¼�4098 kN

FEd U5ð Þ¼FD:L:�gg +FL:L:�gq

FEd U5ð Þ¼�4686�1:3�4098�1:35
¼�11624:1 kN Compression forceð Þ

It should be noted that, from the equilibrium of joint J6 (see Figure 4.55), the

force in upper chord truss member U5 is equal to that of U6. It should also be

noted that the negative distributed loads are not used since they will produce

a small tensile force, which reduces the calculated compressive force.

4.3.3.3 Calculation of Force in the Lower Chord Member L5
To determine the force in the lower chord truss member L5 (see Figure 4.56)

using the influence line method, we put the unit concentrated load at point

a, and using the sectioning method, we take a section s-s, as shown in

Figure 4.56, and then take the moment at point a. After that, we can put

the previously calculated dead and live loads acting on a main truss in the

longitudinal direction. The forces due to the dead and live loads can be

calculated as follows:

FD:L: L5ð Þ¼ 0:5�60�1:92�78:1¼ 4498:6kN

FL:L: L5ð Þ¼ 375� 1:92+ 1:856ð Þ+0:5�60�1:92�43:8¼ 3938:9 kN

7.
5

24 m 

U4

L5A
B

a

375 kN 375 kN

1.2 m

+ 

24 × 36/(60 × 7.5) = 1.92 1.856 

36 m 

s

s

gvk = 78.1 kN/m

qvk = 43.8 kN/m

Figure 4.56 Determination of the tensile force in lower chord member L5 using the
influence line method.
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FEd L5ð Þ¼FD:L:�gg +FL:L:�gq

FEd L5ð Þmaximum¼ 4498:6�1:3+ 3938:9�1:35
¼ 11,165:7kN Tension forceð Þ

Since this member is a tensile member, we should check the minimum

force due to the negative distributed loads since theymay change the force in

the member to compression:

FL:L: L5ð Þ negativeð Þ¼�0:5�60�1:92�0:83¼�47:8 kN

FEd L5ð Þminimum¼ 4498:6�1:3�47:8�1:35
¼ 5783:7kN Tension forceð Þ

It should be noted that, from the equilibrium of the truss (see

Figure 4.56), the force in upper chord truss member U4 is equal to that

of the calculated lower chord member L5 but with a negative sign (a com-

pression force of 11,165.7 kN).

4.3.3.4 Calculation of Force in the Lower Chord Member L4
We can repeat the earlier procedures now and change the pole where the

moment is calculated to determine the force in the member, as shown in

Figure 4.57. Hence, the forces due to the dead and live loads can be calcu-

lated as follows:

7.
5

18 m 

U3

L4A
B

a

375 kN 375 kN

1.2 m

+

18 × 42/(60 × 7.5) = 1.68 1.632

42 m 

s

s

gvk = 78.1 kN/m

qvk = 43.8 kN/m

Figure 4.57 Determination of the tensile force in lower chord member L4 using the
influence line method.
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FD:L: L4ð Þ¼ 0:5�60�1:68�78:1¼ 3936:2kN

FL:L: L4ð Þ¼ 375� 1:68+ 1:632ð Þ+0:5�60�1:68�43:8¼ 3449:5 kN

FEd L4ð Þ¼FD:L:�gg +FL:L:� gq

FEd L4ð Þmaximum¼ 3936:2�1:3+ 3449:5�1:35
¼ 9773:9 kN Tension forceð Þ

FL:L: L4ð Þ negativeð Þ¼�0:5�60�1:68�0:83¼�41:8kN

FEd L4ð Þminimum¼ 3936:2�1:3�41:8�1:35
¼ 5060:6 kN Tension forceð Þ

It should be noted that, from the equilibrium of the truss (see

Figure 4.57), the force in upper chord truss member U3 is equal to that

of the calculated lower chord member L4 but with a negative sign (a com-

pression force of 9773.9 kN).

4.3.3.5 Calculation of Force in the Lower Chord Member L3
The force in member L3 due to the dead and live loads can be calculated, as

shown in Figure 4.58, as follows:

FD:L: L3ð Þ¼ 0:5�60�1:28�78:1¼ 2999 kN

FL:L: L3ð Þ¼ 375� 1:28+ 1:248ð Þ+0:5�60�1:28�43:8¼ 2629:9 kN

FEd L3ð Þ¼FD:L:�gg +FL:L:� gq

7.
5

12 m

U2

L3A
B

a

375 kN 375 kN

1.2 m

+

12 × 48/(60 × 7.5) = 1.28 1.248

48 m

s

s

gvk = 78.1 kN/m

qvk = 43.8 kN/m

Figure 4.58 Determination of the tensile force in lower chord member L3 using the
influence line method.

281Design Examples of Steel and Steel-Concrete Composite Bridges

Figure 4.58


FEd L3ð Þmaximum¼ 2999�1:3+ 2629:9�1:35
¼ 7449:1 kN Tension forceð Þ

FL:L: L3ð Þ negativeð Þ¼�0:5�60�1:28�0:83¼�31:9 kN

FEd L3ð Þminimum¼ 2999�1:3�31:9�1:35
¼ 3855:6kN Tension forceð Þ

It should be noted that, from the equilibrium of the truss (see

Figure 4.58), the force in upper chord truss member U2 is equal to that

of the calculated lower chord member L3 but with a negative sign (a com-

pression force of 7449.1 kN).

4.3.3.6 Calculation of Force in the Lower Chord Member L2
The force in member L2 due to the dead and live loads can be calculated,

as shown in Figure 4.59, as follows:

FD:L: L2ð Þ¼ 0:5�60�0:72�78:1¼ 1687 kN

FL:L: L2ð Þ¼ 375� 0:72+ 0:704ð Þ+0:5�60�0:72�43:8¼ 1480:1 kN

FEd L2ð Þ¼FD:L:�gg +FL:L:�gq

FEd L2ð Þmaximum¼ 1687�1:3+ 1480:1�1:35
¼ 4191:2 kN Tension forceð Þ

FL:L: L2ð Þ negativeð Þ¼�0:5�60�0:72�0:83¼�17:9 kN

FEd L2ð Þminimum¼ 1687�1:3�17:9�1:35
¼ 2168:9kN Tension forceð Þ

7.
5

6 m

U2

L2 A
B

a

375 kN 375 kN

1.2 m

+

6 × 54/(60 × 7.5) = 0.72 0.704

54 m

L1

s

s

gvk = 78.1 kN/m

qvk = 43.8 kN/m

Figure 4.59 Determination of the tensile force in lower chord member L2 using the
influence line method.
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It should be noted that, from the equilibrium of the truss (see

Figure 4.59), the force in upper chord truss member U1 is equal to that

of the calculated lower chord member L2 but with a negative sign (a com-

pression force of 4191.2 kN). It should also be noted that the force in the

lower chord member L1 is zero under vertical loading.

4.3.3.7 Calculation of Force in the Diagonal Chord Member D5

To determine the force in the diagonal chord truss member D5 (see

Figure 4.60) using the influence line method, we can follow the simple pro-

cedures of putting a unit concentrated moving load at point a adjacent to

section s-s, shown in Figure 4.60, and study the equilibrium of the truss

for the other side of section s-s to calculate the force in the member. Then,

we put the unit concentrated moving load at point b adjacent to section s-s,

shown in Figure 4.60, and study the equilibrium of the truss for the other

side of section s-s to calculate the force in the member. The influence line

of the diagonal member consists of two triangles as shown in Figure 4.60

having different signs. After that, we can put the previously calculated dead

and live loads acting on a main truss in the longitudinal direction. It should

be noted that the live loads can be put on the negative or positive triangle to

7.5 

24 m 

D5
V5

A  
B 

a

qvk = 43.8 kN/m 
375 kN 375 kN

1.2 m 

+ 

1.281 

1.281 

30 m 

V6

b

Fsinα

6 m 

–

gvk = 78.1 kN/m 

1.2 m 

qvk = 43.8 kN/m 

4.34 m 2.66 m 

0.512 

0.641 

0.486 

0.615 

375 kN 375 kN

s

s

Figure 4.60 Determination of the force in diagonal member D5 using the influence line
method.
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produce a compressive or tensile force, respectively, while the dead loads

must be put on both triangles. Once again, the total force in the member

will be the summation of concentrated loads multiplied by the companion

vertical coordinate in the diagram and the summation of the distributed loads

multiplied by the companion area in the diagram. Hence, the forces due to

the dead and live loads can be calculated as follows:

A+ve D5ð Þ¼ 0:5�33:34�0:641¼ 10:69

A�ve D5ð Þ¼ 0:5�26:66�0:512¼ 6:82

Anet D5ð Þ¼ 10:69�6:82¼ 3:87

FD:L: D5ð Þ¼ 3:87�78:1¼ 302:2 kN

FL:L: D5ð Þ positiveð Þ¼ 375� 0:641+ 0:615ð Þ+10:69�43:8+ 6:82�0:83
¼ 944:9 kN

FEd D5ð Þmaximum¼FD:L:� gg +FL:L:� gq

FEd D5ð Þmaximum¼ 302:2�1:3+ 944:9�1:35
¼ 1668:5kN Tension forceð Þ

FL:L: D5ð Þ negativeð Þ¼�375� 0:512+ 0:486ð Þ�6:82�43:8�10:69

�0:83¼�681 kN

FEd D5ð Þminimum¼FD:L:� gg +FL:L:�gq

FEd D5ð Þminimum¼ 302:2�1:3�681�1:35
¼�526:5 kN Compression forceð Þ

It should be noted that, from the equilibrium of joint J5 (see Figure 4.60),

the force in the vertical truss member V5 is equal to that of D5 multiplied by

sin a but with a negative sign (a compression force of 1668.5� sin

51.34¼1302.9 kN).

4.3.3.8 Calculation of Force in the Diagonal Chord Member D4

By repeating the procedures adopted for D5, the force in the diagonal truss

member D4 can be calculated, as shown in Figure 4.61, as follows:

A+ve D4ð Þ¼ 0:5�40�0:769¼ 15:38

A�ve D4ð Þ¼ 0:5�20�0:384¼ 3:84

Anet D4ð Þ¼ 15:38�3:84¼ 11:54
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FD:L: D4ð Þ¼ 11:54�78:1¼ 901:3 kN

FL:L: D4ð Þ positiveð Þ¼ 375� 0:769+ 0:743ð Þ+15:38�43:8+ 3:84�0:83
¼ 1243:8 kN

FEd D4ð Þmaximum¼FD:L:�gg +FL:L:�gq

FEd D4ð Þmaximum¼ 901:3�1:3+ 1243:8�1:35
¼ 2850:8kN Tension forceð Þ

FL:L: D4ð Þ negativeð Þ¼�375� 0:384+ 0:358ð Þ�3:84�43:8�15:38

�0:83¼�459:2kN

FEd D4ð Þminimum¼FD:L:�gg +FL:L:�gq

FEd D4ð Þminimum¼ 901:3�1:3�459:2�1:35
¼ 551:8kN Tension forceð Þ

It should be noted that, from the equilibrium of joint J4 (see Figure 4.61),

the force in the vertical truss member V4 is equal to that of D4 multiplied

by sin a but with a negative sign (a compression force of

2850.8� sin 51.34¼2226.1 kN).

7.
5

18 m

D4
V4

A
B

a

375 kN 375 kN

1.2 m

+

1.281

1.281

36 m

b

Fsinα
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–

1.2 m

4 m2 m

0.384

0.769

0.358

0.743

375 kN375 kN

s

s

gvk = 78.1 kN/m

qvk = 43.8 kN/m

qvk = 43.8 kN/m

Figure 4.61 Determination of the force in diagonal member D4 using the influence line
method.
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4.3.3.9 Calculation of Force in the Diagonal Chord Member D3

The force in the diagonal truss member D3 can be calculated, as shown in

Figure 4.62, as follows:

A+ve D3ð Þ¼ 0:5�46:67�0:897¼ 20:93

A�ve D3ð Þ¼ 0:5�13:33�0:256¼ 1:71

Anet D3ð Þ¼ 20:93�1:71¼ 19:22

FD:L: D3ð Þ¼ 19:22�78:1¼ 1501:1kN

FL:L: D3ð Þ positiveð Þ¼ 375� 0:897+ 0:871ð Þ+20:93�43:8+ 1:71�0:83
¼ 1581:2kN

FEd D3ð Þmaximum¼FD:L:� gg +FL:L:� gq

FEd D3ð Þmaximum¼ 1501:1�1:3+ 1581:2�1:35
¼ 4086:1kN Tension forceð Þ

FL:L: D3ð Þ negativeð Þ¼�375� 0:256+ 0:23ð Þ�1:71�43:8�20:93�0:83
¼�274:5kN
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+
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Figure 4.62 Determination of the force in diagonal member D3 using the influence line
method.
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FEd D3ð Þminimum¼FD:L:�gg +FL:L:�gq

FEd D3ð Þminimum¼ 1501:1�1:3�274:5�1:35
¼ 1580:9 kN Tension forceð Þ

It should be noted that, from the equilibrium of joint J3 (see Figure 4.62),

the force in the vertical truss member V3 is equal to that of D3 multi-

plied by sin a but with a negative sign (a compression force of

4086.1� sin 51.34¼3190.7 kN).

4.3.3.10 Calculation of Force in the Diagonal Chord Member D2

The force in the diagonal truss member D2 can be calculated, as shown in

Figure 4.63, as follows:

A+ve D2ð Þ¼ 0:5�53:33�1:025¼ 27:33

A�ve D2ð Þ¼ 0:5�6:67�0:128¼ 0:427

Anet D2ð Þ¼ 27:33�0:427¼ 26:9
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Figure 4.63 Determination of the force in diagonal member D2 using the influence line
method.
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FD:L: D2ð Þ¼ 26:9�78:1¼ 2100:9 kN

FL:L: D2ð Þ positiveð Þ¼ 375� 1:025+ 0:999ð Þ+27:33�43:8+ 0:427�0:83
¼ 1956:4 kN

FEd D2ð Þmaximum¼FD:L:� gg +FL:L:� gq

FEd D2ð Þmaximum¼ 2100:9�1:3+ 1956:4�1:35
¼ 5372:3kN Tension forceð Þ

FL:L: D2ð Þ negativeð Þ¼�375� 0:128+ 0:102ð Þ�0:427�43:8�27:33

�0:83¼�127:6kN

FEd D2ð Þminimum¼FD:L:� gg +FL:L:�gq

FEd D2ð Þminimum¼ 2100:9�1:3�127:6�1:35
¼ 2558:9 kN Tension forceð Þ

It shouldbenoted that, fromtheequilibriumof joint J2 (seeFigure4.63), the

force in thevertical trussmemberV2 is equal to thatofD2multipliedbysin abut
with a negative sign (a compression force of 5372.3� sin 51.34¼4195.1 kN).

4.3.3.11 Calculation of Force in the Diagonal Chord Member D1

The force in the diagonal truss member D1 can be calculated, as shown in

Figure 4.64, as follows:

A+ve D1ð Þ¼Anet D2ð Þ¼ 0:5�60�1:153¼ 34:59

FD:L: D1ð Þ¼ 34:59�78:1¼ 2701:5kN

FL:L: D1ð Þ positiveð Þ¼ 375� 1:153+ 1:127ð Þ+34:59�43:8¼ 2370:0 kN

FEd D1ð Þmaximum¼FD:L:� gg +FL:L:� gq

FEd D1ð Þmaximum¼ 2701:5�1:3+ 2370:0�1:35
¼ 6711:5kN Tension forceð Þ

FL:L: D1ð Þ negativeð Þ¼�34:59�0:83¼�28:7 kN

FEd D2ð Þminimum¼FD:L:� gg +FL:L:�gq

FEd D2ð Þminimum¼ 2100:9�1:3�28:7�1:35
¼ 2692:4kN Tension forceð Þ
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It should be noted that, from the equilibrium of joint J1 (see Figure 4.64),

the force in the vertical truss member V1 is equal to that of D1 multiplied

by sin a but with a negative sign (a compression force of 6711.5� sin

51.34¼5240.8 kN).

4.3.3.12 Calculation of the Reactions at Supports
The reactions at supports can be also calculated using the influence line

method, as shown in Figure 4.65, as follows:

A+ve Rð Þ¼Anet D2ð Þ¼ 0:5�60�1:0¼ 30:0

FD:L: Rð Þ¼ 30:0�78:1¼ 2343 kN

FL:L: Rð Þ positiveð Þ¼ 375� 1:0+ 0:98ð Þ+30:0�43:8¼ 2056:5kN

FEd Rð Þ¼FD:L:� gg +FL:L:� gq

FEd Rð Þmaximum¼ 2343�1:3+ 2056:5�1:35¼ 5822:2 kN

Figure 4.66 summarizes the calculated forces in the truss members and

presents the commonly known distribution of forces in the N-shaped main

truss under the dead and live cases of loading.

4.3.3.13 Design of the Maximum Compression Upper Chord Member U5

After the calculation of the design forces in the main truss members, we can

now design different members of the main truss. Let us start by designing the

375 kN 375 kN

1.2 m

1.281
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6 m
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48 m
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s

-4195.1
gvk = 78.1 kN/m

qvk = 43.8 kN/m

Figure 4.64 Determination of the force in diagonal member D1 using the influence line
method.
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maximum compression upper chord member U5, shown in Figure 4.67,

carrying a compressive design force of �11,624.1 kN. It should be noted

that box sections used with truss bridges may be bolted or welded. In bolted

box sections, channels are commonly used in webs and connected to cover

flange plates using bolts. However, bolted box sections require a lot of

detailing and are time-consuming to fabricate. That is why welded box sec-

tions consisting of flange and web plates have been commonly used in brid-

ges in the last decades, particularly for continuous chord members owing to

the advanced techniques available nowadays for butt welding, while verticals

and diagonals of truss bridges can be designed as bolted members since they

are not continuous and can be assembled and erected in the construction

field to avoid transportation problems. To assume a reasonable cross section

qvk = 43.8 kN/m 
375 kN

1.2 m 

1.0 

7.
5

RA

A  

a

60 m 

b

gvk = 78.1 kN/m 

+ 

0.98 

375 kN

Figure 4.65 Determination of the reaction RA using the influence line method.

–11624.1 

5822.2 kN

–11165.7 –9773.9 –7449.1 –4191.2 

11165.7 9773.9 7449.1 4191.2 

–5
24

0.
8 6711.5 5372.3 4086.1 2850.8 1668.5 

–4195.1 –3190.7 –2226.1 –1302.9

J1 J2 J3 J4 J5 J6

J7 J8 J9 J10 J11 J12

J13 

Figure 4.66 Distribution of forces in the N-shaped main truss under the dead and live
cases of loading.
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Figure 4.65
Figure 4.66


for the upper chord compression member, the following parameters can be

considered:

hw ¼ a

12�15
¼ 6000

12�15
¼ 500�400mm, taken as 450mm:

b¼ 0:75�0:9ð Þ, hw ¼ 0:75�0:9ð Þ�450

¼ 337:5�405mm, taken as 400mm:

It should be noted that the spacing between gusset plates (b) must be kept

constant for the whole truss. Let us start by assuming the upper cover plate

width of 550 mm, flange thickness of 36 mm, and web thickness of 24 mm.

After that, we design the member and check the stresses. If the section is safe

and economic, then the design is acceptable; otherwise, we change the

dimensions accordingly and repeat the procedures. To classify the cross

section chosen (see Figure 4.67),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

b¼ 400mm, tfl¼ 36, b=tfl¼ 400=36¼ 11:1< 30:5 Flange is Class 1ð Þ
C¼ 390mm, tw ¼ 24, C=tfl¼ 390=24¼ 16:25< 30:5 Web is class 1ð Þ

A¼ 55�3:6+ 40�3:6+ 2�45�2:4¼ 558 cm2

e¼ 55�3:6�24:3�40�3:6�16:5

558
¼ 4:36 cm

3.6 

55 cm 

3.6 

x x

m m 

C = 39 

hw = 45 

b = 40

e = 4.36

2.4

Gusset plate

2.4 

2.4 

Figure 4.67 The cross section of the maximum compression member U5 as well as that
of the member U4.
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Figure 4.67


Im¼ 2�2:4�453=12+ 55�3:63=12+ 55�3:6�24:32
	 


+ 40�3:63=12+ 40�3:6�16:52
	 
¼ 192,940:4 cm4

Ix ¼ 192,940:4�558�4:362¼ 182,333 cm4

Iy¼ 3:6�553=12+ 3:6�403=12+ 2� 45�2:43=12+ 45�2:4�21:22
	 


¼ 166,295:2 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
182,333

558

r
¼ 18:08 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
166,295:2

558

r
¼ 17:26 cm

lbx ¼ lby¼ 6000mm

�l¼Lcr

i

1

l1
l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 6000

172:6
� 1

86:7636
¼ 0:4

The axial compressive force in the upper chord member U5

(NEd¼11,624.1 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 0:4�0:2ð Þ+0:42

	 
¼ 0:614

w¼ 1

0:614+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6142�0:42

p ¼ 0:926 but w� 1:0

Then, Nb,Rd¼ 0:926�55,800�275

1:1
¼ 12,917,700N

Nb,Rd¼ 12,917:7kN>NEd¼ 11,624:1kN Then O:K:ð Þ
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It should be noted that the design force of member U4 is close to that

of this designed member U5; therefore, we can use the same cross section

for U4.

4.3.3.14 Design of the Compression Upper Chord Member U3

Following the same procedures adopted for the compression member

U5, we can design the compression upper chord member U3, shown in

Figure 4.68, carrying a compressive design force of�9773.9 kN. To classify

the cross section chosen (see Figure 4.67),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

b¼ 400mm, tfl¼ 30, b=tfl¼ 400=33¼ 13:3< 30:5 Flange is Class 1ð Þ
C¼ 396mm, tw ¼ 20, C=tfl ¼ 396=20¼ 19:8< 30:5 Web is class 1ð Þ

A¼ 55�3:0+ 40�3:0+ 2�45�2:0¼ 465 cm2

e¼ 55�3:0�24:0�40�3:0�18:6

465
¼ 3:72 cm

Im¼ 2�2:0�453=12+ 55�3:03=12+ 55�3:6�24:02
	 


+ 40�3:03=12+ 40�3:0�18:62
	 
¼ 167,143:95 cm4

Ix¼ 167,143:95�565�3:722 ¼ 160,709:1 cm4

3.0 

55 cm

3.0

x x 

m m 

C = 39.6

hw = 45

b = 40

e = 3.72

2.0 

Gusset plate 

2.0 

2.4 

Figure 4.68 The cross section of the compression member U3.
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Figure 4.68


Iy¼ 3:0�553=12+ 3:0�403=12+ 2� 45�2:03=12+ 45�2:0�21:02
	 


¼ 137,033:8 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160,709:1

465

r
¼ 18:59 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
137,033:8

465

r
¼ 17:17 cm

lbx ¼ lby¼ 6000mm

�l¼Lcr

i

1

l1
l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 6000

171:7
� 1

86:7636
¼ 0:4

The axial compressive force in the upper chord member U3

(NEd¼9773.9 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 0:4�0:2ð Þ+0:42

	 
¼ 0:614

w¼ 1

0:614+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6142�0:42

p ¼ 0:926 but w� 1:0

Then, Nb,Rd¼ 0:926�46,500�275

1:1
¼ 10,764,750N

Nb,Rd ¼ 10,764:8 kN>NEd¼ 9773:9 kN Then O:K:ð Þ

4.3.3.15 Design of the Compression Upper Chord Member U2

The compression member U2, shown in Figure 4.69, carrying a compressive

design force of�7449.1 kN can be designed as follows. To classify the cross

section chosen (see Figure 4.69),
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e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

b¼ 400mm, tfl¼ 24, b=tfl¼ 400=24¼ 16:7< 30:5 Flange is Class 1ð Þ
C¼ 402mm, tw ¼ 16, C=tfl¼ 402=16¼ 25< 30:5 Web is class 1ð Þ

A¼ 55�2:4+ 40�2:4+ 2�45�1:6¼ 372 cm2

e¼ 55�2:4�23:7�40�2:4�18:9

372
¼ 3:53 cm

Im¼ 2�1:6�453=12+ 55�2:43=12+ 55�2:4�23:72
	 


+ 40�2:43=12+ 40�2:4�18:92
	 
¼ 132,844:7 cm4

Ix ¼ 132,844:7�372�3:532¼ 128,209:2 cm4

Iy¼ 2:4�553=12+ 2:4�403=12+ 2� 45�1:63=12+ 45�1:6�20:82
	 


¼ 108,405:9 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128,209:2

372

r
¼ 18:56 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108,405:9

372

r
¼ 17:07 cm

lbx¼ lby ¼ 6000mm

2.4 

55 cm 

2.4 

x x 

m m 

C = 40.2 

h w
 =

 4
5

b = 40

e = 3.53 

1.6 

Gusset plate

1.6 

2.4 

Figure 4.69 The cross section of the compression member U2.
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Figure 4.69


�l¼Lcr

i

1

l1
l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 6000

170:7
� 1

86:7636
¼ 0:41

The axial compressive force in the upper chord member U3

(NEd¼7449.1 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 0:41�0:2ð Þ+0:412

	 
¼ 0:62

w¼ 1

0:62+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:622�0:412

p ¼ 0:922 but w� 1:0

Then, Nb,Rd¼ 0:922�37200�275

1:1
¼ 8,574,600N

Nb,Rd¼ 8574:6kN>NEd¼ 7449:1kN Then O:K:ð Þ

4.3.3.16 Design of the Compression Upper Chord Member U1

The compression member U1, shown in Figure 4.70, carrying a compressive

design force of�4191.2 kN can be designed as follows. To classify the cross

section chosen (see Figure 4.70),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

b¼ 400mm, tfl¼ 12, b=tfl¼ 400=12¼ 33:3< 35:11 Flange is Class 2ð Þ
C¼ 414mm, tw¼ 12, C=tfl¼ 414=12¼ 34:5< 35:11 Web is class 2ð Þ

A¼ 55�1:2+ 40�1:2+ 2�45�1:2¼ 222 cm2
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e¼ 55�1:2�23:1�40�1:2�19:5

222
¼ 2:65 cm

Im¼ 2�1:2�453=12+ 55�1:23=12+ 55�1:2�23:12
	 


+ 40�1:23=12+ 40�1:2�19:52
	 
¼ 71,708:9 cm4

Ix ¼ 71708:9�222�2:652 ¼ 70,149:9 cm4

Iy¼ 1:2�553=12+ 1:2�403=12+ 2� 45�1:23=12+ 45�1:2�20:62
	 


¼ 68,881:3 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
70149:9

222

r
¼ 17:78 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
68881:3

222

r
¼ 17:61 cm

lbx¼ lby ¼ 6000mm

�l¼Lcr

i

1

l1

1.2 

55 cm 

1.2 

x x 

m m 

C = 41.4

h w
 =

 4
5

b = 40

e = 2.65

1.2

Gusset plate

1.2 

2.4 

Figure 4.70 The cross section of the compression member U1.
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Figure 4.70


l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 6000

176:1
� 1

86:7636
¼ 0:39

The axial compressive force in the upper chord member U3

(NEd¼4191.2 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 0:39�0:2ð Þ+0:392

	 
¼ 0:61

w¼ 1

0:61+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:612�0:392

p ¼ 0:928 but w� 1:0

Then, Nb,Rd¼ 0:922�22,200�275

1:1
¼ 5,150,400N

Nb,Rd¼ 5150:4kN>NEd¼ 4191:2kN Then O:K:ð Þ

4.3.3.17 Design of the Compression Vertical Member V5
Let us now design the compression vertical member V5, shown in

Figure 4.71, carrying a compressive design force of�1302.9 kN. To assume

a reasonable cross section for the compression vertical member, the

following parameters can be considered:

d1¼ L

15�22
¼ 7500

15�22
¼ 500�341mm, taken as 350 mm:

It should be noted that the vertical member must be inside the gusset

plates spaced at a constant distance (b) of 400 mm. Let us start by assuming

the flange thickness of 14 mm and web thickness of 10 mm. To classify the

cross section chosen (see Figure 4.71),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924
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C1 ¼ 162mm, tfl¼ 14, C1=tfl¼ 162=14¼ 11:57< 14�0:924
¼ 12:9 Flange is Class 3ð Þ

C2 ¼ 356mm, tw ¼ 10, C2=tfl ¼ 356=10¼ 35:6< 33�0:924
¼ 30:5 Web is class 1ð Þ

A¼ 2�35�1:4+ 37:2�1:0¼ 135:2 cm2

Ix¼ 1:0�37:23=12+ 2� 35�1:43=12+ 35�1:4�19:32
	 
¼ 40,810 cm4

Iy¼ 37:2�13=12+ 2�1:4�353=12¼ 10,007:3 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
40,810

135:2

r
¼ 17:37 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10,007:3

135:2

r
¼ 8:6 cm

lby¼ 6750mm

lbx ¼ 7500mm

�l¼Lcr

i

1

l1

l1¼ 93:9�0:924¼ 86:7636

�l¼ 6750

86
� 1

86:7636
¼ 0:905

where Nb,Rd¼ wAfy
gM1

y 

x

y 

b 
=

 4
0

1 

1.4 

d1 = 35 cm

C1 = 16.2

C2 = 35.6

1.4 

x

Figure 4.71 The cross section of the vertical compression member V5.
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Figure 4.71


The axial compressive force in the vertical member V5

(NEd¼1302.9 kN):

NEd

Nb,Rd

� 1:0

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l2
h i

F¼ 0:5 1+ 0:49 0:905�0:2ð Þ+0:9052
	 
¼ 1:082

w¼ 1

1:082+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0822�0:9052

p ¼ 0:597 but w� 1:0

Then, Nb,Rd¼ 0:597�13520�275

1:1
¼ 2,017,860N

Nb,Rd¼ 2017:9 kN>NEd¼ 1302:9 kN Then O:K:ð Þ

4.3.3.18 Design of the Compression Vertical Member V4
Following the same procedures adopted for the design the compression ver-

tical member V5, we can design the vertical compression member, shown in

Figure 4.72, carrying a compressive design force of�2226.1 kN, as follows.

To classify the cross section chosen (see Figure 4.72),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 352mm, tfl¼ 12, C1=tfl¼ 352=12¼ 29:3< 30:5 Flange is Class 1ð Þ

y 

x x

y 

b 
=

 4
0

1.2

1.6

d1 = 35 cm

C1 = 16.1

C2 = 35.2

1.6

Figure 4.72 The cross section of the vertical compression member V4.
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C2¼ 163mm, tw ¼ 16, C2=tfl¼ 163=16¼ 10:2< 30:5 Web is class 1ð Þ

A¼ 2�35�1:6+ 36:8�1:2¼ 156:2 cm2

Ix¼ 1:2�36:83=12+ 2� 35�1:63=12+ 35�1:6�19:22
	 


¼ 46,295:2 cm4

Iy ¼ 36:8�1:23=12+ 2�1:6�353=12¼ 11,438:6 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
46295:2

156:2

r
¼ 17:22 cm

iy¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11438:6

156:2

r
¼ 8:56 cm

lby¼ 6750mm

lbx ¼ 7500mm

�l¼Lcr

i

1

l1
l1¼ 93:9�0:924¼ 86:7636

�l¼ 6750

85:6
� 1

86:7636
¼ 0:91

The axial compressive force in the vertical member V5

(NEd¼2226.1 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:49 0:91�0:2ð Þ+0:912

	 
¼ 1:088

w¼ 1

1:088+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0882�0:912

p ¼ 0:594 but w� 1:0

Then, Nb,Rd¼ 0:594�15620�275

1:1
¼ 2,319,570N

Nb,Rd¼ 2319:6 kN>NEd¼ 2226:1 kN Then O:K:ð Þ
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4.3.3.19 Design of the Compression Vertical Member V3
The compression vertical member V3, shown in Figure 4.73, carrying a

compressive design force of �3190.7 kN can be designed as follows. To

classify the cross section chosen (see Figure 4.73),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 336mm, tfl¼ 16, C1=tfl¼ 336=16¼ 21:0< 30:5 Flange is Class 1ð Þ

C2¼ 159mm, tw ¼ 24, C2=tfl¼ 159=24¼ 6:6< 30:5 Web is class 1ð Þ
A¼ 2�35�2:4+ 35:2�1:6¼ 224:32 cm2

Ix¼ 1:6�35:23=12+ 2� 35�2:43=12+ 35�2:4�18:82
	 


¼ 65,273:8 cm4

Iy ¼ 35:2�1:63=12+ 2�2:4�353=12¼ 17,162 cm4

ix¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
65,273:8

224:32

r
¼ 17:06 cm

iy¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17162

224:32

r
¼ 8:75 cm

lby ¼ 6750mm

lbx¼ 7500mm

�l¼Lcr

i

1

l1

y 

x x 

y 

b 
=

 4
0

1.6

2.4 

d1 = 35 cm

C1 = 15.9

C2 = 33.6

2.4

Figure 4.73 The cross section of the vertical compression member V3.

302 Ehab Ellobody

Figure 4.73


l1¼ 93:9�0:924¼ 86:7636

�l¼ 6750

87:5
� 1

86:7636
¼ 0:89

The axial compressive force in the vertical member V5

(NEd¼3190.7 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:49 0:89�0:2ð Þ+0:892

	 
¼ 1:065

w¼ 1

1:065+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0652�0:892

p ¼ 0:606 but w� 1:0

Then, Nb,Rd¼ 0:606�22,432�275

1:1
¼ 3,398,448N

Nb,Rd¼ 3398:4 kN>NEd¼ 3190:7 kN Then O:K:ð Þ

4.3.3.20 Design of the Compression Vertical Member V2
The compression vertical member V2, shown in Figure 4.74, carrying

a compressive design force of �4195.1 kN can be designed as follows.

To classify the cross section chosen (see Figure 4.74),

y 

x x

y 

b 
=

 4
0

2.2 

3.2

d1 = 35 cm

C1 = 15.6

C2 = 32.0

3.2 

Figure 4.74 The cross section of the vertical compression member V2.
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Figure 4.74


e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 156mm, tfl¼ 32, C1=tfl ¼ 156=16¼ 4:9< 30:5 Flange is Class 1ð Þ
C2 ¼ 320mm, tw ¼ 22, C2=tfl¼ 320=22¼ 14:5< 30:5 Web is class 1ð Þ

A¼ 2�35�3:2+ 33:6�2:2¼ 297:92 cm2

Ix¼ 2:2�33:63=12+ 2� 35�3:23=12+ 35�3:2�18:42
	 
¼ 82,983 cm4

Iy¼ 33:6�2:23=12+ 2�3:2�353=12¼ 22,896:5 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
82,983

297:92

r
¼ 16:69 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22,896:5

297:92

r
¼ 8:77 cm

lby ¼ 6750mm

lbx¼ 7500mm

�l¼Lcr

i

1

l1
l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 6750

87:7
� 1

86:7636
¼ 0:89

The axial compressive force in the vertical member V5

(NEd¼4195.1 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:49 0:89�0:2ð Þ+0:892

	 
¼ 1:065

w¼ 1

1:065+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0652�0:892

p ¼ 0:606 but w� 1:0
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Then, Nb,Rd¼ 0:606�29,792�275

1:1
¼ 4,513,488N

Nb,Rd¼ 4513:5kN>NEd¼ 4195:1kN Then O:K:ð Þ

4.3.3.21 Design of the Compression Vertical Member V1
Let us now design the first vertical member V1 shown in Figure 4.66. This

member is of great importance for this through bridge since it carries not

only the high compressive force coming from the supports but also

a bending moment coming from the analysis of the end portal frame.

The end portal frame is necessary for this through bridge to transfer wind

load coming from the upper wind bracing to the bearings. The reactions

coming from the upper wind bracing cannot be resisted by cross bracing

since it will cause an obstacle to passing traffic. Therefore, these reactions

can be transferred as shown in Figure 4.75 by an end frame action. The

end frame consists of the first vertical members of the main trusses, the edge

cross girder, and the edge member of the upper wind bracing, which has to

be an I-shaped beam section. The end portal fame can be analyzed as shown

in Figure 4.75 by assuming hinges at a distance varying from 1/3 to 1/2 of

the depth of the frame. The first vertical member V1 carries the compressive

design force coming from the analysis of truss under vertical dead and live

loads, which is equal to �5240.8 kN in addition to an added compressive

force of�5240.8 kN and a bending moment of 2178.3 kN m coming from

the analysis of the end portal frame. Let us assume the cross section shown in

Figure 4.76, which is a compact class 1 cross section. The resistance to

bending moment can be calculated as follows:

Mc,Rd¼Wpl� fy

gM0

for classes 1 and 2

Wpl ¼ 55�302=4�2�2:5�302=4�40�302=4¼ 11,875 cm3

Mc,Rd¼Wpl� fy

gM0

¼ 11875�103�275

1:0�106
¼ 3265:6 kNm> 2178:3 kNm

On the other hand, the resistance to compressive forces can be calculated

as follows:

A¼ 2�55�5+ 2�30�5¼ 850 cm2

Ix ¼ 2�5�303=12+ 2� 55�53=12+ 55�5�17:52
	 
¼ 192,083:3 cm4
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0.23 m

V =181.5 kN

M = 2178.3 kNm

V

4.5

0.75 m 

VV

Rw

Rw
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Rw

Rw/2

Rw/2 Rw/2

Rw/2

6.76 m

12 m

Figure 4.75 Analysis of forces on the end portal frame for the evaluation of axial force
and bending moment on the vertical member V1.

y 

x x

y 

b 
=

 4
0

5

5
d1 = 55 cm

40 

5 

5 

Figure 4.76 The cross section of the vertical compression member V1.
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Iy¼ 2�5�553=12+ 2� 30�53=12+ 30�5�22:52
	 
¼ 291,145:8 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
192,083:3

850

r
¼ 15:03 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
291,145:8

850

r
¼ 18:51 cm

lby¼ 6750mm

lbx ¼ 7500mm

�l¼Lcr

i

1

l1
l1¼ 93:9�0:924¼ 86:7636

�l¼ 7500

150:3
� 1

86:7636
¼ 0:58

The axial compressive force in the vertical member V5

(NEd¼5422.3 kN):
NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:49 0:58�0:2ð Þ+0:582

	 
¼ 0:733

w¼ 1

0:733+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7332�0:582

p ¼ 0:847 but w� 1:0

Then, Nb,Rd¼ 0:847�85,000�275

1:1
¼ 17,998,750N

Nb,Rd¼ 17,998:75 kN>NEd¼ 4195:1 kN Then O:K:ð Þ
Check of combined axial compression and bendingmoment can be done

using the conservative interaction formula given in EC3 [1.27] as follows:

NEd

Nb,Rd

+
MEd

Mc,Rd

¼ 5422:3

17,998:75
+
2178:3

3265:6
¼ 0:301+ 0:677¼ 0:968

< 1:0 Then O:K:ð Þ
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4.3.3.22 Design of the Diagonal Member D5

We can also design the diagonal member D5, shown in Figure 4.77, carrying

a maximum tensile design force of 1668.5 kN and a minimum compression

force of �526.5 kN. We can use the same cross section used for V5 and

check the safety of the member against the tensile and compressive forces

as follows.

Design as a Tension Member
The bolts used in connecting the member with gusset plates are M27 high-

strength pretensioned bolts having a clearance of 3 mm (hole diameter

Ø¼30 mm):

A¼ 35�1:4�2+ 37:2�1¼ 135:2 cm2

Anet¼ 135:2�4�3:0�1:4¼ 118:4 cm2

Npl,Rd¼ Afy

gM0

¼ 135:2�275�100

1:0
¼ 3,718,000N¼ 3718:0kN>NEd

¼ 1668:5kN

Nu,Rd¼ 0:9Anet fu

gM2

¼ 0:9�11,840�430

1:25
¼ 3,665,664N¼ 3665:7 kN

>NEd¼ 1668:5kN

Design as a Compression Member

lbx¼ 9600mm

lby ¼ 8640mm

y

x x

y 

40
 c

m

1

1.4 

35 cm 

Figure 4.77 The cross section of the diagonal tension members D5 and D4.
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�l¼Lcr

i

1

l1
l1¼ 93:9�0:924¼ 86:7636

�l¼ 8640

86
� 1

86:7636
¼ 1:158

The axial compressive force in the diagonal member D5

(NEd¼526.5 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:49 1:158�0:2ð Þ+1:1582

	 
¼ 1:405

w¼ 1

1:405+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4052�1:1582

p ¼ 0:454 but w� 1:0

Then, Nb,Rd¼ 0:454�13,520�275

1:1
¼ 1,534,520N

Nb,Rd¼ 1534:5kN>NEd¼ 526:5 kN Then O:K:ð Þ
It should be noted that the same cross section used for member D5 can

also be used for the diagonal tension member D4.

4.3.3.23 Design of the Diagonal Tension Member D3

The diagonal member D3, shown in Figure 4.78, carrying a maximum ten-

sile design force of 4086.1 kN can be designed adopting the same procedures

used with D5 as follows:

The bolts used in connecting the member with gusset plates are M27

high-strength pretensioned bolts having a clearance of 3 mm (hole diameter

Ø¼30 mm):

A¼ 2�35�2+ 36�1:2¼ 183:2 cm2

Anet¼ 183:2�8�3:0�2¼ 135:2 cm2

309Design Examples of Steel and Steel-Concrete Composite Bridges



Npl,Rd¼ Afy

gM0

¼ 183:2�275�100

1:0
¼ 5,038,000N¼ 5038 kN>NEd

¼ 4086:1 kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�135:2�430

1:25
¼ 4,185,792N

¼ 4185:8kN>NEd¼ 4086:1kN

4.3.3.24 Design of the Diagonal Tension Member D2

The diagonal member D2, shown in Figure 4.79, carrying a maximum

tensile design force of 5372.3 kN can be designed as follows:

The bolts used in connecting the member with gusset plates are M27

high-strength pretensioned bolts having a clearance of 3 mm (hole diameter

Ø¼30 mm):

A¼ 2�35�2:8+ 34:4�1:8¼ 257:92 cm2

Anet¼ 257:92�8�3:0�2¼ 190:72 cm2

y

x x

y

40
 c

m

1.2

2

35 cm

2

Figure 4.78 The cross section of the diagonal tension member D3.

y 

x x

y

40
 c

m

1.8

2.8

35 cm

2.8

Figure 4.79 The cross section of the diagonal tension member D2.
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Npl,Rd¼ Afy

gM0

¼ 257:92�275�100

1:0
¼ 7,092,800N¼ 7092:8kN>NEd

¼ 5372:3 kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�190:72�100�430

1:25
¼ 5,904,691N

¼ 5904:7 kN>NEd¼ 5372:3kN

4.3.3.25 Design of the Diagonal Tension Member D1

The diagonal member D1, shown in Figure 4.80, carrying a maximum

tensile design force of 6711.5 kN can be designed as follows:

The bolts used in connecting the member with gusset plates are M27

high-strength pretensioned bolts having a clearance of 3 mm (hole diameter

Ø¼30 mm):

A¼ 2�35�3:2+ 33:6�2:4¼ 304:64 cm2

Anet¼ 304:64�8�3:0�2¼ 227:84 cm2

Npl,Rd¼ Afy

gM0

¼ 304:64�275�100

1:0
¼ 8,377,600N¼ 8377:6kN>NEd

¼ 6711:5 kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�227:84�100�430

1:25
¼ 7,053,926N¼ 7053:9kN

>NEd¼ 7053:9 kN

4.3.3.26 Design of the Lower Chord Member L5
Let us now design the tensile lower chordmember L5, shown in Figure 4.81,

carrying a tensile design force of 11,165.7 kN. To assume a reasonable cross

y

x x

y

40
 c

m

2.4

3.2

35 cm

3.2

Figure 4.80 The cross section of the diagonal tension member D1.
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section for the lower chord tension members, the following parameters can

be considered:

h¼ L

15�30
¼ 6000

12�30
¼ 500�200mm, taken as 450 mm:

Once again, it should be noted that the gusset plates must be spaced at a

constant distance (b) of 400 mm. Let us start by assuming the flange and web

thicknesses of 22 mm (see Figure 4.71). It should also be noted that the gross

and net cross-sectional areas of the lower chord members are the same since

they are connected using butt weld. The design of section can be performed

adopting the same procedures used for the diagonal tension members as

follows:

A¼Anet ¼ 55�2:2+ 40�2:2+ 2�45�2:2¼ 407 cm2

Npl,Rd¼ Afy

gM0

¼ 407�275�100

1:0
¼ 11,192,500N¼ 11,192:5 kN>NEd

¼ 11,165:7 kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�407�100�430

1:25
¼ 12,600,720N¼ 12,600:7 kN

>NEd¼ 11,165:7kN

4.3.3.27 Design of the Lower Chord Member L4
Following the same procedures adopted for the design of the lower chord

member L5, we can design the tensile lower chord member L4, shown in

y

x x

y

b = 40

2.2

2.2

h 
=

 4
5 

cm

55 cm

2.2

2.2

Figure 4.81 The cross section of the lower chord tension member L5.
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Figure 4.82, carrying a tensile design force of 9773.9 kN. The design of

section can be as follows:

A¼Anet¼ 55�2:0+ 40�2:0+ 2�45�2:0¼ 370 cm2

Npl,Rd¼ Afy

gM0

¼ 370�275�100

1:0
¼ 10,175,000N¼ 1017:5kN>NEd

¼ 9773:9kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�370�100�430

1:25
¼ 11,455,200N¼ 11,455:2kN

>NEd ¼ 9773:9 kN

4.3.3.28 Design of the Lower Chord Member L3
The lower chord member L3, shown in Figure 4.83, carrying a tensile design

force of 7449.1 kN can be designed as follows:

A¼Anet¼ 55�1:6+ 40�1:6+ 2�45�1:6¼ 296 cm2

Npl,Rd¼ Afy

gM0

¼ 296�100�275

1:0
¼ 8,140,000N¼ 8140 kN>NEd

¼ 7449:1 kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�296�100�430

1:25
¼ 9,164,160N

¼ 9164:2kN>NEd ¼ 7449:1kN

y

x x

y

b = 40

2

2

h 
=

 4
5 

cm

55 cm

2

2

Figure 4.82 The cross section of the lower chord tension member L4.
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4.3.3.29 Design of the Lower Chord Member L2
The lower chord member L2, shown in Figure 4.84, carrying a tensile design

force of 4191.2 kN can be designed as follows:

A¼Anet¼ 55�1:0+ 40�1:0+ 2�45�1:0¼ 185 cm2

Npl,Rd¼ Afy

gM0

¼ 185�100�275

1:0
¼ 5,087,500N¼ 5087:5 kN>NEd

¼ 4191:2 kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�185�100�430

1:25
¼ 5,727,600N¼ 5727:6kN

>NEd¼ 4191:2 kN

y 

x x

y

b = 40

1.6

1.6

h 
=

 4
5 

cm

55 cm

1.6

1.6

Figure 4.83 The cross section of the lower chord tension member L3.
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1
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Figure 4.84 The cross section of the lower chord tension members L2 and L1.
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It should be noted that the thickness used (1 cm) is the minimum

thickness that can be used in bridges; therefore, this section will be used also

for the zero member—under dead and live load cases of loading, lower

chord member L1.

4.3.3.30 Design of Stringer-Cross Girder Connection
The stringer is designed as a simply supported beam on cross girders; therefore,

the connection is mainly transferring shear forces (maximum reaction from

stringers of 604.5 kN) (see Figure 4.85). Using M27 high-strength preten-

sioned bolts of grade 8.8, having fub of 800 MPa, shear area A of 4.59 cm2,

and gross areaAg of 5.73 cm
2, we can determine the required number of bolts,

following the rules specified in EC3 (BS EN 1993-1-8) [2.13], as follows:

Fv,Rd¼ aVfubA
gM2

Fv,Rd¼ 0:6�800�459

1:25
¼ 176,256N

Then, Fv,Rd equals 176 kN (for bolts in single shear) and 353 kN (for bolts in

double shear):

Fs,Rd ¼ ksnm
gM3

Fp,C

Fp,C¼ 0:7fubAs ¼ 0:7�800�573¼ 320,880N

Fs,Rd,ser ¼ 1:0�1:0�0:4

1:1
320,880¼ 116,683:6N:

QD+L+f  = 604.5 kN

N1N2

Figure 4.85 The connection between a stringer and a cross girder.

315Design Examples of Steel and Steel-Concrete Composite Bridges

Figure 4.85


Then, Fs,Rd¼117 kN (for bolts in single shear at serviceability limit

states) and Fs,Rd¼234 kN (for bolts in double shear at serviceability limit

states). At ultimate limit states, Fs,Rd,ult can be calculated as follows:

Fs,Rd,ult¼ 1:0�1:0�0:4

1:25
320,880¼ 102,682N:

Then, Fs,Rd¼103 kN (for bolts in single shear at ultimate limit states)

and Fs,Rd¼206 kN (for bolts in double shear at ultimate limit states):

N1 ¼ 604:5

206
¼ 2:9 taken as 3 bolts,

N2 ¼ 604:5

103
¼ 5:9 taken as 6 bolts

4.3.3.31 Design of Cross Girder-Main Truss Connection
The cross girder is designed as a simply supported beam on main trusses;

therefore, once again, the connection is mainly transferring shear forces

(maximum reaction from cross girders of 1600.8 kN) (see Figure 4.86).

We can determine the required number of bolts as follows:

N3 ¼ 1600:8

206
¼ 7:8 taken as 8 bolts,

N2 ¼ 1600:8

103
¼ 15:5 taken as 16 bolts

4.3.3.32 Design of Wind Bracings
Wind forces acting on the investigated through highway bridge (see

Figure 4.87) as well as any other lateral forces directly applied to the bridge

QD+L+f  = 1600.8 kN

N3

N4

Figure 4.86 The connection between a cross girder and the main truss.
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are transmitted to the bearings by systems of upper and lower wind bracings

as well as end portal frames. The upper and lower wind bracings carry wind

forces on the main truss as shown in Figure 4.87. Wind bracings are quite

important to the lateral stability of the upper chord compression members

since they define the buckling outside the plane of the truss, and therefore,

wind forces applied to this bridge can be sufficiently estimated using the

design rules specified in EC1 [3.2] as follows:

Fw ¼ 1

2
rv2bCAref ,x

vb ¼ cdir� cseason� vb,0¼ 1:0�1:0�26¼ 26m=s

Aref ,x ¼ 7:5�60¼ 450m2

Fw¼ 1

2
�1:25�262�5:7�450¼ 1,083,712:5N¼ 1083:7kN

Considering the structural analysis for the upper wind bracing system

shown in Figure 4.88, the critical design wind force in the diagonal bracing

members can be calculated as follows:

Distributed wind loads qWLð Þ¼ 1083:7�0:5=60¼ 9:03 kN=m

60mRA

A B

RB

qWL = 15.35 kN/m

6

6000

Fsina a

Figure 4.88 Loads on the upper wind bracing.

Fw

Figure 4.87 Design height for upper and lower wind bracings.
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Factored distributed wind loads¼ qWL� gq¼ 9:03�1:7¼ 15:351 kN=m

RA¼ 15:351�60=2¼ 460:53 kN

a¼ tan�1 6=6ð Þ¼ 45�

FD ¼ 460:53= 2� sin45ð Þ¼ 325:6kN

The cross section of the bracing member (see Figure 4.28) can be

determined as follows:

lbx¼ 8490mm, lby¼ 1:2�8490¼ 10,190mm

Choose two angles back-to-back 150�150�15, with 10 mm gusset plate

between them (Figure 4.89):

A¼ 2�43:2¼ 86:4 cm2, ix¼ 4:59 cm, e¼ 4:26 cm,

iy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:592 + 4:26+ 1=2ð Þ2

q
¼ 6:61 cm

e¼
ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

�l¼Lcr

i

1

l1
l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 8490

45:9

1

86:7636
¼ 2:13

The axial compressive force in the diagonal bracing member

(NEd¼325.6 kN):

RA

A B

RB
60m

qWL = 15.35kN/m

Figure 4.89 Loads on the lower wind bracing.
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NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

A¼ 2�43:2¼ 86:4 cm2

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 2:13�0:2ð Þ+2:132

	 
¼ 3:097

w¼ 1

3:097+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:0972�2:132

p ¼ 0:187 but w� 1:0

Then, Nb,Rd¼ 0:187�86:4�100�275

1:1
¼ 403,920N

Nb,Rd¼ 403:9 kN>NEd¼ 325:6kN Then O:K:ð Þ

4.3.3.33 Design of Roller Steel Fabricated Bearings
Let us now design the roller steel fabricated bearings shown in Figure 4.36

and detailed in Figure 4.90. The maximum vertical reaction at the supports

of the main truss was previously calculated under dead and live loads with

dynamic effect (RD+L+F), which was 5822.2 kN. The material of construc-

tion for the bearings is cast iron steel (ISO 3755) 340-550 having a yield stress

of 340 MPa and an ultimate stress of 550 MPa.

Design of the Sole Plate
The reaction (RD+L+F) can be assumed as two equal concentrated loads at

two points, which are the centers of gravity of half of the last vertical

member V11 shown in Figure 4.90. To determine the centers of gravity

(distance e), we can take the first area moment around the axis z-z, shown

in Figure 4.90, as follows:

e¼ 2�27:5�5�13:75+ 30�5�2:5

425
¼ 9:78 cm

Assuming that the thickness of the sole plate is t1, with detailed

dimensions shown in Figure 4.90 based on the lower chord member L1
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27.5 

5 

60 cm 55

6.5
6.5

4
4

20 1010 20

60 cm
Sole plate

4.5
4.5

R = 29.3 cm

(d+10)/2 (d+10) (d+10)/2
a3 = 64 cm

60 cm 5 555

e 

4.5
4.5

2

Upper bearing plate
R

80 cm

22 cmd = 22 cm

Rollers

32 cm 1919
2.5 2.52.52.5

4
6

9.1 MPa
1 mm

R/2 R/2

262,080 N mm 145,600

80 cm

Lower bearing plate

262,080 N mm

z 

z 

5 

30 

Figure 4.90 Detailing of the twin roller fabricated steel bridge bearings.
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dimensions, we can determine the maximum moment applied to the sole

plate (M) as follows:

M ¼RD+L+F� e=2¼ 5822:2�103�97:8=2¼ 284,705,580Nmm:

Section plastic modulus Wpl

� �¼ b1t
2
1=4¼ 700� t21=4¼ 175� t21

The plate thickness t1 can be calculated now as follows:

M

Wpl

¼ fy

gM0

284,705,580

175� t21
¼ 340

1:0

Then, t1¼69.2 mm, taken as 80 mm, as shown in Figure 4.90.

Design of the Rollers
The design of rollers requires determination of the diameter, length, and

number of rollers to resist the vertical load as well as the arrangement and

allowed movement in the direction of rollers. The design axial force per unit

length of roller contact NSd

0
specified in BS EN 1337-1 [3.11] shall satisfy

N
0
Sd�N

0
Rd

where NRd

0
is the design value of resistance per unit length of roller contact,

which is calculated as

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

Assume the number of rollers is 2 and their length is 800 mm as shown in

Figure 4.33:

N
0
Sd¼

RD+L+F

2�800
¼ 5822:2�103

1600
¼ 3638:9N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

3638:9¼ 33:131�R

Then, R¼109.8 mm, taken as 110 mm and the diameter D is 220 mm.

Design of Upper Bearing Plate
The upper bearing plate is shown in Figure 4.90. The width and length of

the plate are dependent on the spacing between rollers and the length of
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rollers as well as the allowed movement in the direction of rollers.

The thickness of the upper bearing plate can be determined as follows:

M ¼RD+L+F

2
� D+100ð Þ

2
¼ 5822:2�103

2
�320

2
¼ 465,776,000Nmm:

Wpl¼ b2t
2
2

4
¼ 800t22

4
¼ 200t22 mm3

The plate thickness t2 can be calculated now as follows:

M

Wpl

¼ fy

gM0

465,776,000

200� t21
¼ 340

1:0

Then, t1¼82.8 mm, taken as 90 mm, as shown in Figure 4.90.

The radius of the curved part of the upper bearing plate, which has a

length of 600 mm as shown in Figure 4.90, can be determined the same

way as that adopted for the design of the rollers:

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

N
0
Sd¼

RD+L+F

600
¼ 5822:2�103

600
¼ 97036:7N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

97,036:7¼ 33:131�R

Then, R¼293 mm.

Design of Lower Bearing Plate
The lower bearing plate is shown in Figure 4.90. The width and length of

the plate are dependent on the strength of concrete and are dependent on the

spacing between rollers and the length of rollers as well as the allowedmove-

ment in the direction of rollers. The thickness of the upper bearing plate can

be determined as follows:

fc¼RD+L+F

a3b3
¼ 5822:2�103

600�800
¼ 9:1MPa<

fc

gc
¼ 40

1:5
¼ 26:7MPa for a typical concrete in bridges of C40=50 with fckð Þ
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The plate thickness t3 can be calculated from the distribution of bending

moment, caused by the pressure on the concrete foundation, as follows:

M ¼ 262,080Nmm per unit width of the plate:

Wpl ¼ b3t
2
3

4
¼ 1� t23

4
¼ 0:25� t22 mm3

M

Wpl

¼ fy

gM0

262,080

0:25� t23
¼ 340

1:0

Then, t3¼55.5 mm, taken as 60 mm, as shown in Figure 4.90.

4.3.3.34 Design of Hinged Line Rocker Steel Fabricated Bearings
Finally, we can now design the hinged line rocker steel fabricated bearings

shown in Figure 4.36 and detailed in Figure 4.91. The maximum vertical

reaction at the support of the main plate girder was previously calculated

under dead and live loads with dynamic effect (RD+L+F), which was

5822.2 kN. The bearing is also subjected to a lateral force from the braking

forces from traffic as well as subjected to a longitudinal force from the reac-

tions of the upper and lower wind bracings, which cause moments around

the longitudinal and lateral directions of the bearing base, respectively. Sim-

ilar to the roller bearing, the material of construction for the bearings is cast

iron steel (ISO 3755) 340-550 having a yield stress of 340 MPa and an ulti-

mate stress of 550 MPa. It should be noted that the overall height of the

hinged bearing must be exactly the same as that of the roller bearing. The

general layout and assumed dimensions of the hinged line rocker bearing

are shown in Figure 4.92. The braking Qlbk forces can be calculated as

follows:

Qlbk¼ 360+ 2:7�L¼ 360+ 2:7�60¼ 522 kN, for Load model 1

See Figure 4.91 for the direction of the forces. Also, the reactions from

upper and lower wind bracings (Rtot) (see Figure 4.91 for the direction of the

forces) were previously calculated as follows:

Rtot ¼ 2�460:53¼ 921:06 kN

We can now determine the normal stress distribution due to the applied

loads, shown in Figure 4.91, on the concrete foundation as follows:
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f ¼�N

A
�Mx

Ix
y�My

Iy
x

N

A
¼ 5822:2�103

950�1100
¼ 5:57MPa

Socket

60 cm 55

4
48

6

17 cm 2.52.5
1919

60 cm 5 555

16.5

2

R = 29.3 cm

15

28

Socket

15 cm 30.0 1010 30.0

80 cm

90 cm 1010

9

40.0 cm40.0 cm 15

fmax = 8.53 MPa 6.04 MPa
fmin = 2.61 MPa

–

10

90

10

80

xx

y

y

522 kN
921.06 kN

5822.2 kN

s

s

s1 s1

Figure 4.91 Detailing of the hinged line rocker fabricated steel bridge bearings.
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Mx

Ix
y¼ 921:06�103�370

950�11003=12
550¼ 1:79MPa

My

Iy
x¼ 522�103�370

1100�9503=12
475¼ 1:17MPa

fmax¼�5:57�1:79�1:17¼�8:53MPa

fmin¼�5:57+ 1:79+ 1:17¼�2:61MPa

The critical bending moment on the base plate of the hinged bearing is

at section s-s shown in Figure 4.91:

M ¼ 0:5�400�6:04ð Þ�1100�400=3+ 0:5�400�8:53ð Þ�1100

�400�2=3¼ 677,600,000Nmm

Wpl ¼ 1100� t24=4¼ 275t24

M

Wpl

¼ fy

gM0

677,600,000

275t24
¼ 340

1:0

Then, t4¼85.1 mm, taken as 90 mm.

The normal stresses at section s1-s1, shown in Figure 4.91, of the line

rocker bearing can be checked as follows:

Mx¼ 921:06�103�280¼ 257,896,800Nmm:

My ¼ 522�103�280¼ 146,160,000Nmm:

N

A
¼ 5822:2�103

150�800
¼ 48:52MPa

8

28

9

8

9

22

6

45
 c

m

Figure 4.92 The designed roller and hinged line rocker fabricated steel bearings.
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Mx

Ix
y¼ 257,896,800

150�8003=12
400¼ 16:12MPa

My

Iy
x¼ 146,160,000

800�1503=12
75¼ 48:72MPa

fmax¼� 48:52+ 16:12+ 48:72ð Þ¼�113:4MPa

< 340MPa Then O:K:ð Þ

4.3.3.35 Design of Joint J1
It is now possible to design the joints of the main trusses after designing all

members and knowing all details regarding the joints. Let us start by design-

ing joint J1 (see Figure 4.93). For M27 high-strength pretensioned bolts

used, the following design values are calculated:

Fv,Rd¼176 kN (single shear) and 353 kN (double shear)

Fs,Rd¼117 kN (single shear) and 234 kN (double shear)

Fs,ult¼103 kN (single shear) and 206 kN (double shear)

Number of Bolts for the Vertical Member V1

N V1ð Þ¼ FEd

Fs,ult
¼ 5240:8

103
¼ 50:9 bolts, taken as 54 bolts (27 bolts in each side

acting in single shear)

Number of Bolts for the Diagonal Member D1

N D1ð Þ¼ FEd

Fs,ult
¼ 6711:5

206
¼ 32:6 bolts, taken as 40 bolts (20 bolts in each side

acting in double shear)

4.3.3.36 Design of Joint J2
Following the same procedures adopted for the design of joint J1, we can

design joint J2 (see Figure 4.94) using the same M27 high-strength preten-

sioned bolts as follows.

Number of Bolts for the Vertical Member V2

N V2ð Þ¼ FEd

Fs,ult
¼ 4195:1

103
¼ 40:7 bolts, taken as 48 bolts (24 bolts in each side

acting in single shear)
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Number of Bolts for the Diagonal Member D2

N D2ð Þ¼ FEd

Fs,ult
¼ 5372:3

206
¼ 26 bolts, taken as 32 bolts (16 bolts in each side

acting in double shear)

550 mm

450 mm

400 mm

U1
40

0 
m

m

550 mm
400 mm350 mm

V1

D1 Cover plate = 550 × 12
2 Web plate = 450 × 12
Lower flange plate = 400 × 12

Cover plate = 550 × 50
2 Web plate = 450 × 50
Lower flange plate = 400 × 50

2 Flange plate = 350 × 32
Web plate = 336 × 24 

550 mm

400 mm

40
0 

m
m

550 mm

Joint J1

10 mm thick
splice plate

450 mm

Minimum
angle 15°

R = 200mm

Figure 4.93 Details and drawings of the main truss joint J1.
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4.3.3.37 Design of Joint J3
Joint J3 (see Figure 4.95) can be designed using the same M27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member V3

N V3ð Þ¼ FEd

Fs,ult
¼ 3190:7

103
¼ 31 bolts, taken as 32 bolts (16 bolts in each side

acting in single shear)

550 mm 550 mm

450 mm 450 mm

400 mm 400 mm

U1 U2

400 mm

350 mm
400 mm350 mm

V2

D2

Cover plate = 550 × 12
2 Web plate = 450 × 12
Lower flange plate = 400 × 12

2 Flange plate = 350 × 32
Web plate = 336 × 22

2 Flange plate = 350 × 28
Web plate = 344 × 18

550 mm

400 mm

400 mm

Joint J2

10 mm thick
splice plate

450 mm

Minimum 15°

R = 20 mm

Cover plate = 550 × 24
2 Web plate = 450 × 16
Lower flange plate = 400 × 24

Figure 4.94 Details and drawings of the main truss joint J2.
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Number of Bolts for the Diagonal Member D3

N D3ð Þ¼ FEd

Fs,ult
¼ 4086:1

103
¼ 39:6 bolts, taken as 40 bolts (20 bolts in each side

acting in single shear)

4.3.3.38 Design of Joint J4
Joint J4 (see Figure 4.96) can be designed using the same M27 high-strength

pretensioned bolts as follows.

550 mm 550 mm

450 mm 450 mm

400 mm 400 mm

U2 U3

400 mm

350 mm
400 mm 350 mm

V3

D3

Cover plate = 550 × 24
2 Web plate = 450 × 16 
Lower flange plate = 400 × 24 

2 Flange plate = 350 × 24
Web plate = 352 × 16

2 Flange plate = 350 × 20
Web plate = 360 × 12

550 mm

400 mm

400 mm

Joint J3

450 mm

Minimum 15° 

Cover plate = 550 × 30
2 Web plate = 450 × 20
Lower flange plate = 400 × 30

Figure 4.95 Details and drawings of the main truss joint J3.
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Number of Bolts for the Vertical Member V4

N V4ð Þ¼ FEd

Fs,ult
¼ 2226:1

103
¼ 21:6 bolts, taken as 24 bolts (12 bolts in each side

acting in single shear)

Number of Bolts for the Diagonal Member D4

N D4ð Þ¼ FEd

Fs,ult
¼ 2850:8

103
¼ 27:8 bolts, taken as 32 bolts (16 bolts in each side

acting in single shear)

550 mm 550 mm

450 mm 450 mm

400 mm 400 mm

U3 U4

400 mm

350 mm
400 mm350 mm

V4

D4

Cover plate = 550 × 30
2 Web plate = 450 × 20
Lower flange plate = 400 × 30

2 Flange plate = 350 × 16
Web plate = 368 × 12

2 Flange plate = 350 × 14
Web plate = 372 × 10

550 mm

400 mm

400 mm

Joint J4

450 mm

Minimum 15°

R = 20 mm

Cover plate = 550 × 36
2 Web plate = 450 × 24
Lower flange plate = 400 × 36

Figure 4.96 Details and drawings of the main truss joint J4.
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4.3.3.39 Design of Joint J5
Joint J5 (see Figure 4.97) can be designed using the same M27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member V5

N V5ð Þ¼ FEd

Fs,ult
¼ 1302:9

103
¼ 12:6 bolts, taken as 16 bolts (8 bolts in each side

acting in single shear)

550 mm 550 mm

450 mm 450 mm 

400 mm 400 mm

U4 U5

400 mm

350 mm
400 mm350 mm

V5

D5

Cover plate = 550 × 36
2 Web plate = 450 × 24
Lower flange plate = 400 × 36

2 Flange plate = 350 × 14
Web plate = 372 × 10

2 Flange plate = 350 × 14
Web plate = 372 × 10

550 mm

400 mm

400 mm

Joint J5

450 mm

Minimum 15°

R = 20 mm

Cover plate = 550 × 36
2 Web plate = 450 × 24
Lower flange plate = 400 × 36

Figure 4.97 Details and drawings of the main truss joint J5.
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Number of Bolts for the Diagonal Member D5

N D5ð Þ¼ FEd

Fs,ult
¼ 1668:5

103
¼ 16:2 bolts, taken as 20 bolts (10 bolts in each side

acting in single shear)

4.3.3.40 Design of Joint J6
Joint J6 (see Figure 4.98) can be designed using the same M27 high-strength

pretensioned bolts as follows.

550 mm 550 mm

450 mm 450 mm

400 mm 400 mm

U5 U6

400 mm

350 mm

V6

Cover plate = 550 × 36
2 Web plate = 450 × 24
Lower flange plate = 400 × 36

2 Flange plate = 350 × 10
Web plate = 380 × 10

550 mm

400 mm

400 mm

Joint J6

450 mm

Minimum 15°

R = 20 mm

Cover plate = 550 × 36
2 Web plate = 450 × 24
Lower flange plate = 400 × 36

550 mm

400 mm

450 mm

Figure 4.98 Details and drawings of the main truss joint J6.
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Number of Bolts for the Vertical Member V6
The member is zero under the applied dead and live load cases of loading.

The number of bolts can be taken as the minimum number based on the

connection drawing. The number of connecting bolts of V6 is taken as

16 bolts (8 bolts in each side acting in single shear).

4.3.3.41 Design of Joint J7
Joint J7 (see Figure 4.99) can be designed using the same M27 high-strength

pretensioned bolts as follows.

550 mm

450 mm

400 mm

L1

400 mm

550 mm

V1

Cover plate = 550 × 10
2 Web plate = 450 × 10
Lower flange plate = 400 × 10

Cover plate = 550 × 50
2 Web plate = 450 × 50
Lower flange plate = 400 × 50

400 mm

550 mm

Joint J7

Minimum
angle 15° 

Figure 4.99 Details and drawings of the main truss joint J7.
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Number of Bolts for the Vertical Member V1

N V1ð Þ¼ FEd

Fs,ult
¼ 5240:8

103
¼ 50:9 bolts, taken as 54 bolts (27 bolts in each side

acting in single shear)

4.3.3.42 Design of Joint J8
Joint J8 (see Figure 4.100) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member V2

N V2ð Þ¼ FEd

Fs,ult
¼ 4195:1

103
¼ 40:7 bolts, taken as 48 bolts (24 bolts in each side

acting in single shear)

L1 L2

350 mm

400 mm350 mm

V2

D1

2 Flange plate = 350 × 32
Web plate = 336 × 22

2 Flange plate = 350 × 32
Web plate = 336 × 24

400 mm

Joint J8

Minimum 15°

550 mm

450 mm

400 mm

Cover plate = 550 × 10
2 Web plate = 450 × 10
Lower flange plate = 400 × 10

450 mm

400 mm

Cover plate = 550 × 10
2 Web plate = 450 × 10
Lower flange plate = 400 × 10

550 mm

450 mm

Figure 4.100 Details and drawings of the main truss joint J8.
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Number of Bolts for the Diagonal Member D1

N D1ð Þ¼ FEd

Fs,ult
¼ 6711:5

206
¼ 32:6 bolts, taken as 36 bolts (18 bolts in each side

acting in double shear)

4.3.3.43 Design of Joint J9
Joint J9 (see Figure 4.101) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member V3

N V3ð Þ¼ FEd

Fs,ult
¼ 3190:7

103
¼ 31 bolts, taken as 32 bolts (16 bolts in each side

acting in single shear)

L2 L3

350 mm

400 mm350 mm

V3

D2

2 Flange plate = 350 × 24
Web plate = 352 × 16

2 Flange plate = 350 × 28
Web plate = 344 × 18

400 mm

Joint J9

Minimum 15°

550 mm

450 mm

400 mm

Cover plate = 550 × 16
2 Web plate = 450 × 16
Lower flange plate = 400 × 16

450 mm

400 mm

Cover plate = 550 × 10
2 Web plate = 450 × 10
Lower flange plate = 400 × 10

550 mm

450 mm

Figure 4.101 Details and drawings of the main truss joint J9.
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Number of Bolts for the Diagonal Member D2

N D2ð Þ¼ FEd

Fs,ult
¼ 5372:3

206
¼ 26 bolts, taken as 32 bolts (16 bolts in each side

acting in double shear)

4.3.3.44 Design of Joint J10
Joint J10 (see Figure 4.102) can be designed using the same M27 high-

strength pretensioned bolts as follows.

L3 L4

350 mm

400 mm350 mm

V4

D3

2 Flange plate = 350 × 16
Web plate = 368 × 12

2 Flange plate = 350 × 20
Web plate = 360 × 12

400 mm

Minimum 15°

550 mm

450 mm

400 mm

Cover plate = 550 × 20
2 Web plate = 450 × 20
Lower flange plate = 400 × 20

450 mm

400 mm

Cover plate = 550 × 16
2 Web plate = 450 × 16
Lower flange plate = 400 × 16

550 mm

450 mm

350 mm

Joint J10

Figure 4.102 Details and drawings of the main truss joint J10.
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Number of Bolts for the Vertical Member V4

N V4ð Þ¼ FEd

Fs,ult
¼ 2226:1

103
¼ 21:6 bolts, taken as 24 bolts (12 bolts in each side

acting in single shear)

Number of Bolts for the Diagonal Member D3

N D3ð Þ¼ FEd

Fs,ult
¼ 4086:1

103
¼ 39:7 bolts, taken as 40 bolts (20 bolts in each side

acting in single shear)

4.3.3.45 Design of Joint J11
Joint J11 (see Figure 4.103) can be designed using the same M27 high-

strength pretensioned bolts as follows.

Number of Bolts for the Vertical Member V5

N V5ð Þ¼ FEd

Fs,ult
¼ 1302:9

103
¼ 12:6 bolts, taken as 16 bolts (8 bolts in each side

acting in single shear)

Number of Bolts for the Diagonal Member D4

N D4ð Þ¼ FEd

Fs,ult
¼ 2850:8

103
¼ 27:7 bolts, taken as 32 bolts (16 bolts in each side

acting in single shear)

4.3.3.46 Design of Joint J12
Joint J12 (see Figure 4.104) can be designed using the same M27 high-

strength pretensioned bolts as follows.

Number of Bolts for the Vertical Member V6
The member is zero under the applied dead and live load cases of loading.

The number of bolts can be taken as the minimum number based on the

connection drawing. The number of connecting bolts of V6 is taken as

16 bolts (8 bolts in each side acting in single shear).

Number of Bolts for the Diagonal Member D5

N D5ð Þ¼ FEd

Fs,ult
¼ 1668:5

103
¼ 16:2 bolts, taken as 16 bolts (8 bolts in each side

acting in single shear)
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4.3.3.47 Design of Joint J13
Joint J13 (see Figure 4.105) can be designed using the same M27 high-

strength pretensioned bolts as follows.

Number of Bolts for the Vertical Member V11

N V11ð Þ¼ FEd

Fs,ult
¼ 5240:8

103
¼ 50:9 bolts, taken as 54 bolts (27 bolts in each side

acting in single shear)

L4 L5

350 mm

400 mm350 mm

V5

D4

2 Flange plate = 350 × 14
Web plate = 372 × 10

2 Flange plate = 350 × 14
Web plate = 372 × 10

400 mm

Minimum 15°

550 mm

450 mm

400 mm

Cover plate = 550 × 22
2 Web plate = 450 × 22
Lower flange plate = 400 × 22

450 mm

400 mm

Cover plate = 550 × 20
2 Web plate = 450 × 20
Lower flange plate = 400 × 20

550 mm

450 mm

350 mm

Joint J11

400 mm

Figure 4.103 Details and drawings of the main truss joint J11.
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4.4 DESIGN EXAMPLE OF A HIGHWAY STEEL-CONCRETE
COMPOSITE BRIDGE

The third design example presented in this chapter is for a highway steel-

concrete composite bridge. The general layout of the through bridge is

shown in Figures 4.106 and 4.107, with a brief introduction to the bridge

components previously explained in Figure 1.22. The steel-concrete com-

posite bridge has simply supported ends with a length between supports of

L5 L6

350 mm400 mm350 mm

V6

D5

2 Flange plate = 350 × 10
Web plate = 380 × 10

2 Flange plate = 350 × 14
Web plate = 372 × 10

400 mm

550 mm

450 mm

400 mm

Cover plate = 550 × 22
2 Web plate = 450 × 22
Lower flange plate = 400 × 22

450 mm

400 mm

Cover plate = 550 × 22
2 Web plate = 450 × 22
Lower flange plate = 400 × 22

550 mm

450 mm

350 mm

Joint J12

D6

350 mm

2 Flange plate = 350 × 14
Web plate = 372 × 10

Figure 4.104 Details and drawings of the main truss joint J12.
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48 m and an overall length of 49 m. The overall width of the composite

bridge is 13 m including two sidewalks of 1 m width each. The depth of

reinforced concrete slab deck is 250 mm and the depth of the reinforced

concrete haunch is 200 mm. The concrete slab decks are supported by five

plate girders spaced at a distance of 2.5 m. The steel plate girder cross section

in the middle 24 m consists of an upper flange plate of 700�38 mm2, a web

plate of 1724�16 mm2, and a lower flange plate of 900�38 mm2, as shown

550 mm

450 mm

400 mm

L10

400 mm

550 mm

V1

Cover plate = 550 × 10
2 Web plate = 450 × 10
Lower flange plate = 400 × 10

Cover plate = 550 × 50
2 Web plate = 450 × 50
Lower flange plate = 400 × 50

400 mm

550 mm

Joint J13

Minimum
angle 15°

Figure 4.105 Details and drawings of the main truss joint J13.
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in Figure 4.106, while the steel plate girder cross section in the remaining

parts consists of an upper flange plate of 500�30 mm2, a web plate of

1740�16 mm2, and a lower flange plate of 700�30 mm2, as shown in

Figure 4.106. The web plate is stiffened by vertical stiffeners spaced at 1.5 m

as shown in Figure 4.107. The steel material of construction of the double-track

railway bridge conformed to standard steel grade EN 10025-2 (S 275) having a

yield stress of 275 MPa and an ultimate strength of 430 MPa. The bridge has

×

×

×

×

Web shop spliceFlange shop splice Filed splice

48,000 mm

11,000 11,000
1000 1000

6000 6000 6000 6000500

500

500

500

700 mm

30

16

1800 mm

500

250

200

900 mm

38

16

1800 mm

700

250

200

38

1500 15002500 2500 2500 2500

1000 11,000 mm 1000

S1 S2

Cross section S-S Cross section S1-S1

S

S

Cross section S-S

Composite bridge cross section

30

S1 S2

Figure 4.106 General layout of a highway steel-concrete composite bridge (the third
design example).
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lower wind K-shaped bracing as well as cross bracings of X-shaped truss mem-

bers as shown in Figures 4.106 and 4.107. Figure 4.106 also shows the position

of the flange and web shop splices as well as the positions of the field splices,

while Figure 4.107 shows the stiffeners of the plate girder web. The composite

action between the reinforced concrete slab deck and the steel plate girders was

achieved via headed stud shear connectors having a diameter of 25 mm and

an overall height of 300 mm. Two headed studs are welded on the top flanges

of the steel plate girders as shown in Figure 4.106. The expected live loads on

the bridge conforms to LoadModel 1, which represents the static and dynamic

effects of vertical loading due to normal road traffic as specified in EC1 [3.1].

The bolts used in different connections and field splices are M27 high-strength

pretensioned bolts. Assume the unit weight of reinforced concrete slab decks is

25 kN/m3. It is required to design the composite plate girder bridge adopting

the design rules specified in EC4 [3.6]. It should be noted that composite slabs

with metal decking (profiled steel sheeting) are commonly used nowadays in

bridges owing to the elimination of formwork. However, they are quite costly

compared with traditional haunched concrete slab decks. Designers therefore

have to compare the cost of both constructions for the project under investi-

gation. Chapter 2 of this book has detailed the shear connectionwith solid slabs,

haunched solid slabs, and composite slabs with profiled steel sheeting, which is

suggested by the reviewer, and shear connection in floors with precast hollow

48,000 mm

12,000 12,00012,000 12,000
500

500

S3

Main plate girder elevation 

Plan of lower wind bracing 

500

500

2500

2500

2500

2500

48,000

S3

Figure 4.107 General layout of a highway steel-concrete composite bridge (the third
design example).
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core slabs. The author has an already published paper dealing with the behavior

of shear connection in composite slabs with profiled steel sheeting [2.71]. This

design example presents the design of composite plate girders with haunched

slab decks. The design example does not favor one construction technique over

the other.

4.4.1 Calculation of Loads Acting on the Composite Bridge
To design the composite bridge, we need to calculate the dead and live loads

acting on thebridge in the longitudinal direction,which is addressed as follows.

Dead Loads
Weight of steel structure for part of bridge between main trusses:

ws1 ¼ 1:75+ 0:04L +0:0003L2 � 3:5 kN=m2

ws1 ¼ 1:75+ 0:04�46+ 0:0003�482 ¼ 4:38

> 3:5 kN=m2 taken as 3:5kN=m2

Weight of steel structure for part of bridge outside main trusses:

ws2 ¼ 1+ 0:03L kN=m2

ws2 ¼ 1+ 0:03�48¼ 2:44 kN=m2

ws ¼ 3:5�11=5+ 2:44�2�1=5¼ 8:7 kN=m

Weight of reinforced concrete decks and haunches:

wRC ¼ 0:25+ 0:05ð Þ�25�2:5¼ 18:75 kN=m

Weight of finishing (assume weight of finishing is 1.75 kN/m2):

wF¼ 1:75�2:5¼ 4:375 kN=m

We can now calculate the total dead load acting on an intermediate com-

posite plate girder in the longitudinal direction (see Figure 4.108) as follows:

wD:L:¼ 8:7+ 18:75+ 4:375¼ 31:825 kN=m

Since the main composite plate girders are simply supported, we can cal-

culate the maximum shear force and bending moment due to dead loads

on an intermediate composite plate girder (see Figure 4.108) as follows:

QD:L: ¼ gvk�L=2¼ 31:825�48=2¼ 763:8kN

MD:L:¼ gvk�L2=8¼ 31:825�482=8¼ 9165:6 kNm
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Live Loads
The live loads acting on the composite highway bridge conform to Load

Model 1, which represents the static and dynamic effects of vertical loading

due to normal road traffic as specified in EC1 [3.1]. To determine the worst

cases of loading on an intermediate composite plate girder due to live loads,

we can study a lateral section through vehicles and a lateral section through

distributed loads of Load Model 1 acting on the bridge, as shown in

Figure 4.109. From the section through vehicles, we can find that the max-

imum concentrated load transferred to the intermediate composite plate

girder is 240 kN, while from the section through distributed loads, we

can find that the maximum distributed load transferred to the composite

plate girder is 17.3 kN/m. Therefore, the load distribution transferred to

the composite plate girder in the longitudinal direction is as shown in

Figure 4.110. From the previous analyses, we find that the worst case of

loading for the evaluation of the maximum bending moment is that the

centerline (midspan) of the composite plate girder divides the spacing

between the resultant of the concentrated live loads and the closest load,

with maximum bending moment located at the closest load (point a in

Figure 4.111):

ML:L: ¼ 652:2�23:7�17:3�23:72=2¼ 10598:5 kNm

gvk = 31.825 kN/m

48.0m

YB = 763.8 kN

A B

YA = 763.8 kN

+
-

S.F.D.

+
B.M.D.

9165.6 kN m

763.8 kN

763.8 kN

Figure 4.108 Straining actions from dead loads acting on one intermediate composite
plate girder.
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Also, from the previous analyses, we find that there is a single case

of loading for the live loads to produce a maximum shear force at the

supports of the intermediate composite plate girder, which is shown in

Figure 4.112:

QL:L:¼ 889:2 kN

150 kN150 kN
100 kN

2.0 m 1 m 1.5 m

240 kN

2.5 m 2 m

17.3 kN/m

qvk = 9 kN/m qvk = 2.5 kN/m

0.5 m

0.5 m

Figure 4.109 Calculation of straining actions from live loads transferred on
intermediate composite plate girders.

240 kN 240 kN 

17.3 kN/m  

Figure 4.110 Transferred live loads on intermediate composite plate girders.
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Bending Moment Due to Dead and Live Loads with Dynamic Effect
Added (MEd)

MEd¼MD:L:�gg +ML:L:�gq¼ 9165:6�1:3+ 10794:2�1:35

¼ 26223:26 kNm

It should be noted that, according to EC0 (BS EN 1990) [3.4], the per-

manent actions of steel self-weight and superimposed load should be

multiplied by 1.2, while the permanent actions of concrete weight should

be multiplied by 1.35. Therefore, the total dead load is calibrated and

multiplied by 1.3.On the other hand, variable actions comprising road traffic

actions are multiplied by 1.35.

Shearing Force Due to Dead and Live Loads with Dynamic Effect Added (QEd)

QEd ¼QD:L:�gg +QL:L:� gq ¼ 763:8�1:3+ 889:2�1:35¼ 2193:36 kN

Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼ 26223:26 kNm

QEd ¼ 2193:36 kN

a

240 kN240 kN

23.7 0.3 0.9 23.1

48 m

Case of loading 1

A B

YA = 652.2 kN YB = 658.2 kN

17.3 kN/m

Figure 4.111 The critical case of loading for the maximum bending moment acting
on an intermediate composite plate girder.

240 kN240 kN

1.2 46.8

48 m

Case of loading 1

A B

YA = 889.2 kN YB = 421.2 kN

17.3 kN/m

Figure 4.112 The critical case of loading for the maximum shearing force acting on an
intermediate composite plate girder.
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4.4.2 Design of the Composite Plate Girder Cross Section at
Mid- and Quarter-Span

After the evaluation of the straining actions acting on the composite bridge,

we can now design the critical cross sections of an intermediate composite

plate girder as follows.

Design of the Intermediate Composite Plate Girder Cross Section at Midspan
Following the design rules specified in EC4 [3.6], the effective width of the

concrete slab is 2.5 m and the cross-sectional dimensions are shown in

Figure 4.113. Knowing that the design concrete strength fcd is equal to

fck/gc (fcd¼40/1.5¼26.67 MPa), we can calculate the forces acting on

the composite girder as shown in Figure 4.113. The position of the plastic

neutral axis can be located from the equilibrium of these forces, assuming

an initial position in the top flange of the steel plate girder, as follows:

14,168:4+ 3173:7+ x�700�275=1000¼ 9405+ 7585:6

+ 700� 38�xð Þ�275=1000

17,342:1+ 192:5�x¼ 16,990:6�192:5�x+7315

2�192:5�x¼ 6963:5

Then, x¼18.1 mm.

900 mm

16

1724 mm

700

250

200

38

x
38-x 19.9

18.1

14168.4 kN

3173.7 kN
3484.3 kN
3830.8 kN

7585.6 kN

9405 kN

2500

Figure 4.113 Calculation of bending resistance at the critical mid-span section of an
intermediate composite plate girder.
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We can now calculate the design plastic moment resistance as follows:

Mpl,Rd¼ 14,168:4�343:1+ 3173:7�118:1+ 3484:3�18:1=2
+ 3830:8�19:9=2+ 7585:6�881:9+ 9405�1762:9

¼ 28,575,456:5 kN mm¼ 28,575:5 kN mm> 26,223:26 kNm

Then O:K:ð Þ:
Design of the Intermediate Composite Plate Girder Cross Section
at Quarter-Span
Since it is decided to reduce the cross section at quarter-span, as shown in

Figure 4.106, we should check the safety of the proposed cross section

against different stresses. Assuming the bending moment diagram is a

second-degree parabola (see Figure 4.114), we can determine the bending

moment at quarter-span as follows:

D
26,223:26

¼ 1

2

� �2

; then D¼ 6555:8 kNm

The design moment at quarter-span (MEd)¼26,223.26�6555.8¼
19,667.5 kNm. We can now repeat the previous procedures adopted for the

heavier cross section for the design of the smaller steel plate girder cross

section shown in Figure 4.115:

14,168:4+ 3173:7+ x�500�275=1000
¼ 5775+ 7656+ 500� 30�xð Þ�275=1000

17,342:1+ 137:5�x¼ 13,431�137:5�x+4125

2�137:5�x¼ 213:9

Then, x¼0.78 mm.

The design plastic moment resistance can be calculated as follows:

Mpl,Rd¼ 14,168:4�325:78+ 3173:7�100:78+ 107:3�0:78=2
+ 4017:8�29:22=2+ 7656�899:22+ 5775�1784:22

¼ 22,182,667:7 kN mm¼ 22 182:7kN mm> 19,667:5 kNm

Then O:K:ð Þ:

26,223.26 kN m
M2 kN m

12 m

24 m

D

12 m

Figure 4.114 Calculation of bending moment acting at quarter span.
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Check of Shear Forces

Vpl,Rd¼
Av fy=

ffiffiffi
3

p� �
gM0

¼ 1740�16ð Þ� 275=
ffiffiffi
3

p� �
1:0

¼ 4,420,193:6N

¼ 4420:2 kN>QEd¼ 2193:36 kN Then O:K:ð Þ

Design of Shear Connection
To ensure the transfer of shear stresses at the concrete slab deck-steel plate

girder interface, the shear connection between the two components is

designed in this section. This can be conducted from the elastic analysis

of the cross section at supports shown in Figure 4.116. The maximum shear

at supports (QEd), previously calculated, is equal to 2193.36 kN. To cal-

culate the elastic section properties, the reinforced concrete sections have

to be transformed to equivalent steel sections, as shown in Figure 4.117,

using the modular ratios of the two components. After the evaluation of

the elastic section properties, the shear flow at the interface can be calculated

and assessed against the shear resistances of the headed studs to determine

the spacing between rows of shear connectors. These procedures can be

performed as follows:

700 mm

16

1740 mm

500

250

200

30

x
30-x 29.22

0.78

14,168.4 kN

3173.7 kN
107.3 kN
4017.8 kN

7656.0 kN

5775 kN

2500

Figure 4.115 Calculation of bending resistance at the critical quarter-span section of
an intermediate composite plate girder.
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Es ¼ 210,000MPa

Ecm ¼ 35000MPa Short termð Þ

Modular ratio ac¼ 210,000

35,000
¼ 6

700 mm

16

1740 mm

500

250

200

30

30

2500

100

Figure 4.116 Cross section at supports of the composite plate girder.

700 mm

16

1740 mm

500

250

200

30

30

417 mm

83

Equivalent section
of concrete slab

597 mm

1653 mm

A5

A4

A3

A2

A1

x x

x1 x1

s s

Figure 4.117 Calculation of shear forces at supports of the composite plate girder using
elastic analysis.
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Width of slab¼ 250=6¼ 41:7 cm

Width of haunch¼ 50=6¼ 8:3 cm

A1¼ 70�3¼ 210 cm2

A2¼ 174�1:6¼ 278:4 cm2

A3¼ 50�3¼ 150 cm2

A4 ¼ 8:3�20¼ 166 cm2

A5 ¼ 41:7�25¼ 1042:5 cm2

A¼ 1846:9 cm2

To determine the centroid, we can take the first area moment around

the x1-x1 axis, as follows:

yc ¼ 210�1:5+ 278:4�90+ 150�178:5+ 166�190+ 1042:5�212:5

1846:9
¼ 165:3 cm

Ix¼ 70�33=12+ 210�163:82½ �+ 1:6�1743=12+ 278:4�75:32½ �
+ 50�33=12+ 150�13:22½ �+ 8:3�203=12+ 166�24:72½ �
+ 41:7�253=12+ 1042:5�47:22½ � ¼ 10,425,383 cm4

Shear flow at section s-s:

q¼QEd�Sss

Ix
¼ 2193:36�103� 166�24:7+ 1042:5�47:2½ ��103

10,425,383�104

¼ 1121:5N=mm

Maximum spacing between shear connectors in the longitudinal direction

Smaxð Þ¼ 15tf

ffiffiffiffiffiffiffiffi
235

fy

s
¼ 15�30�

ffiffiffiffiffiffiffiffi
235

275

r
¼ 416mm

Force per two headed studs¼ S�1121:5N

Force per one headed stud¼ S�560:75N

Design resistance of headed studs can be calculated as follows:

PRd¼ 0:8fupd2=4
gv

¼ 0:8�430�3:14�252=4

1:25
¼ 135,088N¼ 135:1 kN

a¼ 1
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PRd¼ 0:29ad2
ffiffiffiffiffiffiffiffiffiffiffiffi
fckEcm

p
gv

¼ 0:29�1:0�252
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40�35,000

p
1:25

¼ 171,566:3N

¼ 171:6 kN

Then, PRd¼135.1 kN.

Hence, the spacing between headed stud rows in the longitudinal

direction can be calculated as follows:

PRd¼ Force per one headed stud¼ S�560:75N

135:1�103 ¼ S�560:75

Then, S¼240.9 mm, taken as 240 mm<416 mm (Then O.K.).

4.4.3 Design of Wind Bracings
Wind forces acting on the composite plate girder bridge (see Figure 4.118)

are transmitted to the bearings by systems of cross and lower wind bracings.

Wind forces applied to this bridge can be sufficiently estimated using the

design rules specified in EC1 [3.2] as follows. The design rules specify a

height of 2 m on top of the concrete slab deck to be used in the calculation

of the area subjected to wind forces:

Fw ¼ 1

2
rv2bCAref ,x

vb¼ cdir� cseason� vb,0 ¼ 1:0�1:0�26¼ 26m=s

Aref ,x ¼ 4:25�49¼ 208:25m2

Fw

A B

RA RB

qWL = 8.87 kN/m

Fsina a

48,000

2500

Figure 4.118 Loads on the lower wind bracing.
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Fw¼ 1

2
�1:25�262�5:7�208:25¼ 501,518N¼ 501:5 kN

Considering the structural analysis for the upper wind bracing system

shown in Figure 4.118, the critical design wind force in the diagonal bracing

members can be calculated as follows:

Distributed wind loads qWLð Þ¼ 501:5�0:5=48¼ 5:22 kN=m

Factored distributed wind loads¼ qWL�gq¼ 5:22�1:7¼ 8:87 kN=m

RA¼ 8:87�24¼ 212:9kN

a¼ tan�1 2:5=3ð Þ¼ 39:8�

FD¼ 212:9= sin30:8ð Þ¼ 332:6 kN

The cross section of the bracing member (see Figure 4.119) can be deter-

mined as follows:

lbx¼ 3910mm, lby¼ 1:2�3910¼ 4690mm

Choose two angles back-to-back 100�100�10, with 10 mm gusset

plate between them:

A¼ 2�19:2¼ 38:4 cm2, ix ¼ 3:05 cm, e¼ 2:83 cm,

iy¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:052 + 2:83+ 0:5ð Þ2

q
¼ 4:52 cm

e¼
ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

�l¼Lcr

i

1

l1
l1¼ 93:9�0:924¼ 86:7636

�l¼ 3910

30:5

1

86:7636
¼ 1:478

10 mm

x x

y

y

2 angles back-to-back
100 × 100 × 10

e = 28.3 mm

Figure 4.119 Lower wind bracing cross section.
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The axial compressive force in the diagonal bracing member

(NEd¼332.6 kN):
NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

A¼ 2�19:2¼ 38:4 cm2

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 1:478�0:2ð Þ+1:4782

	 
¼ 1:81

w¼ 1

1:81+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:812�1:4782

p ¼ 0:35 but w� 1:0

Then, Nb,Rd¼ 0:35�38:4�100�275

1:1
¼ 336,000

Nb,Rd¼ 336 kN>NEd¼ 332:6kN Then O:K:ð Þ

4.4.4 Design of Web Stiffeners
There are two types of stiffeners used to strengthen the thin web plate of the

main composite plate girder against buckling due to shear stresses, bending

stresses, or both. The stiffeners at the supports are commonly known as load

bearing stiffeners, while intermediate stiffeners are commonly known as sta-

bility stiffeners (intermediate transverse stiffeners). The design of the stiff-

eners can be performed as follows:

4.4.4.1 Load Bearing Stiffeners
To design the load bearing stiffener at supports (see Figure 4.120), we can

also follow the design rules specified in EC3 [1.27, 2.11] for concentrically

loaded compression members. The axial force in the stiffener is the maxi-

mum reaction at supports (NEd¼RD+L+F), which is equal to

2193.36 kN. The design procedures can be performed as follows:

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1
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A¼ 2�25�2:0+ 46:0�1:6¼ 155:2 cm2

Ix ¼ 46�1:63=12+ 2� 2�253=12+ 50�13:32
	 
¼ 22,913 cm4

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l2
h i

�l¼
ffiffiffiffiffiffiffi
Afy

Ncr

s

Ncr ¼ p2�EI

L2
¼ 3:142�210,000�22,913�104

34802
¼ 39,174,373N

�l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
155:2�100�275

39,174,373

r
¼ 0:33

F¼ 0:5 1+ 0:49 0:33�0:2ð Þ+0:332
	 
¼ 0:586

w¼ 1

0:586+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5862�0:332

p ¼ 0:934 but w� 1:0

Then, Nb,Rd¼ 0:934�155:2�100�275

1:1
¼ 3,623,920N

Nb,Rd¼ 3623:9 kN>NEd¼ 2193:36 kN Then O:K:ð Þ

4.4.4.2 Intermediate Stiffeners
Intermediate stiffeners (see Figure 4.121) can be designed by choosing their

dimensions such that

2.0
25 cm

2.022 22

1.6

25 cm

xx

Figure 4.120 Load bearing web stiffeners at supports.
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a1

hw
¼ 1500

1740
¼ 0:86<

ffiffiffi
2

p
¼ 1:414 ThenO:K:ð Þ

and Ist� 1:5h2wt
3
w

a21
¼ 1:5�1743�1:63

1502
¼ 1438:5 cm4

Ist¼ 45:6�1:63=12+ 2� 1:6�253=12+ 40�13:32
	 
¼ 18333:4 cm4

> 1438:5 cm4 Then,O:K:ð Þ

4.4.5 Design of Field Splices
Figure 4.106 shows the locations of filed splices for the investigated bridge.

Designing the splice requires determination of size of connecting plates as

well as the number of bolts of the filed splice shown in Figure 4.122.

The area of the upper flange plate equals to 50�3¼150 cm2; this can be

compensated by three flange splice plates having cross-sectional area of

50�1.6 and 2�23�1.6 cm2 with a total area of 153.6 cm2, which is

greater than the original area. Also, the area of the lower flange plate equals

to 70�3¼210 cm2; this can be compensated by three flange splice plates

having cross-sectional area of 70�1.6 and 2�33�1.6 cm2 with a total area

of 217.6 cm2, which is greater than the original area, while the area of web

plate¼174�1.6¼278.4 cm2 can be compensated by two web splice plates

having cross-sectional area of 2�170�1.0 cm2 with a total area of 340 cm2,

which is governed by the minimum thickness (10 mm) of plates used in steel

bridges. The top row of bolts in the web (see Figure 4.122) is subjected to

horizontal shear from the bending moment distribution, assuming the yield

stress reached at the extreme and lower fibers of the flanges, and vertical

shear from the applied loads. Using a spacing of 8.5 cm between two adja-

cent bolts, an edge spacing of 4.25 cm and a hole of 3 cm (2.7 cm bolt

1.6
25 cm

1.622 22

1.6

25 cm

xx

Figure 4.121 Intermediate stability web stiffeners.
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diameter plus 0.3 cm clearance), we can determine the horizontal shear force

(H) per bolt and the vertical shear per bolt (V ) as follows:

H ¼Area from centrelines between bolts� fy

Fy ¼ 275MPa

H ¼ 85�30ð Þ�16�275=2¼ 121,000N¼ 121 kN

V¼maximum shear resisted by web/total number of bolts.

Maximum shear resisted by web:

Vb,Rd ¼Vbw,Rd� 1:2�275�1740�16ffiffiffi
3

p �1:1
¼ 5,304,232N¼ 5304:2kN

V ¼ 5304:2=40¼ 132:6 kN

The resultant of the forces per bolt (R) is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1212 + 132:62

p
¼ 179:5kN, which is less than 206 kN (the resistance of

the bolt in double shear). Then O.K.

174 cm

70

3

y y

3

170 cm

8.5 cm

33

50 cmCritical row of bolts

Figure 4.122 The field splice of the main plate girder.
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Flange Splices

Maximum force in the upper flange¼ 150�275�100=1000¼ 4125 kN

N flangeð Þ¼ 4125=206¼ 20 bolts 5 rows of four bolts in double shearð Þ
Maximum force in the lower flange¼ 210�275�100=1000¼ 5775 kN

N flangeð Þ¼ 5775=206
¼ 28 taken as 30 bolts 5 rows of six bolts in double shearð Þ

4.4.6 Design of Roller Steel Fabricated Bearings
Let us now design the roller steel fabricated bearings shown in Figure 4.106

and detailed in Figure 4.123. The maximum vertical reaction at the supports

of the main plate girder was previously calculated under dead and live loads

with dynamic effect (RD+L+F), which was 2193.36 kN. The material of

construction for the bearings is cast iron steel (ISO 3755) 340-550 having

a yield stress of 340 MPa and an ultimate stress of 550 MPa.

Design of the Sole Plate
The reaction (RD+L+F) can be assumed as two equal concentrated loads at

two points, which are the centers of gravity of half of the load bearing stiff-

ener section shown in Figure 4.123. To determine the centers of gravity

(distance e), we can take the first area moment around the axis z-z, shown

in Figure 4.33, as follows:

e¼ 2�25�1:0�0:5+ 23:0�1:6�11:5

2�25�1:0+ 23:0�1:6
¼ 5:16 cm

Assuming that the thickness of the sole plate is t1,with detailed dimensions

shown in Figure 4.33 based on the flange plate girder dimensions, we can

determine the maximum moment applied to the sole plate (M) as follows:

M ¼RD+L+F� e=2¼ 2193:36�103�51:6=2¼ 56,588,688Nmm:

Section plastic modulus Wpl

� �¼ b1t
2
1=4¼ 800� t21=4¼ 200� t21

The plate thickness t1 can be calculated now as follows:

M

Wpl

¼ fy

gM0

56,588,688

200� t21
¼ 340

1:0

Then, t1¼28.8 mm, taken as 40 mm, as shown in Figure 4.123.
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1.025 cm

1.0
22

1.6

25 cm

70 cm 55

2
2

2
2

6 1212 cm 6

36 cm
Sole plate

2.5
2.5

R = 10 cm

(d+10)/2 (d+10) (d+10)/2
a3 = 40

70 cm 5 555

e

2.5
2.5

2

Upper bearing plate
R

90 cm

10 cmd = 10 cm
Rollers

20 cm 1515 2.5 2.52.52.5

4
4

4.06 MPa
1 mm

R/2 R/2

81,200 N mm 60,900

90 cm
Lower bearing plate

81,200 N mm

z

z

Figure 4.123 Detailing of the twin roller fabricated steel bridge bearings.
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Design of the Rollers
The design of rollers requires determination of the diameter, length, and

number of rollers to resist the vertical load as well as the arrangement and

allowed movement in the direction of rollers. The design axial force per

unit length of roller contact NSd

0
specified in BS EN 1337-1 [3.11] shall

satisfy

N
0
Sd �N

0
Rd

where NRd

0
is the design value of resistance per unit length of roller contact,

which is calculated as

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

Assume the number of rollers is 2 and their length is 800 mm as shown in

Figure 4.33:

N
0
Sd¼

RD+L+F

2�900
¼ 2193:36�103

1800
¼ 1218:5N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

1218:5¼ 33:131�R

Then, R¼37.7 mm, taken as 50 mm and the diameter D is 100 mm.

Design of Upper Bearing Plate
The upper bearing plate is shown in Figure 4.123. The width and length of

the plate are dependent on the spacing between rollers and the length of rol-

lers as well as the allowed movement in the direction of rollers. The thick-

ness of the upper bearing plate can be determined as follows:

M ¼RD+L+F

2
� D+100ð Þ

2
¼ 2193:36�103

2
�200

2
¼ 109,668,000N mm:

Wpl ¼ b2t
2
2

4
¼ 900t22

4
¼ 225t22 mm3

The plate thickness t2 can be calculated now as follows:

M

Wpl

¼ fy

gM0
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109,668,000

225� t21
¼ 340

1:0

Then, t1¼37.8 mm, taken as 50 mm, as shown in Figure 4.123.

The radius of the curved part of the upper bearing plate, which has a

length of 700 mm as shown in Figure 4.123, can be determined the same

way as that adopted for the design of the rollers:

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

N
0
Sd¼

RD+L+F

700
¼ 2193:36�103

700
¼ 3133:4N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

3133:4¼ 33:131�R

Then, R¼94.6 mm, taken as 100 mm.

Design of Lower Bearing Plate
The lower bearing plate is shown in Figure 4.123. The width and length of

the plate are dependent on the strength of concrete and are dependent on the

spacing between rollers and the length of rollers as well as the allowedmove-

ment in the direction of rollers. The thickness of the upper bearing plate can

be determined as follows:

fc ¼RD+L+F

a3b3
¼ 2193:36�103

600�900
¼ 4:06MPa<

fc

gc
¼ 40

1:5
¼ 26:7MPa (for a

typical concrete in bridges of C40/50 with fck)

The plate thickness t3 can be calculated from the distribution of bending

moment, caused by the pressure on the concrete foundation, as follows:

M¼81,200Nmm per unit width of the plate:

Wpl ¼ b3t
2
3

4
¼ 1� t23

4
¼ 0:25� t22 mm3

M

Wpl

¼ fy

gM0

81200

0:25� t23
¼ 340

1:0

Then, t3¼30.9 mm, taken as 40 mm, as shown in Figure 4.123.
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4.4.7 Design of Hinged Line Rocker Steel Fabricated Bearings
We can also design the hinged line rocker steel fabricated bearings shown in

Figure 4.106 and detailed in Figure 4.124. Themaximum vertical reaction at

the support of the main plate girder was previously calculated under dead

and live loads with dynamic effect (RD+L+F), which was 2193.36 kN.

Socket

70 cm 55

2
24

4

17 cm 2.52.5 77

70 cm 5 555

13.5

2

R = 10 cm

15

13.5

Socket

15 cm 30.0 1010 30.0

90 cm

90 cm 1010

5.5

40.0 cm40.0 cm 15

fmax = 2.87 MPa 2.22 MPa
fmin = 1.33 MPa

-

10

90

10

90

xx

y

y

489.6 kN
212.9 kN

2193.36 kN

s

s

s1 s1

Figure 4.124 Detailing of the hinged line rocker fabricated steel bridge bearings.
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The bearing is also subjected to a lateral force from the braking forces of

moving traffic as well as subjected to a longitudinal force from the reactions

of the lower wind bracings, which cause moments around longitudinal and

lateral directions of the bearing base, respectively. Similar to the roller bear-

ing, the material of construction for the bearings is cast iron steel (ISO 3755)

340-550 having a yield stress of 340 MPa and an ultimate stress of 550 MPa.

It should be noted that the overall height of the hinged bearing must be

exactly the same as that of the roller bearing. The general layout and assumed

dimensions of the hinged line rocker bearing are shown in Figure 4.125. The

braking Qlk forces can be calculated as follows.

Qlbk¼360+2.7�48¼489.6 (see Figure 4.124 for the direction of

the forces). Also, the reactions from the lower wind bracings (Rtot) (see

Figure 4.124 for the direction of the forces) were previously calculated as

follows:

Rtot ¼ 212:9 kN

We can now determine the normal stress distribution due to the applied

loads, shown in Figure 4.124, on the concrete foundation as follows:

f ¼�N

A
�Mx

Ix
y�My

Iy
x

N

A
¼ 2193:36�103

950�1100
¼ 2:098MPa

Mx

Ix
y¼ 212:9�103�190

950�11003=12
550¼ 0:21MPa

My

Iy
x¼ 489:6�103�190

1100�9503=12
475¼ 0:56MPa

fmax¼�2:098�0:21�0:56¼�2:87MPa

4

13.5

5.5

4

5

10

4

23 cm

Figure 4.125 The designed roller and hinged line rocker fabricated steel bearings.
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fmin¼�2:098+ 0:21+ 0:56¼�1:33MPa

The critical bending moment on the base plate of the hinged bearing is at

section s-s shown in Figure 4.124:

M ¼ 0:5�400�2:22ð Þ�1100�400=3+ 0:5�400�2:87ð Þ�1100

�400�2=3¼ 233,493,333Nmm

Wpl ¼ 1100� t24=4¼ 275t24

M

Wpl

¼ fy

gM0

233,493,333

275t24
¼ 340

1:0

Then, t4¼49.97 mm, taken as 55 mm.

The normal stresses at section s1-s1, shown in Figure 4.124, of the line

rocker bearing can be checked as follows:

Mx ¼ 212:9�103�135¼ 28,741,500Nmm:

My ¼ 489:6�103�135¼ 66,096,000Nmm:

N

A
¼ 2193:36�103

150�900
¼ 16:25MPa

Mx

Ix
y¼ 28,741,500

150�9003=12
450¼ 1:42MPa

My

Iy
x¼ 66,096,000

900�1503=12
75¼ 19:56MPa

fmax¼� 16:25+ 1:42+ 19:56ð Þ¼�37:23MPa< 340MPa Then O:K:ð Þ

4.5 DESIGN EXAMPLE OF A DOUBLE-TRACK PLATE GIRDER
PONY RAILWAY STEEL BRIDGE

The fourth design example presented in this chapter is for a double-track

open-timber floor plate girder pony railway steel bridge. The general layout

of the double-track pony bridge is shown in Figures 4.126 and 4.127. The

bridge has simply supported ends, a length between supports of 27 m, and

an overall length of 28 m. The width of the bridge (spacing between main
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plate girders) is 9 m as shown in Figure 4.126. It is required to design the

bridge components adopting the design rules specified in EC3 [1.27].

The steel material of construction of the double-track railway bridge con-

formed to standard steel grade EN 10025-2 (S 275) having a yield stress of

275 MPa and an ultimate strength of 430 MPa. The bridge has only a lower

wind bracing of K-shaped truss members as shown in Figure 4.126. In addi-

tion, the bridge has lateral shock (nosing force) bracing for the stringers as

well as braking force bracing at the level of the lower wind bracing as shown

in Figure 4.127. The lateral shock bracing eliminates bending moments

around the vertical axis of the stringers, while braking force bracing elimi-

nates bending moments around the vertical axis of the cross girder. The plate

girder web is stiffened by vertical stiffeners, to safeguard against shear stresses

and web buckling, spaced at a constant distance of 1.5 m. The expected live

loads on the bridge conform to Load Model 71, which represents the static

effect of vertical loading due to normal rail traffic as specified in EC1 [3.1].

The bolts used in connections and field splices are M27 high-strength

pretensioned bolts of grade 8.8.

L = 6 × 4500 = 27,000 mm

4500 1500

2700

3600

9000 mm
Elevation

S

S

Cross-section S-S

Plan of lower wind bracing (section S1-S1)

S1 S1 1800

27,000

9000

1800 1800 1800 1800

Figure 4.126 General layout of a double track open-timber floor plate girder pony
railway steel bridge (the fourth design example).
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4.5.1 Design of the Stringers
Let us start by designing the stringers supporting the track as shown in

Figure 4.126.

Dead Loads

Half weight of the track load¼ 3 kN=m

Weight of stringer bracing¼ 0:3 kN=m

27,000

Plan of lower wind bracing with braking
force bracing (section S3-S3) 

27,000

Plan of lateral shock (nosing force) bracing
(section S2-S2) 

L = 6×4500 = 27,000 mm

4500 1500

2700

3600

9000 mm
Elevation

S

S

Cross-section S-S

S2 S2

S3 S3
1800 1800 1800 1800 1800

1800

1800

1800

1800

1800

1800

1800

1800

1800

1800

Figure 4.127 General layout of a double track open-timber floor plate girder pony
railway steel bridge (the fourth design example).
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Own weight of stringer¼ 1:5 kN=m

Total dead load¼ gvk¼ 4:8 kN=m

Assuming the stringers are simply supported by the cross girders, we can

calculate the maximum shear force and bending moment due to dead loads

on a stringer (see Figure 4.128) as follows:

QD:L: ¼ gvk�L=2¼ 4:8�4:5=2¼ 10:8kN

MD:L:¼ gvk�L2=8¼ 4:8�4:52=8¼ 12:15 kNm

Live Loads
Considering the axle live loads on the bridge components according to Load

Model 71, which represents the static effect of vertical loading due to normal

rail traffic as specified in EC1 [3.1] (see Figure 4.129), three cases of loading

for the evaluation of maximum bending moment due to the live loads on a

stringer can be studied. The first case of loading is that the centerline at mid-

span of a stringer divides the spacing between the resultant of the concen-

trated live loads and the closest load, with maximum bending moment

gvk = 4.8 kN/m

4.5m

+
- S.F.D.

+

B.M.D.

10.8 kN

10.8 kN

12.15 kN m

Figure 4.128 Straining actions from dead loads acting on a stringer.

1600

800800 800

1600

250 250 250 250 kN
qvk = 80 kN/m qvk = 80 kN/m

800

Figure 4.129 Axle live loads on the bridge conforming to Load Model 71 specified in
EC1 [3.1].
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located at the closest load (point a in Figure 4.130), while the second case of

loading is that the centerline of the stringer is located under one of the inter-

mediate concentrated loads, with maximum bending moment located at

midspan, and finally, the third case of loading is that the stringer span is cov-

ered by the distributed live loads, with maximum bending moment located

at midspan. The three cases of loading are shown in Figure 4.130:

ML:L: case of loading 1ð Þ¼ 220:83�1:85�125�1:6¼ 208:54 kNm

ML:L: case of loading 2ð Þ¼ 187:5�2:25�125�1:6¼ 221:875kNm

ML:L: case of loading 3ð Þ¼ 40�4:52=8¼ 101:25 kNm

Dynamic Factor F
Assuming a track with standard maintenance, therefore,

LF ¼ 4:5+ 3¼ 7:5m

0.25

a

125 kN125 kN125 kN

1.6 0.4 1.2 1.05

4.5m

Case of loading 1A B

YA = 220.83 kN YB = 154.17 kN 

0.65

125 kN125 kN

1.6 0.651.6

4.5m

Case of loading 2A B

YA = 187.5 kN YB = 187.5 kN

125 kN

qvk = 40 kN/m

4.5m

A B Case of loading 3

YA = 90.0 kN YB = 90.0 kN

Figure 4.130 Cases of loading for the maximum bending moment acting on a stringer.
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F3 ¼ 2:16ffiffiffiffiffiffi
7:5

p �0:2
+ 0:73¼ 1:581, F3 � 1:0 and� 2:0:

Bending Moment Due to Dead and Live Loads with Dynamic Effect Added
(MD+L+F)

MD+L+F ¼MD:L:� gg +F�ML:L:�gq
¼ 12:15�1:2+ 1:581�221:875�1:45¼ 523:2 kNm

It should be noted that the load factors adopted in this study are that of

the ultimate limit state. This is attributed to the fact that the finite element

models presented in Chapters 6 and 7 can be used to analyze the bridges and

provide more accurate predictions for the deflections and other serviceabil-

ity limit state cases of loading.

Shearing Force Due to Dead and Live Loads with Dynamic Effect Added
(QD+L+F)
There is only a single case of loading for live loads to produce a maximum

shear force at the supports of the stringer, which is shown in Figure 4.131:

QL:L:¼ 241:7 kN

QD+L+F¼QD:L:� gg +F�QL:L:� gq
¼ 10:8�1:2+ 1:581�241:7�1:45¼ 567 kN

Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼MD+L+F ¼ 523:2 kNm

QEd¼QD+L+F¼ 567 kN

125 kN125 kN125 kN

1.6 1.6 1.3

4.5m

Case of loading 1A B

YA = 241.7 kN YB = 133.3 kN

Figure 4.131 Cases of loading for the maximum shear force acting on a stringer.
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Design of Stringer Cross Section

Mc,Rd¼Wpl� fy

gM0

for classes 1 and 2

523:2�106¼Wpl�275

1:0

WPL ¼ 1,902,545mm3 ¼ 1902:5 cm3

ChooseUB457�191�89 (equivalent toAmericanW18�60), shown in

Figure4.132.WPLaroundx-x¼2014 cm3.Toclassify thecross sectionchosen,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 80:5mm, tfl¼ 17:7, C1=tfl¼ 80:5=17:7¼ 4:5� 9�0:924
¼ 8:316 Stringer flange is class 1ð Þ

C2¼ 407:6mm, tw ¼ 10:5, C1=tfl ¼ 407:6=10:5¼ 38:8� 72�0:924
¼ 66:5 Stringer web is class 1ð Þ

Check of Bending Resistance

Mc,Rd ¼Wpl� fy

gM0

¼ 2014�103�275

1:0
¼ 553,850,000Nmm

¼ 553:85 kNm>MEd ¼ 523:2kNm Then O:K:ð Þ

191.9 mm

10.2

17.7

17.7

463.4 mm 428
C2 = 
407.6

10.5

C1 = 80.5

x x

Figure 4.132 The cross-section of stringers (UB 457�191�89).
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Check of Shear Resistance

Vpl,Rd¼
Av fy=

ffiffiffi
3

p� �
gM0

¼ 428�10:5ð Þ� 275=
ffiffiffi
3

p� �
1:0

¼ 713,518:3N

¼ 713:5kN>QEd¼ 567 kN Then O:K:ð Þ

4.5.2 Design of the Cross Girders
The cross girders carry concentrated loads from the stringers as shown in

Figure 4.133. Therefore, we can analyze an intermediate cross girder as

follows:

Dead Loads

Reaction from stringers due to dead loads¼ 4:8�4:5¼ 21:6kN

Own weight of cross girder¼ 3:0 kN=m

Assuming the cross girders are simply supported by the main plate

girders, we can calculate the maximum shear force and bending moment

gvk = 3.0 kN/m

9.0m

4.8 × 4.5 = 21.6 kN 21.6 kN 21.6 kN 21.6 kN

1.81.8 1.80.9 0.9

YA = 56.7 kN YB = 56.7 kN

BA

S.F.D.

56.7 kN

29.7
51.3

24.3

2.7

2.7

24.3
29.7

51.3
58.8 kN

+

-

B.M.D.

97.2 kN m

145.8 147 145.8

97.2
+

1.8

Figure 4.133 Straining actions from dead loads acting on an intermediate cross girder.
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due to dead loads on an intermediate cross girder (see Figure 4.133) as

follows:

QD:L: ¼ 3�9=2+ 2�21:6¼ 56:7kN

MD:L:¼ 3�92=8+ 21:6�1:8+ 21:6�3:6¼ 147 kNm

Live Loads
To determine the maximum reactions due to live loads transferred by the

stringers to the cross girders, the case of loading shown in Figure 4.134 is

studied. The maximum reaction RL.L. can be calculated as follows:

RL:L: ¼ 125+ 2�125� 4:5�1:6ð Þ=5+ 125� 4:5�3:2ð Þ=5+ 40�0:5

�0:25=4:5+ 40�2:1�1:05=4:5¼ 342:9kN

The maximum straining actions due to live loads on an intermediate

cross girder can be then calculated (see Figure 4.135) as follows:

QL:L:¼ 2�342:9¼ 685:8kN

ML:L: ¼ 342:8�1:8+ 342:9�3:6¼ 1851:66 kNm

Dynamic Factor F

LF¼ 2�9¼ 18m

F3 ¼ 2:16ffiffiffiffiffi
18

p �0:2
+ 0:73¼ 1:264, F3 � 1:0 and� 2:0:

125 kN 125 kN 125 kN 125 kN

qvk = 40 kN/m qvk = 40 kN/m

4.5m 4.5m

2.1 0.8 1.6 1.6 1.6 0.8 0.5

RL.L = 342.9 kN 

Figure 4.134 The case of loading producing maximum straining actions from live loads
on an intermediate cross girder.
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Bending Moment Due to Dead and Live Loads with Dynamic Effect Added
(MD+L+F)

MD+L+F¼MD:L:� gg +F�ML:L:�gq
¼ 147�1:2+ 1:264�1851:66�1:45¼ 3570:1kNm

Shearing Force Due to Dead and Live Loads with Dynamic Effect Added
(QD+L+F)

QD+L+F¼QD:L:� gg +F�QL:L:� gq
¼ 56:7�1:2+ 1:264�685:8�1:45¼ 1325 kN

Since the investigated bridge is a pony bridge, therefore, there is an addi-

tional bending moment, resulting from the flexibility of the U-frame, which

must be added to the calculated bending moment due to the dead and live

loads. The additional bendingmoment is equal to 1/100 themaximum force

S.F.D.

B.M.D.

+

-

+

685.8 kN

342.9 kN

342.9 kN 

685.8 kN

1234.44 kN m
1851.66 1851.66

9.0 m

342.9 kN 342.9 342.9 kN 342.9 kN

1.81.8 1.80.9 0.9

YA= 685.8 kN YB = 685.8 kN

BA

1.8

1234.44 kN m

Figure 4.135 Straining actions from live loads acting on an intermediate cross girder.
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in the compression flange of the main plate girder (Fmax) multiplied by the

arm (r). The maximum force can be calculated as follows (Figure 4.136):

Fmax¼MEd M:G:ð Þ
yct

¼ 20285:7

0:99�270
¼ 7589 kN

Additional bending moment¼ 7589=100ð Þ�2:2306¼ 169:3 kNm

Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼MD+L+F¼ 3570:1+ 169:3¼ 3739:4 kNm

QEd¼QD+L+F¼ 1325 kN

Design of the Cross Girder Cross Section

Mc,Rd¼Wpl� fy

gM0

for classes 1 and 2

3739:4�106 ¼Wpl�275

1:0

WPL ¼ 13,597,818mm3 ¼ 13,597:8 cm3

Choose UB 914�419�343 (equivalent to American W36�230),

shown in Figure 4.137.WPL around x-x¼15,480 cm3. To classify the cross

section chosen,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

r = 223.06 cm

91.19 cm

F = 1/100 Fmax in the main
girder compression flange F

Figure 4.136 Additional bending moment on cross girders due to flexibility of the
U-frame.
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C1¼ 175:45mm, tfl¼ 32, C1=tfl ¼ 175:45=32¼ 5:48� 9�0:924
¼ 8:316 Cross girder flange is class 1ð Þ

C2¼ 799:6mm, tw ¼ 19:4, C1=tfl¼ 799:6=19:3¼ 41:2� 72�0:924
¼ 66:5 Cross girder web is class 1ð Þ

Check of Bending Resistance

Mc,Rd¼Wpl� fy

gM0

¼ 15,480�103�275

1:0
¼ 4,257,000,000Nmm

¼ 4257 kNm>MEd¼ 3739:4 kNm Then O:K:ð Þ

Check of Shear Resistance

Vpl,Rd ¼
Av fy=

ffiffiffi
3

p� �
gM0

¼ 847:8�19:4ð Þ� 275=
ffiffiffi
3

p� �
1:0

¼ 2,611,362:8N

¼ 2611:4 kN>QEd ¼ 1325 kN Then O:K:ð Þ

4.5.3 Design of the Main Plate Girders
Let us now design the main plate girders supporting the cross girders as

shown in Figure 4.126. We can estimate the dead and live loads acting

on a main plate girder as follows:

418.5 mm

24.1
32

32

911.8 mm 847.8
C2 =
799.6

19.4

C1 = 175.45

x x

Figure 4.137 The cross-section of cross girders (UB 914�419�343).
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Dead Loads

Weight of steel structure¼ 11+ 0:5�27¼ 24:5 kN=m

Track load¼ 6kN=m

Total dead load¼ gvk¼ 1:8�24:5=2+ 6¼ 28:05 kN=m

The main plate girders are simply supported; hence, we can calculate the

maximum shear force and bending moment due to dead loads on a main

plate girder (see Figure 4.138) as follows:

QD:L:¼ gvk�L=2¼ 28:05�27=2¼ 378:7kN

MD:L:¼ gvk�L2=8¼ 28:05�272=8¼ 2556:1 kNm

Live Loads
Considering the axle loads on the bridge components according to Load

Model 71 (see Figure 4.129), two cases of loading for the evaluation of max-

imum bending moment due to live loads on a main plate girder can be stud-

ied. The first case of loading is that the centerline of the main plate girder is

located under one of the intermediate concentrated live loads, with maxi-

mum bending moment calculated at midspan (see Figure 4.139). On the

other hand, the second case of loading is that the centerline of a main plate

girder divides the spacing between the resultant of the concentrated live

gvk = 28.05

27.0m
YB = 378.7 kN

A B

YA = 378.7 kN

+ 

- 
S.F.D.

+

B.M.D.

2556.1 kN m

378.7 kN

378.7 kN

Figure 4.138 Straining actions from dead loads acting on one main plate girder.
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loads and the closest load, with maximum bending moment located at the

closest load (point a in Figure 4.140). The maximum bending moment

under the first case of loading is calculated using the influence line method

(by multiplying the concentrated loads by the companion coordinates on the

bending moment diagram and by multiplying the distributed loads by

the companion areas on the bending moment diagram), while that under

the second case of loading is calculated analytically using structural analysis.

Hence, the bending moments due to live loads can be calculated as follows:

ML:L: case of loading 1ð Þ¼ 250� 5:95+ 6:75+ 5:95+ 5:15½ �+80�0:5
�9:5�4:75+ 80�0:5�11:1�5:55

¼ 10,219:2 kNm

27.0 m

A B

1.6 0.80.8

250250 250 250 kN
qvk = 80 kN/m qvk = 80 kN/m

1.6

5.55
4.75

5.95
5.15

5.95
6.7

I.L. for
B.M.D. 

Case of loading 1

11.1 9.51.6

Figure 4.139 Determination of the maximum bending moment on one main plate
girder due to live loads using the influence line method (case of loading 1).

27.0m

YB = 1331.2 kN

A B 

YA = 1316.8 kN

1.6
0.80.8

250 250 250 250 kN

qvk = 80 kN/m qvk = 80 kN/m

1.61.20.4

Case of loading 2

9.910.7

a 

Figure 4.140 Determination of the maximum bending moment on one main plate
girder due to live loads using the analytical method (case of loading 2).
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ML:L: case of loading 2ð Þ¼ 1316:8�13:1�80�10:7�7:75�250�1:6
¼ 10216:1kNm

There is only a single case of loading for the live loads to produce a max-

imum shear force at the supports of a main plate girder, which is shown in

Figure 4.141. Once again, we can use the influence line method to calculate

the maximum shear force due to this case of loading or analytically by taking

moment at support B and evaluate the reaction at A:

QL:L: ¼ 10216:1kN

Dynamic Factor F

LF¼ 27m

F3 ¼ 2:16ffiffiffiffiffi
27

p �0:2
+ 0:73¼ 1:162, F3 � 1:0 and � 2:0:

Bending Moment Due to Dead and Live Loads with Dynamic Effect Added
(MD+L+F)

MD+L+F¼MD:L:� gg +F�ML:L:� gq
¼ 2556:1�1:2+ 1:162�10219:2�1:45¼ 20285:7 kNm

Shearing Force Due to Dead and Live Loads with Dynamic Effect Added
(QD+L+F)

QD+L+F ¼QD:L:� gg +F�QL:L:�gq
¼ 378:7�1:2+ 1:162�1589:6�1:45¼ 3132:8kN

27.0 m

A B

1.6

250 250 250 250 kN
qvk = 80 kN/m

1.6 

1.0 0.94 0.82 0.790.88

I.L. for
S.F.D.

Case of loading 1

21.41.6 0.8

Figure 4.141 Determination of the maximum shear force on one main plate girder due
to live loads using the influence line method (case of loading 1).
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Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼MD+L+F¼ 20,285:7 kNm

QEd¼QD+L+F ¼ 3132:8kN

Design of the Main Plate Girder Cross Section
Let us assume the main plate girder cross section shown in Figure 4.16. The

cross section consists of two flange plates for the upper and lower flanges and

a web plate. The web plate height is taken as equal to L/10¼27,000/

10¼2700 mm, with a plate thickness of 16 mm. The width of the bottom

plate of the upper and lower flanges of the cross section is taken as 0.2

the web height, which is equal to 540 mm, while the top plate width

is taken as 500 mm, to allow for welding with the bottom flange plate.

The flange plates have the same plate thickness of 30 mm. The choice

of two flange plates for the upper and lower flanges is intended to curtail

the top flange plate approximately at quarter-span as will be detailed in the

coming sections. It should be noted that the web height value (L/10) is an

acceptable recommended [1.9] value for railway steel bridges constructed

in Great Britain and Europe. This value is an initial value for preliminary

cross-sectional estimation. The cross section has to be checked, classified,

designed, and assessed against deflection limits set by serviceability limit

states. To classify the cross section chosen,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 254mm, tfl¼ 60, C1=tfl¼ 254=60¼ 3:2� 9�0:924
¼ 8:316 Main plate girder flange is class 1ð Þ:

C2¼ 2684mm, tw ¼ 16, C1=tfl¼ 2684=16¼ 167:8> 124�0:924
¼ 114:58 Main plate girder web is class 4ð Þ:

To calculate the bending moment resistance, the effective area should be

used. Considering web plate buckling, the effective area of the web part in

compression (see Figure 4.142) can be calculated as follows:

ks ¼ 23:9

�lp ¼ 270=1:6

28:4�0:924� ffiffiffiffiffiffiffiffiffi
23:9

p ¼ 1:315> 0:673
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r¼ 1:315�0:055 3�1ð Þ
1:3152

¼ 0:697

beff ¼ 0:633�270=2¼ 94 cm,

Then, beff1¼0.6�94¼56.4 cm and beff2¼0.4�94¼37.4 cm as shown

in Figure 4.142.

To calculate the elastic section modulus, the elastic centroid of the sec-

tion has to be located by taking the first area moment, as an example, around

axis y0-y0 shown in Figure 4.143, as follows:

A¼ 54�3�2+ 50�3�2+ 191:4�1:6+ 37:6�1:6¼ 990:4 cm2

yc ¼
50�3�1:5+ 54�3�4:5+ 191:4�1:6�101:7+ 37:6

�1:6�257:2+ 54�3�277:5+ 50�3�280:5

� �
990:4

yc ¼ 136 cm

270 cm

50

54

3
3

268.4

1.6

37.6

56.4

25.4

Figure 4.142 Reduced cross-section of plate girder.
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Inertia about y1-y1 ¼ 50�33=12+ 50�3�134:52½ �
+ 54�33=12+ 54�3�131:52½ �
+ 1:6�191:43=12+ 1:6�191:4�34:32½ �
+ 1:6�37:63=12+ 1:6�37:6�121:22½ �
+ 54�33=12+ 54�3�141:52½ �
+ 50�33=12+ 50�3�144:52½ � ¼ 14,076,983:3 cm4

Weff ,min¼ 14,076,983:3=146¼ 96417:7 cm3

Check of Bending Resistance

Mc,Rd¼Weff ,min� fy

gM0

¼ 96,417:7�103�275

1:0
¼ 26,514,900,000Nmm

¼ 26514:9 kNm>MEd¼ 20,285:7kNm Then O:K:ð Þ

270 cm

50

54

3
3

1.6

37.6

56.4

y y

y1 y1

41
146

136 135

y0 y0

Figure 4.143 Calculation of properties of area for main plate girder.
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Check of Shear Resistance

Vb,Rd¼Vbw,Rd +Vbf ,Rd� � fywhwtwffiffiffi
3

p
gM1

By neglecting the flange contribution,

Vb,Rd¼Vbw,Rd� 1:2�275�2700�16ffiffiffi
3

p �1:1
¼ 7,482,459:6N

Vbw,Rd¼ ww fywhwtwffiffiffi
3

p
gM1

�lw ¼ 0:76

ffiffiffiffiffiffi
fyw

tcr

s
, tcr ¼ ktsE

sE ¼ 190,000 16=2700ð Þ2 ¼ 6:672N=mm2

kt ¼ 4+ 5:34 2700=1500ð Þ2 ¼ 21:3

�lw¼ 0:76

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
275

21:3�6:672

r
¼ 1:057> 1:08

Then, ww ¼ 0:83

1:057
¼ 0:785

Vbw,Rd¼ 0:785�275�2700�16ffiffiffi
3

p �1:1
¼ 4,894,800N¼ 4894:8kN

< 7482:5kN

�3 ¼
VEd

Vb,Rd

¼ 3132:8

4894:8
¼ 0:64< 1:0 Then O:K:ð Þ

It should be noted that for this type of bridges, it is recommended that

further checks regarding the assessment of fatigue loading have to be per-

formed. However, this can be done using advanced finite element modeling

of the bridge.

4.5.4 Curtailment (Transition) of the Flange Plates of the Main
Plate Girder

The critical cross section of the main plate girder at midspan, which is sub-

jected to the maximum bending moment, was designed previously with two

flange plates. Since the main plate girder is simply supported, the bending

moment is decreased towards the supports. Therefore, we can stop the

top flange plate at a certain distance to get the most benefit from the material.
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This process is commonly called as curtailment (transition) of flange plates.

It should be noted that, theoretically, curtailment (transition) of flange plates

can be conducted by reducing the flange plate width, thickness, or both.

However, in practice, fabricators prefer to keep the flange widths constant

and vary the thickness because this option costs much less than reducing the

flange width, which might require a very heavy grinding work. To avoid

lateral torsional buckling of the compression top flange at the reduction

zone, it is recommended practically to reduce the width or thickness by

40% of the original with a smooth transition zone sloping at 1 (vertical)

to 10 (horizontal). It is also recommended that bridges with lengths of

20-30 m are curtailed in one step, while for bridges with spans greater than

30 m, two steps of curtailment (transition) are recommended. For the inves-

tigated design example, we can conduct one-step curtailment by reducing

the top flange plate of the upper and lower flanges, as shown in Figure 4.144.

To classify the reduced cross section,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

270 cm

54

3

1.6

36.7

57

y y

y1 y1

55
145.3

130.7 135

y0y0

Figure 4.144 Calculation of properties of area for curtailed main plate girder.
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C1¼ 254mm, tfl ¼ 30, C1=tfl ¼ 254=30¼ 8:47 Class 2ð Þ:
C2¼ 2684mm, tw ¼ 16, C1=tfl¼ 2684=16¼ 167:75> 124�0:924

¼ 114:58 Class 4ð Þ:
To calculate the bending moment resistance, the effective area should be

used. Considering web plate buckling, the effective area of the part of web

plate in compression (see Figure 4.144) can be calculated as follows:

ks ¼ 23:9

�lp ¼ 270=1:6

28:4�0:924� ffiffiffiffiffiffiffiffiffi
23:9

p ¼ 1:315> 0:673

r¼ 1:315�0:055 3�1ð Þ
1:3152

¼ 0:697

beff ¼ 0:697�270=2¼ 94 cm,

Then, beff1¼0.6�94¼56.4 cm and beff2¼0.4�94¼37.6 cm as shown

in Figure 4.144.

To calculate the elastic section modulus, the elastic centroid of the sec-

tion has to be located by taking the first area moment, as an example, around

axis y0-y0 shown in Figure 4.144, as follows:

A¼ 54�3�2+ 191:4�1:6+ 37:6�1:6¼ 690:4 cm2

yc ¼ 54�3�1:5+ 191:4�1:6�98:7+ 37:6�1:6�254:2+ 54�3�274:5½ �
690:4

yc ¼ 130:7 cm

Inertia about y1-y1 ¼ 54�33=12+ 54�3�129:22½ �
+ 54�33=12+ 54�3�143:82½ �
+ 1:6�191:43=12+ 1:6�191:4�322½ �
+ 1:6�37:63=12+ 1:6�37:6�143:82½ �

¼ 8,227,509 cm4

Weff ,min ¼ 8,227,509=145:3¼ 56,624:3 cm3

Bending Moment Resistance

Mc,Rd¼Weff ,min� fy

gM0

¼ 56,624:3�103�275

1:0
¼ 15,571,700,000Nmm

¼ 15,571:7 kNm
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Length of Flange Plates
Assuming the overall bending moment diagram of the main plate girder is a

second-degree parabola (see Figure 4.145), we can determine the length of

the curtailed top flange plate of the upper and lower flanges as follows:

x

L=2

� �2

¼ 20,285:7�15,571:7

20,285:7
¼ 4714

20,285:7
¼ 0:23238

x

13:5
¼ 0:482; then, x¼6.5 m.

Hence, the length of the smaller top plate is 13 m.

4.5.5 Design of the Fillet Weld Between Flange Plates and Web
To determine the size of fillet weld connecting the bottom flange plates of

the upper and lower flanges with the web plate for the investigated bridge,

we can calculate the maximum shear flow at the support for the reduced

cross section, shown in Figure 4.146, as follows:

Inertia about y-y¼ 1:6�2703=12+ 2� 54�33=12+ 54�3�136:52
	 


¼ 8,661,492 cm4

Shear flow at section s-s:

q¼QEd�Sss

Iyy
¼ 2� a� fvw,d

fvw,d¼ fu=
ffiffiffi
3

p

bwgM2

¼ 430=
ffiffiffiffiffi
30

p

0:85�1:25
¼ 233:7N=mm2

q¼ 3327:2�103� 54�3�136:5ð Þ�103

8,661,492�104
¼ 2� a�233:7

Then, a¼1.7 mm, taken as 8 mm, which is the minimum size.

20,285.7 kN m
15,571.7 kN m

x m

13.5 m

D

Figure 4.145 Calculation of curtailed flange plate lengths.
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4.5.6 Check of Lateral Torsional Buckling of the Plate Girder
Compression Flange

To check the safety of the upper compression flange against lateral torsional

buckling, we have to calculate the elastic critical moment for lateral torsional

buckling (Mcr). However, to calculate Mcr, we have to evaluate the effec-

tive buckling length (unsupported length) of the compression flange of this

investigated pony bridge (le), which can be calculated as follows:

le¼ pffiffiffi
2

p EIcad½ �1=4, where Ic is the inertial of the compression flange (see

Figure 4.147) about z-z axis, a is the spacing between cross girders, and d is the
flexibility of the U-frame reasonably assumed¼0.00006 mm/N for pony

bridges.

Ic ¼ 3�503=12+ 3�543=12+ 45�1:63=12¼ 70,631:4 cm4

le¼ pffiffiffi
2

p 210,000�70,631:4�104�4500�0:00006
	 
1=4

(should be not

less than a¼450 cm)

Considering the cross section at midspan shown in Figure 4.147, we can

calculate Mcr as follows:

Mcr ¼Cb

p
klb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pEy

klb

� �2

CwIz +EzIzGJ

s

270 cm

54

3

1.6

y y

s s

3

Figure 4.146 Calculation of flange fillet weld size at supports.
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Given,Cb¼ 1:13,E¼ 210GPa,G¼ 81GPa,lb ¼ 5588:3mm and k¼ 1:

Inertia about z-z Izð Þ¼ 2�3�503=12+ 2�3�542=12+ 270�1:63=12

¼ 141,324 cm4

Cw¼ h2� Iz

4
¼ 28202�141,324�104

4
¼ 2:809662444�1015 mm6

j¼ 1

3
2�540�303 + 2�500�303 + 2820�163
� �¼ 22,570,240mm2

Mcr ¼ 1:13
3:14

5588:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:14�210

5588:3

 !2

2:809662444�1015�141,324

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�104 + 210�141,324�104�81�22,570,240

p

270 cm

50

54

3
3

1.6

y y

z

z

50

3
3

z

45 cm

z

Compression flange

Figure 4.147 Check of lateral torsional buckling of plate girder.
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Mcr ¼ 0:000634933
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:528515455�1022 + 5:425707933�1020

p
Mcr ¼ 150,021,280Nmm¼ 150,021:2 kNm

We can now check the safety against lateral torsional buckling following

the rules specified in EC3 [1.27, 2.11] as follows:

MEd

Mb,Rd

� 1:0

Given: MEd¼20,285.7kNm,Wy¼96,417.7cm3

Mb,Rd¼ wLTWy

fy

gM1

�lLT ¼
ffiffiffiffiffiffiffiffiffiffi
Wy fy

Mcr

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26,514:9

150,021:2

r
¼ 0:42

FLT¼ 0:5 1+ aLT �lLT�0:2
� �

+ �l2LT
h i

¼ 0:5 1+ 0:76 0:42�0:2ð Þ+0:422
	 


¼ 0:672

wLT¼
1

FLT +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

LT��l
2

LT

q but wLT � 1:0

wLT ¼
1

0:672+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6722�0:422

p but wLT� 1:0

wLT¼ 0:836

Mb,Rd¼ 0:836�26,514:9

1:0
¼ 22,166:5 kNm> 20,285:7 kNm

4.5.7 Design of Web Stiffeners
There are two types of stiffeners used to strengthen the thin web plate of the

main plate girder against buckling due to shear stresses, bending stresses, or

both. The stiffeners at the supports are commonly known as load bearing

stiffeners, while intermediate stiffeners are commonly known as stability

stiffeners (intermediate transverse stiffeners). The design of the stiffeners

can be performed as follows:

4.5.7.1 Load Bearing Stiffeners
To design the load bearing stiffener at supports (see Figure 4.148), we can

also follow the design rules specified in EC3 [1.27, 2.11] for concentrically

loaded compression members. The axial force in the stiffener is the
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maximum reaction at supports (NEd¼RD+L+F), which is equal to

3132.8 kN. The design procedures can be performed as follows:

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

A¼ 2�25�2:4+ 46:4�1:6¼ 194:24 cm2

Ix¼ 46:4�1:63=12+ 2� 2:4�253=12+ 60�13:32
	 
¼ 27,492:6 cm4

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i

�l¼
ffiffiffiffiffiffiffi
Afy

Ncr

s

Ncr ¼ p2�EI

L2
¼ 3:142�210,000�27,492:6�104

54002
¼ 19,521,217N

�l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
194:24�100�275

19,521,217

r
¼ 0:523

F¼ 0:5 1+ 0:49 0:523�0:2ð Þ+0:5232
	 
¼ 0:716

F¼ 0:5 1+ 0:49 0:523�0:2ð Þ+0:5232
	 
¼ 0:716

2.4
25 cm

2.422 22

1.6

25 cm

xx

Figure 4.148 Load bearing web stiffeners at supports.
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w¼ 1

0:716+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7162�0:5232

p ¼ 0:83 but w� 1:0

Then, Nb,Rd¼ 0:83�194:26�100�275

1:1
¼ 4,030,895N

Nb,Rd¼ 4030:9kN>NEd¼ 3132:8kN Then O:K:ð Þ

4.5.7.2 Intermediate Stiffeners
Intermediate stiffeners (see Figure 4.149) can be designed by choosing its

dimensions such that

a1

hw
¼ 1500

2700
¼ 0:556<

ffiffiffi
2

p
¼ 1:414 Then O:K:ð Þ

and

Ist � 1:5h2wt
3
w

a21
¼ 1:5�2703�1:63

1502
¼ 5374:8 cm4

Ist ¼ 46�1:63=12+ 2� 2�253=12+ 50�13:32
	 


¼ 22,913 cm4 > 5374:8 cm4 Then O:K:ð Þ

4.5.8 Design of Stringer Bracing (Lateral Shock or Nosing
Force Bracings)

The stringer bracing are subjected to lateral moving reversible force of

100 kN. The bracing members carry either tensile or compressive forces

according to the changing direction of the lateral shock force (transverse

horizontal force) (see Figure 4.150). The cross section of the bracing

2.0
25 cm

2.022 22

1.6

25 cm

xx

Figure 4.149 Intermediate stability web stiffeners.
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member can be determined from designing the critical diagonal member for

the compressive force as follows:

Assume the cross section of the stringer bracing as 2 angles back-to-back

80�80�8 (see Figure 4.151); then,

a¼ tan�1 1:8

1:5
¼ 50:2�

lb¼ 2343mm

e¼
ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

�l¼Lcr

i

1

l1

100 kN

100 kN
Fsina

F

Fcosa

X.G. web X.G. web

Stringer web

Stringer web

150 cm150 cm150 cm

Plan
s

s

180 cm

Figure 4.150 Analysis of forces acting on the lateral shock bracing.

10 mm

xx

y

y

Bracing cross section s-s 2 angles back-to-back
80×80×8

Figure 4.151 The cross section of the lateral shock bracing members.
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l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 2343

24:3

1

86:7636
¼ 1:111

The axial compressive force in the diagonal bracing member

(NEd¼86.8 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

A¼ 2�12:3¼ 24:6 cm2

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 1:111�0:2ð Þ+1:1112

	 
¼ 1:272

w¼ 1

1:272+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2722�1:1112

p ¼ 0:529 w� 1:0

Then, Nb,Rd¼ 0:529�24:6�100�275

1:1
¼ 325,335N

Nb,Rd¼ 325:3kN>NEd¼ 86:8kN Then O:K:ð Þ

4.5.9 Design of Wind Bracings
Wind forces acting on the double-track railway bridge (see Figure 4.152) as

well as any other lateral forces directly applied to the bridge are transmitted

to the bearings by systems of wind bracing. For pony bridges, only the lower

wind bracing carries wind forces on the moving train, wind forces on the

main plate girder, and lateral shock (nosing force) applied to the tracks

(see Figure 4.153).Wind forces applied to this bridge can be sufficiently esti-

mated using the design rules specified in EC1 [3.2] as follows:

Fw ¼ 1

2
rv2bCAref ,x

vb¼ cdir� cseason� vb,0 ¼ 1:0�1:0�26¼ 26m=s

Aref ,x ¼ 4:9118�28¼ 137:53m2

392 Ehab Ellobody



Fw¼ 1

2
�1:25�262�5:7�137:53¼ 331,208N¼ 331:2 kN

Considering the structural analysis for the lower wind bracing system

shown in Figure 4.153, the critical design wind force in the diagonal bracing

members can be calculated as follows:

Distributed wind loads qWLð Þ¼ 522:6� 5:5=7ð Þ=30¼ 13:69 kN=m

Factored distributed wind loads¼ qWL� gq ¼ 13:69�1:7¼ 23:27 kN=m

RA¼ 100+ 20:86�13:5¼ 381:6kN

a¼ tan�1 4:5=4:5ð Þ¼ 45�

27 mRA

4.5 m

4.5 m

9 m

A B

RB

qWL= 20.86 kN/m

a
Fsina

F

100 kN

s

s

Figure 4.153 Loads on the lower wind bracing.

Fw

3600

9000 mm

1800 1800 1800 1800 1800

Figure 4.152 Design heights for the calculation of wind forces on the lower wind
bracings.
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FD¼ 281:6= 2� sin45ð Þ¼ 199:1kN

The cross section of the bracing member (see Figure 4.154) can be deter-

mined as follows:

lbx ¼ 6360mm, lby ¼ 1:2�6360¼ 7632mm

Choose two angles back-to-back 150�150�15, with 10 mm gusset

plate between them:

A¼ 2�43:2¼ 86:4 cm2, ix¼ 4:59 cm, e¼ 4:26 cm,

iy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:592 + 4:26+ 1=2ð Þ2

q
¼ 6:61 cm

e¼
ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

�l¼Lcr

i

1

l1
l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 6360

45:9

1

86:7636
¼ 1:597

The axial compressive force in the diagonal bracing member

(NEd¼298.7 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

A¼ 2�43:2¼ 86:4 cm2

10 mm

x x

y

y

2 angles back-to-back
150×150×15 

e = 42.6 mm

Figure 4.154 Upper wind bracing cross section s-s.
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w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 1:597�0:2ð Þ+1:5972

	 
¼ 2:013

w¼ 1

2:013+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:0132�1:5972

p ¼ 0:309 but w� 1:0

Then, Nb,Rd¼ 0:309�86:4�100�275

1:1
¼ 667,440N

Nb,Rd¼ 667:4 kN>NEd¼ 199:1kN Then O:K:ð Þ

4.5.10 Design of Stringer-Cross Girder Connection
The stringer is designed as a simply supported beam on cross girders; therefore,

the connection is mainly transferring shear forces (maximum reaction from

stringers of 567 kN) (see Figure 4.155). Using M27 high-strength preten-

sioned bolts of grade 8.8, having fub of 800 MPa, shear area A of 4.59 cm2,

and gross areaAg of 5.73 cm
2, we can determine the required number of bolts,

following the rules specified in EC3 (BS EN 1993-1-8) [2.13], as follows:

Fv,Rd¼ aVfubA
gM2

Fv,Rd¼ 0:6�800�459

1:25
¼ 176,256N

QD+L+f= 567 kN

N1N2

QD+L+f= 567 kN

Figure 4.155 The connection between stringer and cross girder.
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Then, Fv,Rd equals 176 kN (for bolts in single shear) and 353 kN (for

bolts in double shear):

Fs,Rd¼ ksnm
gM3

Fp,C

Fp,C ¼ 0:7fubAs¼ 0:7�800�573¼ 320,880N

Fs,Rd,ser ¼ 1:0�1:0�0:4

1:1
320,880¼ 116,683:6N:

Then, Fs,Rd¼117 kN (for bolts in single shear at serviceability limit

states) and Fs,Rd¼234 kN (for bolts in double shear at serviceability limit

states). At ultimate limit states, Fs,Rd,ult can be calculated as follows:

Fs,Rd,ult¼ 1:0�1:0�0:4

1:25
320,880¼ 102,682N:

Then, Fs,Rd¼103 kN (for bolts in single shear at ultimate limit states)

and Fs,Rd¼206 kN (for bolts in double shear at ultimate limit states):

N1¼ 567

206
¼ 2:8 taken as 3 bolts,

N2¼ 567

103
¼ 5:5 taken as 6 bolts

4.5.11 Design of Cross Girder-Main Plate Girder Connection
The cross girder is designed as a simply supported beam on main plate

girders; therefore, once again, the connection is mainly transferring shear

forces (maximum reaction from cross girders of 1325 kN) (see Figure 4.156).

We can determine the required number of bolts as follows:

N3 ¼ 1325

206
¼ 6:4 taken as 7 bolts,

N2 ¼ 1325

103
¼ 13 taken as 14 bolts

4.5.12 Design of Field Splices
Figure 4.157 shows the locations of filed splices for the investigated pony

bridge. Designing the splice requires determination of size of connecting

plates as well as the number of bolts of the filed splice shown in Figure 4.158.

The area of the flange plate equals to 54�3¼162 cm2; this can be
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compensated by three flange splice plates having cross-sectional area of

54�1.6 and 2�25�1.6 cm2 with a total area of 166.4 cm2, which is

greater than the original area, while the area of web pla-

te¼270�1.6¼432 cm2 can be compensated by two web splice plates hav-

ing cross-sectional area of 2�260�1.0 cm2 with a total area of 520 cm2,

which is governed by the minimum thickness (10 mm) of plates used in rail-

way steel bridges. The top row of bolts in the web (see Figure 4.158) is

QD+L+f =
1325 kN

N3N4

Figure 4.156 The connection between cross girder and main plate girder.

65007500 75006500

6×4500=27,000 mm

28,000 mm

5750 575016,500

Field splice position Field splice position

Figure 4.157 Positions of field splices in the main plate girder.
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subjected to horizontal shear from the bending moment distribution, assum-

ing the yield stress reached at the extreme and lower fibers of the flanges, and

vertical shear from the applied loads. Using a spacing of 10 cm between two

adjacent bolts, an edge spacing of 5 cm, and a hole of 3 cm (2.7 cm bolt

diameter plus 0.3 cm clearance), we can determine the horizontal shear force

(H) per bolt and the vertical shear per bolt (V) as follows:

H ¼Area from centrelines between bolts

� average stress at the bolt location favð Þ
fav¼ 125�275=138¼ 249:1MPa

H ¼ 100�30ð Þ�16�249:1=2¼ 139496N¼ 139:5kN

V¼maximum shear resisted by web/total number of bolts.

Maximum shear resisted by web was previously calculated in the check

of the safety of the plate girder against shear stresses and was 7482.5 kN. The

total number of bolts in one side of the splice is 52:

V ¼ 7482:5=52¼ 143:9kN

270 cm

54

3

y y

3

275 MPa

125 cm

260 cm

10 cm

25

249.1 MPa

Figure 4.158 The field splice of the main plate girder.
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The resultant of the forces per bolt (R) is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
139:52 + 143:92

p
¼ 200:4kN, which is less than 206 kN (the resistance

of the bolt in double shear). Then O.K.

Flange Splices

Maximum force in the upper flange¼ 162�275�100=1000¼ 4455 kN

N flangeð Þ¼ 4455=206¼ 21:6bolts 6 rows of four bolts in double shearð Þ

4.5.13 Design of Roller Steel Fabricated Bearings
Let us now design the roller steel fabricated bearings shown in Figure 4.126

and detailed in Figure 4.159. The maximum vertical reaction at the supports

of the main plate girder was previously calculated under dead and live loads

with dynamic effect (RD+L+F), which was 3132.8 kN. The material of con-

struction for the bearings is cast iron steel (ISO 3755) 340-550 having a yield

stress of 340 MPa and an ultimate stress of 550 MPa.

Design of the Sole Plate
The reaction (RD+L+F) can be assumed as two equal concentrated loads at

two points, which are the centers of gravity of half of the load bearing stiff-

ener section shown in Figure 4.159. To determine the centers of gravity

(distance e), we can take the first area moment around the axis z-z, shown

in Figure 4.159, as follows:

e¼ 2�25�1:2�0:6+ 23:2�1:6�11:6

2�25�1:2+ 23:2�1:6
¼ 466:592

97:12
¼ 4:8 cm

Assuming that the thickness of the sole plate is t1,with detailed dimensions

shown in Figure 4.159 based on the flange plate girder dimensions, we can

determine the maximum moment applied to the sole plate (M) as follows:

M ¼RD+L+F� e=2¼ 3132:8�103�48=2¼ 75,187,200Nmm:

Section plastic modulus Wpl

� �¼ b1t
2
1=4¼ 700� t21=4¼ 175� t21

The plate thickness t1 can be calculated now as follows:

M

Wpl

¼ fy

gM0

75,187,200

175� t21
¼ 340

1:0

Then, t1¼35.5 mm, taken as 40 mm, as shown in Figure 4.159.
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1.225 cm

1.2 22

1.6

25 cm

60 cm 55

2
2

2
2

6 1212 cm 6

36 cm
Sole plate

3
3

R=16 cm

(d+10)/2 (d+10) (d+10)/2
a3 = 48

60 cm 5 555

e

3
3

2

Upper bearing plate
R

80 cm

14 cmd = 14 cm
Rollers

24 cm 1313
2.5 2.52.52.5

4
4

6.53 MPa
1 mm

R/2 R/2

105,786 N mm 58,770

80 cm
Lower bearing plate

105,786 N mm

z

z

Figure 4.159 Detailing of the twin roller fabricated steel bridge bearings.
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Design of the Rollers
The design of rollers requires determination of the diameter, length, and

number of rollers to resist the vertical load as well as the arrangement and

allowed movement in the direction of rollers. The design axial force per unit

length of roller contact NSd

0
specified in BS EN 1337-1 [3.11] shall satisfy

N
0
Sd�N

0
Rd

where NRd

0
is the design value of resistance per unit length of roller contact,

which is calculated as

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

Assume the number of rollers is 2 and their length is 800 mm as shown in

Figure 4.33:

N
0
Sd ¼

RD+L+F

2�800
¼ 3132:8�103

1600
¼ 1958N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

1958¼ 33:131�R

Then, R¼59.1 mm, taken as 70 mm and the diameter D is 140 mm.

Design of Upper Bearing Plate
The upper bearing plate is shown in Figure 4.159. The width and length

of the plate are dependent on the spacing between rollers and the length

of rollers as well as the allowed movement in the direction of rollers. The

thickness of the upper bearing plate can be determined as follows:

M ¼RD+L+F

2
� D+100ð Þ

2
¼ 3132:8�103

2
�240

2
¼ 187,968,000Nmm:

Wpl ¼ b2t
2
2

4
¼ 800t22

4
¼ 200t22 mm3

The plate thickness t2 can be calculated now as follows:

M

Wpl

¼ fy

gM0

187,968,000

200� t21
¼ 340

1:0

Then, t1¼52.6 mm, taken as 60 mm, as shown in Figure 4.159.
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The radius of the curved part of the upper bearing plate, which has a

length of 600 mm as shown in Figure 4.159, can be determined the same

way as that adopted for the design of the rollers:

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

N
0
Sd ¼

RD+L+F

600
¼ 3,132,800

600
¼ 5221:3N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

5221:3¼ 33:131�R

Then, R¼157.6 mm, taken as 160 mm.

Design of Lower Bearing Plate
The lower bearing plate is shown in Figure 4.159. The width and length of

the plate are dependent on the strength of concrete and are dependent on the

spacing between rollers and the length of rollers as well as the allowedmove-

ment in the direction of rollers. The thickness of the upper bearing plate can

be determined as follows:

fc ¼RD+L+F

a3b3
¼ 3132:8�103

600�800
¼ 6:53MPa<

fc

gc
¼ 40

1:5
¼ 26:7MPa

fc

gc
¼ 40

1:5
¼ 26:7 (for a typical concrete in bridges of C40/50 with fck)

The plate thickness t3 can be calculated from the distribution of bending

moment, caused by the pressure on the concrete foundation, as follows:

M¼105,786Nmm per unit width of the plate:

Wpl ¼ b3t
2
3

4
¼ 1� t23

4
¼ 0:25� t22 mm3

M

Wpl

¼ fy

gM0

105,786

0:25� t23
¼ 340

1:0

Then, t3¼35.3 mm, taken as 40 mm, as shown in Figure 4.159.

4.5.14 Design of Hinged Line Rocker Steel Fabricated Bearings
Finally, we can now design the hinged line rocker steel fabricated bearings

shown in Figure 4.126 and detailed in Figure 4.160. The maximum vertical
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reaction at the support of the main plate girder was previously calculated

under dead and live loads with dynamic effect (RD+L+F), which was

3132.8 kN. The bearing is also subjected to a lateral force from the braking

and traction forces from tracks as well as subjected to a longitudinal force

from the reactions of the lower wind bracing, which cause moments around

Socket

60 cm 55

2
24

4

17 cm 2.52.5 77

60 cm 5 555

17

2

R = 16 cm

15

17

Socket

15 cm 30.0 1010 30.0

80 cm

90 cm 1010

7.0

40.0 cm40.0 cm 15

fmax = 5.57 MPa

fmin = 0.43 MPa
3.41 MPa

–

10

90

10

80

xx

y

y

1431 kN
381.6 kN

3132.8 kN

s

s

s1 s1

Figure 4.160 Detailing of the hinged line rocker fabricated steel bridge bearings.
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longitudinal and lateral directions of the bearing base, respectively. Similar to

the roller bearing, the material of construction for the bearings is cast iron

steel (ISO 3755) 340-550 having a yield stress of 340 MPa and an ultimate

stress of 550 MPa. It should be noted that the overall height of the hinged

bearing must be exactly the same as that of the roller bearing. The general

layout and assumed dimensions of the hinged line rocker bearing are shown

in Figure 4.161. The tractionQlak and brakingQlbk forces can be calculated

as follows:

Qlak¼ 33�La,b¼ 33�27¼ 991kN� 1000 kN½ �, for Load Models 71

Qlbk ¼ 20�La,b¼ 20�27¼ 540

� 6000 kN½ �, for Load Models 71,SW=0,SW=2 and HSLM

Total the braking and traction forces (Qtot)¼1431 kN (see Figure 4.160

for the direction of the forces). Also, the reaction from the lower wind brac-

ings (R) (see Figure 4.160 for the direction of the forces) was previously cal-

culated as follows:

Rtot¼ 381:6kN

We can now determine the normal stress distribution due to the applied

loads, shown in Figure 4.160, on the concrete foundation as follows:

f ¼�N

A
�Mx

Ix
y�My

Iy
x

N

A
¼ 3,132,800

950�1100
¼ 3:0MPa

Mx

Ix
y¼ 381:6�103�240

950�11003=12
550¼ 0:49MPa

My

Iy
x¼ 1431�103�240

1100�9503=12
475¼ 2:08MPa

4

17

7

4
6

14

4

28
cm

Figure 4.161 The designed roller and hinged line rocker fabricated steel bearings.
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fmax¼�3:0�0:49�2:08¼�5:57MPa

fmin¼�3:0+ 0:49+ 2:08¼�0:43MPa

The critical bending moment on the base plate of the hinged bearing is at

section s-s shown in Figure 4.160:

M ¼ 0:5�400�3:41ð Þ�1100�400=3+ 0:5�400�5:57ð Þ�1100

�400�2=3¼ 426,800,000Nmm

Wpl ¼ 1100� t24=4¼ 275t24

M

Wpl

¼ fy

gM0

426,800,000

275t24
¼ 340

1:0

Then, t4¼67.6 mm, taken as 70 mm.

The normal stresses at section s1-s1, shown in Figure 4.160, of the line

rocker bearing can be checked as follows:

Mx ¼ 381:6�103�170¼ 64,872,000Nmm:

My ¼ 1431�103�170¼ 243,270,000Nmm:

N

A
¼ 3,132,800

150�800
¼ 26:11MPa

Mx

Ix
y¼ 64,872,000

150�8003=12
400¼ 4:05MPa

My

Iy
x¼ 243,270,000

800�1503=12
75¼ 81:09MPa

fmax¼� 26:11+ 4:05+ 81:09ð Þ¼�111:25MPa

< 340MPa Then O:K:ð Þ

4.6 DESIGN EXAMPLE OF A DECK TRUSS HIGHWAY STEEL
BRIDGE

The fifth design example presented in this chapter is for a deck truss highway

steel bridge. The general layout of the through bridge is shown in

Figures 4.162 and 4.163. The truss bridge has simply supported ends with

a length between supports of 40 m. The truss bridge has a Warren truss with

8 equal panels of 5 m. It is required to design the bridge adopting the design
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rules specified in EC3 [1.27]. The steel material of construction of the bridge

conformed to standard steel grade EN 10025-2 (S 275) having a yield stress

of 275 MPa and an ultimate strength of 430 MPa. The dimensions and gen-

eral layout of the bridge are shown in Figures 4.162 and 4.63. The bridge has

upper and lower wind bracings of K-shaped truss members as well as cross

bracing of K-shaped truss. The expected live loads on the highway bridge

conform to Load Model 1, which represents the static and dynamic effects

of vertical loading due to normal road traffic as specified in EC1 [3.1]. The

bolts used in connections and field splices are M27 high-strength preten-

sioned bolts. The unit weight of reinforced concrete slab decks used is

25 kN/m3.

4.6.1 Design of the Stringers
Let us start by designing the stringers, the longitudinal steel beams, support-

ing the reinforced concrete slab deck as shown in Figure 4.162.

4000 mm

2000 1000 1000 2000 2000 2000 2000 1000 1000

10,000 mm

150200

Elevation

4000

5000S

S 8×5000 = 40,000 mm

U5U1 U2 U3 U4

L1 L2 L3 L4 L5

V1 V2 V3 V4 V5
D1 D2

2000

D3 D4

Figure 4.162 General layout of a deck truss highway steel bridge (the fifth design
example).
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Dead Loads
The general layout of an intermediate stringer is shown in Figure 4.164. The

dead loads acting on an intermediate stringer can be calculated as follows:

Flooring 1:75 kN=m2
� �¼ 1:75�2¼ 3:5 kN=m

Reinforced concrete slab deck 0:2m thicknessð Þ¼ 5�2¼ 10 kN=m

Haunch Equivalent to 1 cm slab thicknessð Þ¼ 0:25�2¼ 0:5 kN=m

Own weight of stringer¼ 1:5 kN=m

Upper wind bracing (section S1-S1)

Lower wind bracing (section S2-S2)

5000

5000

8×5000 = 40,000 mm

S1

S2

S2

Elevation

4000

5000

S1

8×5000 = 40,000 mm

U5U1 U2 U3 U4

L1 L2 L3 L4 L5

V1 V2 V3 V4 V5
D1 D2

D3 D4

5000

5000

8×5000 = 40,000 mm

Figure 4.163 General layout of a deck truss highway steel bridge (the fifth design
example).
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Total dead load¼ gvk¼ 15:5kN=m

Assuming the stringers are simply supported by the cross girders, we can

calculate the maximum shear force and bending moment due to dead loads

on an intermediate stringer (see Figure 4.165) as follows:

QD:L:¼ gvk�L=2¼ 15:5�5=2¼ 38:75 kN

MD:L:¼ gvk�L2=8¼ 15:5�52=8¼ 48:44 kNm

Live Loads
The live loads acting on the highway bridge conform to LoadModel 1, which

represents the static and dynamic effects of vertical loading due to normal road

traffic as specified in EC1 [3.1]. To determine the worst cases of loading on an

intermediate stringer due to live loads, we can study a lateral section through

vehicles and a lateral section through distributed loads of Load Model 1 acting

2 m

R.C. haunched
slab deck 

Road finishing

An intermediate
stringer 

Figure 4.164 General layout of a an intermediate stringer.

gvk = 15.5 kN/m 

5 m

+
- S.F.D.

+

B.M.D.

38.75 kN

38.75 kN

48.44 kN.m

Figure 4.165 Straining actions from dead loads acting on an intermediate stringer.
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on thebridge, as shown inFigure 4.166. From the section through vehicles,we

find that themaximum concentrated load transferred to the stringer is 200 kN.

While from the section through distributed loads, we find that the maximum

distributed load transferred to the stringer is 14.34 kN/m. Therefore, the load

distribution transferred to the stringer in the longitudinal direction is as shown

in Figure 4.167. Two cases of loading for the evaluation of maximumbending

moment due to live loads on a stringer can be studied. The first case of loading

200 kN 200 kN

14.34 kN/m

Figure 4.167 Transferred live loads on an intermediate stringer.

150 kN150 kN
100 kN

2 m 1m 1m

200 kN

2 m 0.5 m 1m

14.34 kN/m

qvk = 9 kN/m qvk = 2.5 kN/m

0.5 m

Section through vehicles

Section through distributed loads

Figure 4.166 Calculation of straining actions from live loads transferred on an
intermediate stringer.
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is that the centerline of the stringer divides the spacing between the resultant

of the concentrated live loads and the closest load, with maximum bending

moment calculated at the closest load (point a in Figure 4.168), while the

second case of loading is that the centerline of the stringer is located in the

middle between the concentrated live loads, with maximum bending

moment located at midspan as shown in Figure 4.168:

ML:L: case of loading 1ð Þ¼ 211:85�2:2�14:34�2:22=2¼ 431:37 kNm

ML:L: case of loading 2ð Þ¼ 200�1:9+ 14:34�52=8¼ 424:81 kNm

There is a single case of loading for live loads to produce a maximum

shear force at the supports of the stringer, which is shown in Figure 4.169:

QL:L:¼ 387:85 kN

Bending Moment Due to Dead and Live Loads with Dynamic
Effect Added (MEd)

MEd¼MD:L:� gg +ML:L:� gq ¼ 48:44�1:3+ 431:37�1:35

¼ 645:3 kNm

It should be noted that, according to EC0 (BS EN 1990) [3.4], the per-

manent actions of steel self-weight and superimposed load should be

a

200 kN200 kN

1.9 0.3 0.9 1.9

5m

Case of loading 1A B

YA = 211.85 kN YB =  259.85 kN

200 kN200 kN

0.6 1.9

5 m

Case of loading 2A B

YA =  235.85 YB =  235.85 kN

0.6

14.34 kN/m

1.9

14.34 kN/m

Figure 4.168 Cases of loading for the maximum bending moment acting on an
intermediate stringer.
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multiplied by 1.2 at the ultimate limit state, while the permanent actions of

concrete weight should be multiplied by 1.35. Therefore, the total dead load

is calibrated and multiplied by 1.3. On the other hand, variable actions com-

prising road traffic actions are multiplied by 1.35 at the ultimate limit state.

Once again, it should be noted that the load factors adopted in this study are

that of the ultimate limit state. This is attributed to the fact that the finite

element models presented in Chapters 6 and 7 can be used to analyze the

bridges and provide more accurate predictions for the deflections and other

serviceability limit state cases of loading.

Shearing Force Due to Dead and Live Loads with Dynamic Effect Added (QEd)

QEd ¼QD:L:� gg +QL:L:� gq ¼ 38:75�1:3+ 387:85�1:35¼ 574 kN

Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼ 645:3 kNm

QEd ¼ 574 kN

Design of Stringer Cross Section

Mc,Rd ¼Wpl� fy

gM0

for classes 1 and 2

645:3�106 ¼Wpl�275

1:0

WPL ¼ 2,346,545:5mm3 ¼ 2346:5 cm3

ChooseUB533�210�92 (equivalent toAmericanW21�62), shown in

Figure4.170.WPLaroundx-x¼2360 cm3.Toclassify thecross sectionchosen,

200 kN200 kN

1.2 3.8

5 m

Case of loading 1A B

YA = 387.85 kN YB = 83.85 kN 

14.34 kN/m

Figure 4.169 Cases of loading for the maximum shear force acting on a stringer.
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e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 86:9mm, tfl ¼ 15:6, C1=tfl¼ 86:9=15:6¼ 5:57� 9�0:924
¼ 8:316 Stringer flange is class 1ð Þ

C2¼ 476:5mm, tw ¼ 10:1, C1=tfl ¼ 476:5=10:1¼ 47:2� 72�0:924
¼ 66:5 Stringer web is class 1ð Þ

Check of Bending Resistance

Mc,Rd ¼Wpl� fy

gM0

¼ 2360�103�275

1:0
¼ 649,000,000Nmm

¼ 649kNm>MEd¼ 645:3 kNm Then O:K:ð Þ

Check of Shear Resistance

Vpl,Rd¼
Av fy=

ffiffiffi
3

p� �
gM0

¼ 501:9�10:1ð Þ� 275=
ffiffiffi
3

p� �
1:0

¼ 804,800N

¼ 804:8kN>QEd¼ 574kN Then O:K:ð Þ

209.3 mm

12.7

15.6

15.6

533.1 mm 501.9
C2 =
476.5 

10.1

C1= 86.9

x x

Figure 4.170 The cross-section of stringers (UB 533�210�92).
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4.6.2 Design of the Cross Girders
The cross girders (the lateral steel beams) carry concentrated loads from the

stringers as shown in Figure 4.171. Therefore, the dead and live loads acting

on an intermediate cross girder can be calculated as follows:

Dead Loads

Intermediate reactions from stringers due to dead loads¼ 15:5�5

¼ 77:5kN

3 kN/m
38.75 kN

77.5

2 m 1 2 2 2 2 11 2

S.F.D.

+

+

+

–
–

– –
B.M.D.

208.75 kN

38.75

125.25

205.75

128.25

122.25
44.75

38.75

122.25 
320

52.702m.Nk52.702

83.5  

250.5
766.5

83.5

44.75

38.75

44.75
122.25

128.25
205.75 208.75 kN

125.25

38.75

44.75

122.25

250.5

77.5 77.5 77.5 77.5 77.5 77.5
38.75 kN

334 334

Figure 4.171 Straining actions from dead loads acting on an intermediate cross girder.
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Reactions from stringers at edges due to dead loads¼ 77:5=2¼ 38:75 kN

Own weight of cross girder¼ 3:0 kN=m

Assuming the cross girders are simply supported by themain plate girders,

we find that the maximum shear force and bending moment due to dead

loads on an intermediate cross girder (see Figure 4.171) are as follows:

QD:L:¼ 208:75 kN

MD:L:¼ 334 kNm

Live Loads
To determine the worst cases of loading on an intermediate cross girder due

to live loads, we can study different longitudinal sections through vehicles,

distributed loads, and sidewalks of Load Model 1 acting on the bridge, as

shown in Figure 4.172. From the different sections, we can find that themax-

imumconcentrated and distributed loads transferred to the intermediate cross

girder are as shown in Figure 4.172. The case of loading for the evaluation of

maximum positive bending moment due to live loads on an intermediate

cross girder can be studied, as shown in Figure 4.172. The case of loading

is that the larger concentrated load from vehicles transferred is located at

the centerline (midspan) of an intermediate cross girder, with maximum

bending moment located at midspan as shown in Figure 4.172. The maxi-

mum positive bending moment is calculated as follows:

12.5 kN/m

264

2 m 1.0 2 2 2.5 21.0

0.5

0.5 0.5
1.0

264
176176

88

5 m 5 m

150

150

5 m

1.2

3.8

9 kN/m

100

100

5 m

1.2

3.8

2.5 kN/m

683.3 kN 552.2 kN

BA 12.5 

a

45 kN/m

0.5

0.5

Figure 4.172 Case of loading for maximum positive bending moment from live loads
acting on an intermediate cross girder.
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ML:L: maximum positive bending momentð Þ
¼ 552:2�5�264�2�45�2:5�1:25�12:5�2:5�3:75
¼ 1975:2 kNm

The case of loading for the evaluation of maximum negative bending

moment due to live loads on an intermediate cross girder can be also studied,

as shown in Figure 4.173. The maximum negative bending moment is cal-

culated as follows:

ML:L: maximum negative bending momentð Þ
¼ 264�0:5+ 45�1�0:5+ 25�2�2¼ 254:5kNm

The case of loading for live loads to produce a maximum shear force at

the supports of an intermediate cross girder is shown in Figure 4.174. It

should be noted that for this deck bridge, cars are allowed to go on top

of the supports, which are the main trusses, as shown in Figure 4.174.

QL:L: ¼ 661:25 kN

5 m 5 m m2m2

25 kN/m25 kN/m

–

254.5 kN m254.5 kN m

B.M.D.

45 kN/m 45 kN/m

1 1  

264264

Figure 4.173 Case of loading for maximum negative bending moment from live loads
acting on an intermediate cross girder.

12.5

264

0.5

2 1.5 2 2 3
0.5 0.5 0.5

2.0

264
176 176

88 88

10 m

25 kN/m

1020.25 kN 320.75 kN

A B

45 kN/m

0.5

0.50.5

Figure 4.174 Case of loading for maximum shearing force from live loads acting on an
intermediate cross girder.
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Bending Moment Due to Dead and Live Loads with Dynamic Effect
Added (MEd)

MEd¼MD:L:� gg +ML:L:�gq¼ 334�1:3+ 1975:2�1:35¼ 3100:7 kNm

Shearing Force Due to Dead and Live Loads with Dynamic Effect Added (QEd)

QEd¼QD:L:�gg +QL:L:�gq ¼ 208:75�1:3+ 661:25�1:35¼ 1164:1kN

Design Bending Moment (MEd) and Shear Force (QEd)

MEd¼ 3100:7 kNm

QEd¼ 1164:1 kN

Design of the Cross Girder Cross Section
The cross girder is designed as a welded plate girder as shown in Figure 4.175.

The web height is taken as equal to 1200 mm, which conforms to the

120 cm

24

2.4

1.6

y y

2.4

C1 = 10.4

118.4

Figure 4.175 Welded plate girder section of cross girders.

416 Ehab Ellobody

Figure 4.175


recommended values L/(7�9)¼12,000/(7�9)¼1429�1111 mm. The

web plate thickness is assumed to be 16 mm. The flange width is taken as

equal to 240 mm, with a thickness of 24 mm. To classify the cross section

chosen,

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1 ¼ 104mm, tfl ¼ 24, C1=tfl ¼ 104=24¼ 4:3� 9�0:924
¼ 8:316 Cross girder flange is class 1ð Þ:

C2¼ 1184mm, tw ¼ 16, C1=tfl¼ 1184=16¼ 74< 83�0:924
¼ 76:7 Cross girder web is class 1ð Þ:

To calculate the bending moment resistance, the plastic section modulus

should be used:

Wpl ¼ 24�124:83=4�2�11:2�1203=4¼ 12,810:2 cm3

Check of Bending Resistance

Mc,Rd ¼
Wel,min� fy

gM0

¼ 12,810:2�103�275

1:0
¼ 3,522,800,000Nmm

¼ 3522:8 kNm>MEd¼ 3100:7 kNm Then O:K:ð Þ

Check of Shear Resistance

Vpl,Rd¼
Av fy=

ffiffiffi
3

p� �
gM0

¼ 1200�16ð Þ� 275=
ffiffiffi
3

p� �
1:0

¼ 3,048,409N

¼ 3048:4kN>QEd¼ 1164:1kN Then O:K:ð Þ

4.6.3 Calculation of Forces in Truss Members
4.6.3.1 General
To calculate the design forces in the truss members, we need to calculate the

dead and live loads acting on the main truss in the longitudinal direction,

which is addressed as follows.

Dead Loads
Weight of steel structure for part of bridge between main trusses:
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ws1 ¼ 1:75+ 0:04L +0:0003L2 � 3:5kN=m2

ws1 ¼ 1:75+ 0:04�40+ 0:0003�402¼ 3:83

> 3:5 kN=m2 taken as 3:5 kN=m2

Weight of steel structure for part of bridge outside main trusses:

ws2 ¼ 1+ 0:03L kN=m2

ws2 ¼ 1+ 0:03�40¼ 2:2kN=m2

ws¼ 3:5�10=2+ 2:2�3¼ 24:1kN=m

Weight of reinforced concrete decks and haunches:

wRC¼ 0:2+ 0:01ð Þ�25�6+ 0:15+ 0:01ð Þ�25�2¼ 39:5 kN=m

Weight of finishing (assume weight of finishing is 1.75 kN/m2 for parts

between sidewalks and 1.5 kN/m2 for sidewalks):

wF¼ 1:75�6+ 1:5�2¼ 13:5kN=m

We can now calculate the total dead load acting on main trusses in the

longitudinal direction (see Figure 4.176) as follows:

wD:L: ¼ 24:1+ 39:5+ 13:5¼ 77:1kN=m

Live Loads
To determine the live loads acting on main trusses in the longitudinal dir-

ections, we can study different lateral sections through vehicles, distributed

loads, and sidewalks of Load Model 1 acting on the bridge, as shown in

Figure 4.177. From the lateral section shown in Figure 4.177, we can find

that the maximum concentrated and distributed loads transferred to a main

truss are 450 kN and 45.65 kN/m, respectively, as shown in Figure 4.178.

We can also calculate the negative distributed reactions acting on a main

truss in the longitudinal by investigating the case of loading shown in

Figure 4.179. The negative concentrated and distributed loads acting on a

main truss are 7.5 kN and 2.45 kN/m, respectively, as shown in

Figure 4.180. The calculated dead and live loads can be now used to

gvk = 77.1 kN/m 

Figure 4.176 Dead loads acting on main trusses.
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Reaction from concentrated loads = 450 kN

Reaction from distributed loads = 45.65 kN/m

2.5 kN/m2

150

0.5

2 1.5 2 2 3
0.5 0.5 0.5

2.0

150
100 100

50 50

10 m

5 kN/m2  

A B

9 kN/m2

0.5

0.50.5

Figure 4.177 Maximum reactions due to live loads transferred by cross girders on main
trusses.

qvk = 45.65 kN/m

450 kN 450 kN

1.2 m

Figure 4.178 Live loads acting on main trusses.

10 m
3 m

2 m

9 kN/m2

Negative reaction from concentrated loads = –7.5 kN

150 kN

0.50.5

5 kN/m2

Negative reaction from distributed loads = –2.45 kN/m

Figure 4.179 Negative reactions due to live loads transferred by cross girders on main
trusses.

qvk = −2.45 kN/m

−7.5 kN −7.5 kN

Figure 4.180 Negative concentrated and distributed live loads acting on main trusses.
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determine the forces in the members of main trusses using the influence line

method as shown in the coming sections.

4.6.3.2 Calculation of Force in the Upper Chord Member L4
To determine the force in the lower chord truss member L4 (see

Figure 4.181) using the influence line method, we can follow the simple

procedures of putting a unit concentrated moving load at midspan

(point a), and using the sectioning method, we take a section s-s, as shown

in Figure 4.181, and then take the moment at point a to calculate the force in

the member due to the applied unit load. After that, we can put the previ-

ously calculated dead and live loads acting on a main truss in the longitudinal

direction. The total force in the member will be the summation of the con-

centrated loads multiplied by the companion vertical coordinate in the influ-

ence line diagram and the summation of the distributed loads multiplied by

the companion areas in the diagram. Hence, the forces due to the dead and

live loads can be calculated as follows:

FD:L: L4ð Þ¼ 0:5�40�2:5�77:1¼ 3855 kN

FL:L: L4ð Þpositive¼ 450� 2:5+ 2:35ð Þ+0:5�40�2:5�45:65¼ 4465 kN

FL:L: L4ð Þnegative¼�7:5� 2:5+ 2:35ð Þ�0:5�40�2:5�2:45
¼�158:9 kN

20 m

L5A

a

qvk = 45.65 kN/m 
450 kN 450 kN

1.2 m

2.35 

20 m
gvk = 77.1 kN/m

s

20 × 20/(40 × 4) = 2.5

4 m

L4 s

+

J10

Figure 4.181 Determination of the tensile force in lower chord member L4 using the
influence line method.
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FEd L4ð Þmaximum¼FD:L:�gg +FL:L:� gq

FEd L4ð Þmaximum¼ 3855�1:3+ 4465�1:35
¼ 11,039:3kN Tension forceð Þ

FEd L4ð Þminimum¼ 3855�1:3�158:9�1:35¼ 4797 kN Tension forceð Þ

It should be noted that, from the equilibrium of joint J10 (see

Figure 4.181), the force in lower chord truss member L4 is equal to that of L5.

4.6.3.3 Calculation of Force in the Lower Chord Member L3
To determine the force in the lower chord truss member L3 (see Figure 4.182)

using the influence line method, we can follow the same procedures adopting

for member L4. Hence, the forces due to the dead and live loads can be

calculated as follows:

FD:L: L3ð Þ¼ 0:5�40�1:875�77:1¼ 2891:3kN

FL:L: L3ð Þpositive¼ 450� 1:875+ 1:8ð Þ+0:5�40�1:875�45:65
¼ 3365:6 kN

FL:L: L3ð Þnegative¼�7:5� 1:875+ 1:8ð Þ�0:5�40�1:875�2:45
¼�119:4kN

FEd L3ð Þmaximum¼FD:L:�gg +FL:L:� gq

B

qvk = 45.65 kN/m

450 kN450 kN

1.2 m

10 × 30/(40 × 4) = 1.875 1.8

gvk = 77.1 kN/m

10 m

L3A

a

30 m

s

4 m

L2 s

+

J8

Figure 4.182 Determination of the tensile force in lower chord member L3 using the
influence line method.
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FEd L3ð Þmaximum¼ 28,991:3�1:3+ 3365:6�1:35
¼ 8302:3 kN Tension forceð Þ

FEd L3ð Þminimum¼ 2891:3�1:3�119:4�1:35
¼ 3597:5 kN Tension forceð Þ

It should be noted that, from the equilibrium of joint J8 (see Figure 4.182),

the force in lower chord truss member L2 is equal to that of L3. It should also

be noted that, under the dead and live cases of loading, the force in the lower

chord member L1 is zero.

4.6.3.4 Calculation of Force in the Upper Chord Member U4

We can repeat the previous procedures now and change the pole where the

moment is calculated to determine the force in the upper chord member U4,

as shown in Figure 4.183. Hence, the forces due to the dead and live loads

can be calculated as follows:

FD:L: U4ð Þ¼�0:5�40�2:3475�77:1¼�3614:1 kN

FL:L: U4ð Þ¼�450� 2:3475+ 2:23125ð Þ�0:5�40�2:3475�45:65
¼�4198:6 kN

FEd U4ð Þ¼FD:L:� gg +FL:L:�gq

qvk = 45.65 kN/m 

450 kN 450 kN

1.2 m 

15 × 25/(40 × 4) = 2.34375 2.23125

gvk = 77.1 kN/m 15 m

U4

A a

25 m

s

4 m

U3

s

–

J4

Figure 4.183 Determination of the compressive force in upper chord member U4 using
the influence line method.
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FEd U4ð Þ¼�3614:1�1:3�4198:6�1:35
¼�10,366:4 kN Compression forceð Þ

It should be noted that, from the equilibriumof the truss (see Figure 4.183),

the force in upper chord truss member U3 is equal to that of the calculated

upper chord member U4.

4.6.3.5 Calculation of Force in the Lower Chord Member U2

The force in member U2 due to the dead and live loads can be calculated, as

shown in Figure 4.184, as follows:

FD:L: U2ð Þ¼�0:5�40�1:09375�77:1¼�1686:6 kN

FL:L: U2ð Þ¼�450� 1:09375+ 1:05625ð Þ�0:5�40�1:09375�45:65
¼�1966:1 kN

FEd U2ð Þ¼FD:L:�gg +FL:L:�gq

FEd U2ð Þ¼�1686:6�1:3�1966:1�1:35
¼�4846:8kN Compression forceð Þ

It should be noted that, from the equilibriumof the truss (see Figure 4.184),

the force in upper chord truss member U2 is equal to that of the upper chord

member U1.

q
vk

 = 45.65 kN/m
450 kN 450 kN

1.2 m

5 × 35/(40 × 4) = 1.09375 1.05625

g
vk

 = 77.1 kN/m

5 m

U2

A a

35 m

s

4 m

U1

s

–

J2

Figure 4.184 Determination of the tensile force in lower chord member L3 using the
influence line method.
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4.6.3.6 Calculation of Force in the Diagonal Chord Member D4

To determine the force in the diagonal chord truss member D4 (see

Figure 4.185) using the influence line method, we can follow the simple

procedures of putting a unit concentrated moving load at point a adjacent

to section s-s shown in Figure 4.185 and study the equilibrium of the truss

for the other side of section s-s to calculate the force in the member. Then,

we put the unit concentrated moving load at point b adjacent to section s-s

shown in Figure 4.185 and study the equilibrium of the truss for the other

side of section s-s to calculate the force in the member. The influence line of

the diagonal member consists of two triangles as shown in Figure 4.185 hav-

ing different signs. After that, we can put the previously calculated dead and

live loads acting on a main truss in the longitudinal direction. It should be

noted that the live loads can be put on the negative or positive triangle to

produce a compressive or tensile force, respectively, while the dead loads

must be put on both triangles. Once again, the total force in the member

will be the summation of concentrated loads multiplied by the companion

vertical coordinate in the diagram and the summation of the distributed loads

multiplied by the companion area in the diagram. Hence, the forces due to

the dead and live loads can be calculated as follows:

B

qvk = 45.65 kN/m450 kN 450 kN

1.2 m

+

1.6

1.6

b

15 m

–

gvk = 77.1 kN/m

1.2 m

qvk = 45.65 kN/m

4.86 m2.14 m

0.6

0.8

0.552

0.752

450 kN 450 kN

5 m
A

a

20 m

s

4 m

s

D4
Fsina

Figure 4.185 Determination of the force in diagonal member D4 using the influence
line method.
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A�ve D4ð Þ¼�0:5�22:86�0:8¼�9:14

A+ve D4ð Þ¼ 0:5�17:14�0:6¼ 5:14

Anet D4ð Þ¼�9:14+ 5:14¼�4:0

FD:L: D4ð Þ¼�4�77:1¼�308:4 kN

FL:L: D5ð Þ negativeð Þ¼�450� 0:8+ 0:752ð Þ�9:14�45:65�7:5

� 0:6+ 0:552ð Þ�2:45�5:14¼�1136:9 kN

FL:L: D4ð Þ positiveð Þ¼ 450� 0:6+ 0:552ð Þ+5:14�45:65+ 7:5

� 0:8+ 0:752ð Þ+2:45�9:14¼ 787:1kN

FEd D4ð Þmaximum¼FD:L:�gg +FL:L:�gq

FEd D4ð Þmaximum¼�308:4�1:3�1136:9�1:35
¼�1935:7 kN Compression forceð Þ

FEd D4ð Þminimum¼FD:L:�gg +FL:L:�gq

FEd D4ð Þminimum¼�308:4�1:3+ 787:1�1:35
¼ +661:7 kN Tension forceð Þ

4.6.3.7 Calculation of Force in the Diagonal Chord Member D3

By repeating the procedures adopted for D4, the force in the diagonal truss

member D3 can be calculated, as shown in Figure 4.186, as follows:

A+ve D3ð Þ¼ 0:5�28:57�1¼ 14:29

A�ve D3ð Þ¼�0:5�11:43�0:4¼�2:29

Anet D3ð Þ¼ 14:29�2:29¼ 12:0

FD:L: D3ð Þ¼ 12�77:1¼ +925:1 kN

FL:L: D3ð Þ positiveð Þ¼ 450� 1+ 0:952ð Þ+14:29�45:65+ 7:5

� 0:4+ 0:352ð Þ+2:29�2:45¼ 1542 kN

FL:L: D3ð Þ negativeð Þ¼�450� 0:4+ 0:352ð Þ�2:29�45:65�7:5

� 1+ 0:952ð Þ�14:29�2:45¼�492:6kN

FEd D3ð Þmaximum¼FD:L:�gg +FL:L:�gq
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FEd D3ð Þmaximum¼ 925:1�1:3+ 1542�1:35
¼ 3284:3kN Tension forceð Þ

FEd D3ð Þminimum¼FD:L:� gg +FL:L:�gq

FEd D3ð Þminimum¼ 925:1�1:3�492:6�1:35
¼ 537:6 kN Tension forceð Þ

4.6.3.8 Calculation of Force in the Diagonal Chord Member D2

The force in the diagonal truss member D2 can be calculated, as shown in

Figure 4.187, as follows:

A�ve D2ð Þ¼�0:5�34:29�1:2¼�20:57

A+ve D2ð Þ¼ 0:5�5:71�0:2¼ 0:57

Anet D2ð Þ¼�20:57+ 0:57¼�20:0

FD:L: D2ð Þ¼�20�77:1¼�1542 kN

FL:L: D2ð Þ negativeð Þ¼�450� 1:2+ 1:152ð Þ�20:57�45:65�7:5

� 0:2+ 0:152ð Þ�0:57�2:45¼�2001:5 kN

q
vk = 45.65 kN/m450 kN 450 kN

1.2 m

+

1.6

1.6

- 

g
vk

 = 77.1 kN/m

1.2 m

q
vk

 = 45.65 kN/m

3.57 m1.43

0. 4

1

0.352

0.952

450 kN450 kN 

B
b

10 m 5 m

A

a

25 m

s

4 m

s

D3

Fsina

Figure 4.186 Determination of the force in diagonal member D3 using the influence
line method.
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FL:L: D2ð Þ positiveð Þ¼ 450� 0:2+ 0:152ð Þ+0:57�45:65+ 20:57

�2:45+ 7:5� 1:2+ 1:152ð Þ¼ 252:5kN

FEd D2ð Þmaximum¼FD:L:�gg +FL:L:�gq

FEd D2ð Þmaximum¼�1542�1:3�2001:5�1:35
¼�4706:6kN Compression forceð Þ

FEd D2ð Þminimum¼FD:L:�gg +FL:L:�gq

FEd D2ð Þminimum¼�1542�1:3+ 252:5�1:35
¼�1663:7 kN Compression forceð Þ

4.6.3.9 Calculation of Force in the Diagonal Chord Member D1

The force in the diagonal truss member D1 can be calculated, as shown in

Figure 4.188, as follows:

A+ve D1ð Þ¼ 0:5�40�1:4¼ 28

FD:L: D1ð Þ¼ 28�77:1¼ 2158:8kN

qvk = 45.65 kN/m
450 kN 450 kN

1.2 m

+

1.6

1.6

–

gvk = 77.1 kN/m

1.2 m

qvk = 45.65 kN/m

4.29 m0.71 m

0.2

1.152

0.152

1.2

450 kN 450 kN

B 
b

5 m 5 m

A

a

30 m

s

4 m

s

D2

Fsina

Figure 4.187 Determination of the force in diagonal member D2 using the influence
line method.
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FL:L: D1ð Þ positiveð Þ¼ 450� 1:4+ 1:352ð Þ+28�45:65¼ 2516:6kN

FL:L: D2ð Þ negativeð Þ¼�7:5� 1:4+ 1:352ð Þ�28�2:45¼�89:24 kN

FEd D1ð Þmaximum¼FD:L:� gg +FL:L:� gq

FEd D1ð Þmaximum¼ 2158:8�1:3+ 2516:6�1:35
¼ 6203:9kN Tension forceð Þ

FEd D1ð Þminimum¼FD:L:� gg +FL:L:�gq

FEd D1ð Þminimum¼ 2158:8�1:3�89:24�1:35
¼ 2684:9 kN Tension forceð Þ

4.6.3.10 Calculation of the Reactions at Supports
The reactions at supports can be also calculated using the influence line

method, as shown in Figure 4.189, as follows:

A+ve Rð Þ¼Anet D2ð Þ¼ 0:5�40�1:0¼ 20:0

FD:L: Rð Þ¼ 20:0�77:1¼ 1542 kN

FL:L: Rð Þ positiveð Þ¼ 450� 1:0+ 0:97ð Þ+20:0�45:65¼ 1799:5 kN

FEd Rð Þ¼FD:L:�gg +FL:L:� gq

FEd Rð Þmaximum¼ 1542�1:3+ 1799:5�1:35¼ 4433:9kN

qvk = 45.65 kN/m
450 kN 450 kN

1.2 m

1.6

gvk = 77.1 kN/m

+

1.4 1.352

5

A

a

35 m

s

4 m

s

Fsina

Figure 4.188 Determination of the force in diagonal member D1 using the influence
line method.
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4.6.3.11 Calculation of Force in the Vertical Members
The force in the vertical truss members V2 and V4 can be calculated, as

shown in Figure 4.190, as follows:

A�ve V4ð Þ¼�0:5�10�1:0¼�5

FD:L: V4ð Þ¼�5�77:1¼�385:5 kN

FL:L: V4ð Þ negativeð Þ¼�450� 1:0+ 0:76ð Þ+5�45:65¼�1020:3kN

FEd D1ð Þmaximum¼FD:L:�gg +FL:L:�gq

FEd D1ð Þmaximum¼�385:5�1:3�1020:3�1:35
¼�1878:6kN Compression forceð Þ:

It should be noted that from the truss equilibrium, the forces in members

V3 and V5 are zero under the applied dead and live loads, while the force in

member V1 is equal to the reaction at supports.

Figure 4.191 summarizes the calculated forces in the truss members and

presents the commonly known distribution of forces in the Warren main

truss under the dead and live cases of loading.

4.6.3.12 Design of the Maximum Compression Upper Chord Members
U4 and U3

After the calculation of the design forces in the main truss members, we can

now design different members of the main truss. Let us start by designing

the maximum compression upper chord members U4 and U3, shown

in Figure 4.192, carrying a compressive design force of �10,366.4 kN.

qvk = 45.65 kN/m
450 kN 450 kN

1.2 m

1.0

gvk = 77.1 kN/m

+

0.97

A

40 m

RA

4 m

Figure 4.189 Determination of the reaction RA using the influence line method.
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qvk = 45.65 kN/m
450 kN 450 kN

20 m 

gvk = 77.1 kN/m

4 

A  

10 m 20 m

4

A

10 m 10 m

0.76

1.2 m

1.0

–

Figure 4.190 Determination of the compression force in vertical member V4 using the
influence line method.
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Figure 4.192 The cross section of the maximum compression members U4 and U3.
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Figure 4.191 Distribution of forces in the W-shaped main truss under the dead and live
cases of loading.
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To assume a reasonable cross section for the upper chord compression

member, the following parameters can be considered:

hw¼ a

12�15
¼ 5000

12�15
¼ 417�333mm, taken as 400 mm:

b¼ 0:75�0:9ð Þhw ¼ 0:75�0:9ð Þ�400

¼ 300�360mm, taken as 360 mm:

It should be noted that the spacing between gusset plates (b) must be kept

constant for the whole truss. Let us start by assuming the upper cover plate

width of 500 mm, flange thickness of 36 mm, and web thickness of 24 mm.

After that, we design the member and check the stresses. If the section is safe

and economic, then the design is acceptable; otherwise, we change the

dimensions accordingly and repeat the procedures. To classify the cross sec-

tion chosen (see Figure 4.192),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

b¼ 360mm, tfl¼ 36, b=tfl¼ 360=36¼ 10< 30:5 Flange is Class 1ð Þ
C¼ 340mm, tw ¼ 24, C=tfl¼ 340=24¼ 14:2< 30:5 Web is Class 1ð Þ

A¼ 50�3:6+ 36�3:6+ 2�40�2:4¼ 501:6 cm2

e¼ 50�3:6�21:8�36�3:6�16:8

501:6
¼ 3:74 cm

Im¼ 2�2:4�403=12+ 50�3:63=12+ 50�3:6�21:82½ �
+ 36�3:63=12+ 36�3:6�15:82½ � ¼ 143831 cm4

Ix ¼ 143831�501�3:742¼ 136815 cm4

Iy¼ 3:6�503=12+ 3:6�363=12+ 2� 40�2:43=12+ 40�2:4�19:22
	 


¼ 122368 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
136815

501:6

r
¼ 16:52 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122368

501:6

r
¼ 15:62 cm

lbx¼ lby ¼ 5000mm

�l¼Lcr

i

1

l1
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l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 5000

156:2
� 1

86:7636
¼ 0:369

The axial compressive force in the upper chord member U4

(NEd¼10,366.4 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 0:369�0:2ð Þ+0:3692

	 
¼ 0:597

w¼ 1

0:597+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5972�0:3692

p ¼ 0:938 but w� 1:0

Then, Nb,Rd¼ 0:938�501,600�275

1:1
¼ 11,762,520N

Nb,Rd¼ 11762:5kN>NEd¼ 10366:4 kN Then O:K:ð Þ

4.6.3.13 Design of the Compression Upper Chord
Members U2 and U1

Following the same procedures adopted for the compression members U4

and U3, we can design the compression upper chord members U2 and

U1, shown in Figure 4.193, carrying a compressive design force of

�4846.8 kN. To classify the cross section chosen (see Figure 4.193),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

b¼ 360mm, tfl¼ 14, b=tfl¼ 360=14¼ 25:7< 30:5 Flange is Class 1ð Þ
C¼ 362mm, tw ¼ 14, C=tfl¼ 362=14¼ 25:9< 30:5 Web is Class 1ð Þ

A¼ 55�1:4+ 36�1:4+ 2�40�1:4¼ 232:4 cm2

e¼ 50�1:4�20:7�36�1:4�16:9

232:4
¼ 2:57 cm
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Im¼ 2�1:4�403=12+ 50�1:43=12+ 50�1:4�20:72
	 


+ 36�1:43=12+ 36�1:4�16:92
	 
¼ 59342 cm4

Ix ¼ 59342�232:4�2:572 ¼ 57807 cm4

Iy¼ 1:4�503=12+ 1:4�363=12+ 2� 40�1:43=12+ 40�1:4�18:72
	 


¼ 59210 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
57807

232:4

r
¼ 15:77 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
59210

232:4

r
¼ 15:96 cm

lbx¼ lby ¼ 5000mm

�l¼Lcr

i

1

l1
l1¼ 93:9�0:924¼ 86:7636

�l¼ 5000

157:7
� 1

86:7636
¼ 0:365

The axial compressive force in the upper chord member U2

(NEd¼4846.8 kN):

NEd

Nb,Rd

� 1:0

1.4 

50 cm 

1.4 

x x 

m m 

C = 36.2

h w
 =

 4
0

b= 36 

e = 2.57 

1.4 

Gusset plate 

1.4 

2.4 

Figure 4.193 The cross section of the compression members U1 and U2.
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where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 0:365�0:2ð Þ+0:3652

	 
¼ 0:595

w¼ 1

0:595+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5952�0:3652

p ¼ 0:939 but w� 1:0

Then, Nb,Rd¼ 0:939�232:4�275

1:1
¼ 5,455,590N

Nb,Rd¼ 5455:6kN>NEd¼ 4846:8kN Then O:K:ð Þ

4.6.3.14 Design of the Lower Chord Member L4 and L5
Let us now design the tensile lower chord members L4 and L5, shown in

Figure 4.194, carrying a tensile design force of 11,039.3 kN. To assume a

reasonable cross section for the lower chord tension members, the following

parameters can be considered:

h¼ L

12�30
¼ 5000

12�30
¼ 417�166mm, taken as 400 mm:

Once again, it should be noted that the gusset plates must be spaced at a

constant distance (b) of 400 mm. Let us start by assuming the flange and web

thickness of 26 mm (see Figure 4.194). It should also be noted that the gross

y 

x x 

y 

b = 36 cm 

2.6 

2.6 

h 
=

 4
0 

cm

50 cm 

2.6 

2.6 

Figure 4.194 The cross section of the lower chord tension members L4 and L5.
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and net cross-sectional areas of the lower chord members are the same since

they are connected using butt weld. The design of section can be performed

as follows:

A¼Anet¼ 50�2:6+ 36�2:2+ 2�40�2:6¼ 431:6 cm2

Npl,Rd¼ Afy

gM0

¼ 431:6�275�100

1:0
¼ 11,869,000N¼ 11869 kN>NEd

¼ 11039:3kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�431:6�100�430

1:25
¼ 13,362,336N

¼ 13,362:3kN>NEd¼ 11,039:3kN

4.6.3.15 Design of the Lower Chord Members L3 and L2
Following the same procedures adopted for the design of the lower chord

members L5 and L4, we can design the tensile lower chord members L3
and L2, shown in Figure 4.195, carrying a tensile design force of

8302.3 kN. The design of section can be as follows:

A¼Anet¼ 50�2:0+ 36�2:0+ 2�40�2:0¼ 332 cm2

Npl,Rd¼ Afy

gM0

¼ 332�275�100

1:0
¼ 9,130,000N¼ 9130 kN>NEd

¼ 8302:3 kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�332�100�430

1:25
¼ 10,278,720N¼ 10,278:7kN

>NEd¼ 8302 kN

y 

x x 

y 

b = 36 cm 

2 

2 

h 
=

 4
0 

cm

50 cm 

2 

2 

Figure 4.195 The cross section of the lower chord tension member L3 and L2.
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It should be noted that member L1 having a force of zero under the dead

and live cases of loading can be taken with the same cover plate width and

the same web height but with a minimum thickness of 1 cm as shown in

Figure 4.196.

4.6.3.16 Design of the Compression Vertical Member V1
Let us nowdesign the compression verticalmemberV1, shown in Figure 4.197,

carrying a compressive design force of �4433.9 kN. To assume a reasonable

cross section for the compression vertical member, the following parameters

can be considered:

d1¼ L

15�22
¼ 4000

15�22
¼ 26:7�181:8mm taken as 260 mm:

y 

x x 

y 

b 
=

 3
6

3 

4 

d1 = 26 cm 

C1 = 10.7 

C2 = 26.4 

4 

Figure 4.197 The cross section of the vertical compression member V1.
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y 
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Figure 4.196 The cross section of the lower chord member L1.
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It should be noted that the vertical member must be inside the gusset

plates spaced at a constant distance (b) of 400 mm. Let us start by assuming

the flange thickness of 40 mm and web thickness of 30 mm. To classify the

cross section chosen (see Figure 4.197),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 107mm, tfl ¼ 40, C1=tfl¼ 107=40¼ 2:8< Flange is Class 1ð Þ
C2 ¼ 264mm, tw¼ 30, C2=tfl ¼ 264=30¼ 8:8< 33�0:924

¼ 30:5 Web is Class 1ð Þ
A¼ 2�26�4+ 28�3:0¼ 292 cm2

Ix ¼ 3:0�283=12+ 2� 26�43=12+ 26�4�162
	 
¼ 65,189 cm4

Iy ¼ 28�33=12+ 2�4�263=12¼ 11,780 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
65,189

292

r
¼ 14:94 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
11,780

292

r
¼ 6:35 cm

lby¼ 3600mm

lbx ¼ 4000mm

�l¼Lcr

i

1

l1
l1¼ 93:9�0:924¼ 86:7636

�l¼ 3600

63:5
� 1

86:7636
¼ 0:653

The axial compressive force in the vertical member V1

(NEd¼4433.9 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0
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F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:49 0:653�0:2ð Þ+0:6532

	 
¼ 0:824

w¼ 1

0:824+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8242�0:6532

p ¼ 0:754 but w� 1:0

Then, Nb,Rd¼ 0:754�29,200�275

1:1
¼ 5,504,200N

Nb,Rd¼ 5504:2kN>NEd¼ 4433:9kN Then O:K:ð Þ

4.6.3.17 Design of the Compression Vertical Members V2 and V4
Following the same procedures adopted for the design the compression

vertical member V1, we can design the vertical compression members V2

and V4 shown in Figure 4.198, carrying a compressive design force of

�1878.6 kN, as follows. To classify the cross section chosen (see

Figure 4.198),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 117mm, tfl¼ 20, C1=tfl¼ 117=20¼ 5:85< 30:5 Flange is Class 1ð Þ
C2¼ 304mm, tw ¼ 10, C2=tfl¼ 304=10¼ 30:4< 30:5 Web is Class 1ð Þ

A¼ 2�26�2+ 32�1:0¼ 136 cm2

Ix¼ 1:0�323=12+ 2� 26�23=12+ 26�2�172
	 
¼ 32821 cm4

Iy ¼ 32�1:03=12+ 2�2�263=12¼ 5861:3 cm4

y 

x x 

y 

b 
=

 3
6 

1.0 

2 

d1 = 26 cm 

C1 = 12.7 

C2 = 30.4 

2 

Figure 4.198 The cross section of the vertical compression members V2 and V4.
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ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
32,821

136

r
¼ 15:53 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
58,61:3

136

r
¼ 6:56 cm

lby¼ 3600mm

lbx ¼ 4000mm

�l¼Lcr

i

1

l1
l1¼ 93:9�0:924¼ 86:7636

�l¼ 3600

65:6
� 1

86:7636
¼ 0:633

The axial compressive force in the vertical member V2 (NEd¼1878.6 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:49 0:633�0:2ð Þ+0:6332

	 
¼ 0:806

w¼ 1

0:806+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8062�0:6332

p ¼ 0:766 but w� 1:0

Then, Nb,Rd¼ 0:766�13600�275

1:1
¼ 2604400N

Nb,Rd¼ 2604:4 kN>NEd¼ 1878:6 kN Then O:K:ð Þ
It should be noted that members V3 and V5 having forces of zero under

the dead and live cases of loading can be taken with the same flange plate

width and the same web height but with a minimum thickness of 1 cm as

shown in Figure 4.199.

4.6.3.18 Design of the Diagonal Member D1

We can also design the diagonal member D1, shown in Figure 4.200,

carrying a maximum tensile design force of 6203.9 kN. The bolts used in
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connecting the member with gusset plates are M27 high-strength preten-

sioned bolts having a clearance of 3 mm (hole diameter �¼30 mm). The

member can be designed as follows:

Anet¼ 246:88�4�3:4�3¼ 206:08 cm2

Npl,Rd¼ Afy

gM0

¼ 246:88�275�100

1:0
¼ 6,789,200N¼ 6789:2 kN>NEd

¼ 6203:9 kN

Nu,Rd¼ 0:9Anetfu

gM2

¼ 0:9�20,608�430

1:25
¼ 6,380,236:8N¼ 6380:2kN

>NEd¼ 6203:9 kN

4.6.3.19 Design of the Diagonal Tension Member D3

The diagonal member D3, shown in Figure 4.201, carrying a maximum ten-

sile design force of 3284.3 kN can be designed adopting the same procedures

used with D1 as follows:

y 

x x 

y 

36
 c

m

2.4

3.4 

26 cm 

3.4 

Figure 4.200 The cross section of the diagonal tension member D1.
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y 
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C1 = 12.7

C2 = 32.4

1 

x

Figure 4.199 The cross section of the vertical members V3 and V5.
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The bolts used in connecting the member with gusset plates are M27

high-strength pretensioned bolts having a clearance of 3 mm (hole diameter

�¼30 mm):

A¼ 2�26�1:6+ 32:8�1:4¼ 129:12 cm2

Anet¼ 129:12�4�3:0�1:6¼ 109:92 cm2

Npl,Rd¼ Afy

gM0

¼ 129:12�275�100

1:0
¼ 3,550,800N¼ 3550:8kN>NEd

¼ 3284:3 kN

Nu,Rd ¼ 0:9Anetfu

gM2

¼ 0:9�10,992�430

1:25
¼ 3,403,123N¼ 3403:1 kN

>NEd¼ 3284:3 kN

4.6.3.20 Design of the Compression Diagonal Member D2

The diagonal compression members V2, shown in Figure 4.202, carrying a

compressive design force of �4706.6 kN can be designed as follows. To

classify the cross section chosen (see Figure 4.202),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 180mm, tfl¼ 30, C1=tfl¼ 180=30¼ 6:0< 30:5 Flange is Class 1ð Þ
C2¼ 300mm,tw ¼ 20, C2=tfl ¼ 300=20¼ 15< 30:5 Web is Class 1ð Þ

A¼ 2�26�3+ 30�2�2¼ 276 cm2

y 

x x 

y 

36
 c

m

1.4 

1.6 

26 cm 

1.6 

Figure 4.201 The cross section of the diagonal tension member D3.
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Ix ¼ 2�2�303=12+ 2� 26�33=12+ 26�3�16:52
	 
¼ 51,588 cm4

Iy¼ 2�3�263=12+ 2� 30�23=12+ 30�2�102
	 
¼ 20,828 cm4

ix¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
51,588

276

r
¼ 13:67 cm

iy ¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
20,828

276

r
¼ 8:69 cm

lby ¼ 5760mm

lbx¼ 6400mm

�l¼Lcr

i

1

l1
l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 5760

86:9
� 1

86:7636
¼ 0:764

The axial compressive force in the vertical member D2

(NEd¼4706.6 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l

2
p but w� 1:0

y 

x x 

y 

b 
=

 3
6 

cm

2 

3 

d1 =26 cm 

18 

3 

2 

2 2 

Figure 4.202 The cross section of the diagonal compression member D2.
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F¼ 0:5 1+ a �l�0:2
� �

+ �l2
h i

F¼ 0:5 1+ 0:49 0:764�0:2ð Þ+0:7642
	 
¼ 0:888

w¼ 1

0:888+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8882�0:7642

p ¼ 0:746 but w� 1:0

Then, Nb,Rd¼ 0:746�27,600�275

1:1
¼ 5,147,400N

Nb,Rd¼ 5147:4kN>NEd ¼ 4706:6kN ThenO:K:ð Þ

4.6.3.21 Design of the Compression Diagonal Member D4

The diagonal compression members D4, shown in Figure 4.203, carrying

a compressive design force of �1935.7 kN can be designed as follows.

To classify the cross section chosen (see Figure 4.203),

e¼
ffiffiffiffiffiffiffiffi
235

fy

s
¼

ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

C1¼ 115mm, tfl ¼ 26,C1=tfl¼ 115=26¼ 4:4< 30:5 Flange is Class 1ð Þ
C2¼ 292mm,tw ¼ 14,C2=tfl¼ 292=14¼ 20:9< 30:5 Web is Class 1ð Þ

A¼ 2�26�2:6+ 30:8�1:4¼ 178:32 cm2

Ix¼ 1:4�30:83=12+ 2� 2:6�263=12+ 2:6�26�16:72
	 
¼ 48,731 cm4

Iy ¼ 2�2:6�263=12+ 30:8�1:43=12¼ 7623 cm4

ix ¼
ffiffiffiffi
Ix

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48,731

178:32

r
¼ 16:53 cm

y 

x x 

y 

36
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Figure 4.203 The cross section of the diagonal compression member D4.
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iy¼
ffiffiffiffi
Iy

A

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7623

178:32

r
¼ 6:54 cm

lby ¼ 5760mm

lbx¼ 6400mm

�l¼Lcr

i

1

l1

l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 5760

65:4
� 1

86:7636
¼ 1:015

The axial compressive force in the vertical member D4 (NEd¼1935.7 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:49 1:015�0:2ð Þ+1:0152

	 
¼ 1:219

w¼ 1

1:219+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2192�1:0152

p ¼ 0:528 but w� 1:0

Then, Nb,Rd¼ 0:528�17832�275

1:1
¼ 2,353,824N

Nb,Rd¼ 2353:8 kN>NEd¼ 1935:7 kN Then O:K:ð Þ

4.6.3.22 Design of Stringer-Cross Girder Connection
The stringer is designed as a simply supported beam on cross girders; the-

refore, the connection is mainly transferring shear forces (maximum

reaction from stringers of 574 kN) (see Figure 4.204). Using M27 high-

strength pretensioned bolts of grade 8.8, having fub of 800 MPa, shear area

A of 4.59 cm2, and gross area Ag of 5.73 cm2, we can determine the
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required number of bolts, following the rules specified in EC3 (BS EN

1993-1-8) [2.13], as follows:

Fv,Rd¼ aVfubA
gM2

Fv,Rd¼ 0:6�800�459

1:25
¼ 1,76,256N

Then, Fv,Rd equals 176 kN (for bolts in single shear) and 353 kN (for

bolts in double shear):

Fs,Rd ¼ ksnm
gM3

Fp,C

Fp,C¼ 0:7fubAs ¼ 0:7�800�573¼ 320,880N

Fs,Rd,ser ¼ 1:0�1:0�0:4

1:1
320,880¼ 116,683:6N:

Then, Fs,Rd¼117 kN (for bolts in single shear at serviceability limit

states) and Fs,Rd¼234 kN (for bolts in double shear at serviceability limit

states). At ultimate limit states, Fs,Rd,ult can be calculated as follows:

Fs,Rd,ult ¼ 1:0�1:0�0:4

1:25
320,880¼ 102,682N:

Then, Fs,Rd¼103 kN (for bolts in single shear at ultimate limit states)

and Fs,Rd¼206 kN (for bolts in double shear at ultimate limit states):

N1 ¼ 574

206
¼ 2:8 taken as 3 bolts,

N2 ¼ 574

103
¼ 5:6 taken as 6 bolts

QD+L+f = 574 kN

N2
N1

QD+L+f = 574 kN

Figure 4.204 The connection between a stringer and a cross girder.
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4.6.3.23 Design of Cross Girder-Main Truss Connection
The cross girder is designed as a simply supported beam on main trusses;

therefore, once again, the connection is mainly transferring shear forces

(maximum reaction from cross girders of 1600.8 kN) (see Figure 4.205).

We can determine the required number of bolts as follows:

N3 ¼ 1164:1

206
¼ 5:6 taken as 6 bolts,

N2¼ 1164:1

103
¼ 11:3 taken as 12 bolts

4.6.3.24 Design of Wind Bracings
Wind forces acting on the investigated deck highway bridge (see Figure 4.206)

as well as any other lateral forces directly applied to the bridge are transmitted

to the bearings by systems of upper and lower wind bracings as well as cross

bracings. The upper and lower wind bracings carry wind forces on the main

truss as shown in Figure 4.206. Wind bracings are quite important to the lat-

eral stability of the upper chord compression members since they define the

buckling outside the plane of the truss, and therefore, wind forces applied to

this bridge can be sufficiently estimated using the design rules specified in EC1

[3.2] as follows:

Fw ¼ 1

2
rv2bCAref ,x

vb ¼ cdir� cseason� vb,0 ¼ 1:0�1:0�26¼ 26m=s

QD+L+f = 1164.1 kN

N3

N4

Figure 4.205 The connection between a cross girder and the main truss.
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Aref ,x ¼ 6�40¼ 240m2

Fw ¼ 1

2
�1:25�262�5:7�240¼ 578,000N¼ 578 kN

Consider the structural analysis for the upper wind bracing system shown

in Figure 4.207. Assume that the upper wind bracing carries wind forces on

the moving traffic, upper part of truss, and forces on the midspacing between

upper and lower wind bracings. The critical design wind force in the diag-

onal bracing members can be calculated as follows:

Distributed wind loads qWLð Þ¼ 578� 4:6=6ð Þ=40¼ 11:1kN=m

Factored distributed wind loads¼ qWL�gq¼ 11:1�1:7¼ 18:9 kN=m

RA ¼ 18:9�20¼ 378 kN

a¼ tan�1 6=6ð Þ¼ 45�

FD¼ 378= 2� sin45ð Þ¼ 267:3kN

40 mRA 

A B 

RB

qWL = 18.9 kN/m

5 m  
Fsinα

5 m  

α

Figure 4.207 Loads on the upper wind bracing.

Fw

Figure 4.206 Design height for the calculation of wind forces on the upper and lower
wind bracings.
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The cross section of the bracing member (see Figure 4.28) can be

determined as follows:

lbx ¼ 7070mm, lby ¼ 1:2�7070¼ 8484mm

Choose two angles back-to-back 150�150�15, with 10 mm gusset

plate between them:

A¼ 2�43:2¼ 86:4 cm2, ix¼ 4:59 cm, e¼ 4:26 cm,

iy¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:592 + 4:26+ 1=2ð Þ2

q
¼ 6:61 cm

e¼
ffiffiffiffiffiffiffiffi
235

275

r
¼ 0:924

�l¼Lcr

i

1

l1
l1 ¼ 93:9�0:924¼ 86:7636

�l¼ 7070

45:9

1

86:7636
¼ 1:775

The axial compressive force in the diagonal bracing member

(NEd¼267.3 kN):

NEd

Nb,Rd

� 1:0

where Nb,Rd¼ wAfy
gM1

A¼ 2�43:2¼ 86:4 cm2

w¼ 1

F+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2��l2

p but w� 1:0

F¼ 0:5 1+ a �l�0:2
� �

+ �l
2

h i
F¼ 0:5 1+ 0:34 1:775�0:2ð Þ+1:7752

	 
¼ 2:343

w¼ 1

2:343+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3432�1:7752

p ¼ 0:258 but w� 1:0

Then, Nb,Rd¼ 0:258�86:4�100�275

1:1
¼ 557280N

Nb,Rd¼ 557:3 kN>NEd¼ 267:3kN ThenO:K:ð Þ
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Similar to the upper wind bracing analysis, the forces in the members

of the lower wind bracing can be calculated with the loads acting on the

lower wind bracing as shown in Figure 4.208. The lower wind bracing

carries the wind forces acting on the midspacing between the upper

and lower wind bracings. It should be noted that the level of the upper

wind bracing is taken at the bottom flange of the cross girders. Since

the cross girders are connected to the main upper chord member, there-

fore, it is assumed that the upper chord members are restrained to buckle

outside the plane of the main truss at the interactions with the cross

girders.

4.6.3.25 Design of Roller Steel Fabricated Bearings
Let us now design the roller steel fabricated bearings shown in Figure 4.162

and detailed in Figure 4.209. The maximum vertical reaction at the supports

of the main truss was previously calculated under dead and live loads with

dynamic effect (RD+L+F), which was 4433.9 kN. The material of construc-

tion for the bearings is cast iron steel (ISO 3755) 340-550 having a yield stress

of 340 MPa and an ultimate stress of 550 MPa.

Design of the Sole Plate
The reaction (RD+L+F) can be assumed as two equal concentrated loads at

two points, which are the centers of gravity of half of the last vertical member

V9 shown in Figure 4.209. To determine the centers of gravity (distance e), we

can take the first area moment around the axis z-z, shown in Figure 4.209, as

follows:

e¼ 2�4�13�6:5+ 28�1:5�0:75

2�4�13+ 28�1:5ð Þ ¼ 4:85 cm

RA 

A B 

RB
40 m

qWL = 5.73 kN/m

5 m  

5 m  

Figure 4.208 Loads on the lower wind bracing.
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1.5

13 

4 

60 cm 5 5 

2.5 
2.5 

Sole plate 

3.5 
3.5 

R=22.3 cm 

(d+10)/2 (d+10) (d+10)/2 
a3 = 54 cm 

60 cm 5 5 5 5 

e 

3.5 
4.5 

2 

Upper bearing plate 
R 

80 cm 

17 cm d = 17 cm 
Rollers 

27 cm 16.5 16.5 
2.5 2.5 2.5 2.5 

4 
6 

7.92 MPa 
1 mm 

R/2 R/2 

183,051 N mm 110,880 

80 cm 
Lower bearing plate 

183,051 N mm 

z 

z 

4 

28 

2.5 
2.5 

6 12 12 cm 6 

36 cm 

Figure 4.209 Detailing of the twin roller fabricated steel bridge bearings.
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Assuming that the thickness of the sole plate is t1, with detailed dimen-

sions shown in Figure 4.209 based on the lower chord member L1 dimen-

sions, we can determine the maximummoment applied to the sole plate (M)

as follows:

M ¼RD+L+F� e

2
¼ 4433:9�103�48:5

2
¼ 107,522,075Nmm:

Section plastic modulus (Wpl)¼b1t1
2/4¼700� t1

2/4¼175� t1
2

The plate thickness t1 can be calculated now as follows:

M

Wpl

¼ fy

gM0

107,522,075

175� t21
¼ 340

1:0

Then, t1¼42.5 mm, taken as 50 mm, as shown in Figure 4.209.

Design of the Rollers
The design of rollers requires determination of the diameter, length, and

number of rollers to resist the vertical load as well as the arrangement and

allowed movement in the direction of rollers. The design axial force per unit

length of roller contact NSd

0
specified in BS EN 1337-1 [3.11] shall satisfy

N
0
Sd�N

0
Rd

where NRd

0
is the design value of resistance per unit length of roller contact,

which is calculated as

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

Assume the number of rollers is 2 and their length is 800 mm as shown in

Figure 4.33:

N
0
Sd¼

RD+L+F

2�800
¼ 4433:9�103

1600
¼ 2771:2N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

2771:2¼ 33:131�R

Then, R¼83.6 mm, taken as 85 mm and the diameter D is 170 mm.
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Design of Upper Bearing Plate
The upper bearing plate is shown in Figure 4.209. The width and length of

the plate are dependent on the spacing between rollers and the length of rol-

lers as well as the allowed movement in the direction of rollers. The thick-

ness of the upper bearing plate can be determined as follows:

M ¼RD+L+F

2
� D+100ð Þ

2
¼ 4433:9�103

2
�270

2
¼ 299,288,250Nmm:

Wpl ¼ b2t
2
2

4
¼ 800t22

4
¼ 200t22 mm3

The plate thickness t2 can be calculated now as follows:

M

Wpl

¼ fy

gM0

299,288,250

200� t21
¼ 340

1:0

Then, t1¼66.3 mm, taken as 70 mm, as shown in Figure 4.209.

The radius of the curved part of the upper bearing plate, which has a

length of 600 mm as shown in Figure 4.209, can be determined the same

way as that adopted for the design of the rollers:

N
0
Rd¼ 23�R� f 2u

Ed

� 1

g2m
¼ 23�R� 5502

210,000
�1

1
¼ 33:131�R

N
0
Sd¼

RD+L+F

600
¼ 4433:9�103

600
¼ 7389:8N=mm

Then, the radius of rollers can be determined by equalizing NSd

0
with

NRd

0
as follows:

7389:8¼ 33:131�R

Then, R¼223 mm.

Design of Lower Bearing Plate
The lower bearing plate is shown in Figure 4.209. The width and length of

the plate are dependent on the strength of concrete and are dependent on the

spacing between rollers and the length of rollers as well as the allowed
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movement in the direction of rollers. The thickness of the upper bearing

plate can be determined as follows:

fc ¼RD+L+F

a3b3
¼ 4433:9�103

700�800

¼ 7:92MPa<
fc

gc
¼ 40

1:5
¼ 26:7MPa<

fc

gc
¼ 40

1:5
¼ 26:7MPa

(for a typical concrete in bridges of C40/50 with fck)

The plate thickness t3 can be calculated from the distribution of bending

moment, caused by the pressure on the concrete foundation, as follows:

M¼183,051Nmm per unit width of the plate:

Wpl ¼ b3t
2
3

4
¼ 1� t23

4
¼ 0:25� t22 mm3

M

Wpl

¼ fy

gM0

183,051

0:25� t23
¼ 340

1:0

Then, t3¼46.4 mm, taken as 50 mm, as shown in Figure 4.209.

4.6.3.26 Design of Hinged Line Rocker Steel Fabricated Bearings
Finally, we can now design the hinged line rocker steel fabricated bearings

shown in Figure 4.162 and detailed in Figure 4.210. The maximum ver-

tical reaction at the support of the main plate girder was previously calcu-

lated under dead and live loads with dynamic effect (RD+L+F), which was

4433.9 kN. The bearing is also subjected to a lateral force from the braking

forces from traffic as well as subjected to a longitudinal force from the reac-

tions of the upper and lower wind bracings, which cause moments around

longitudinal and lateral directions of the bearing base, respectively. Similar

to the roller bearing, the material of construction for the bearings is cast

iron steel (ISO 3755) 340-550 having a yield stress of 340 MPa and an ulti-

mate stress of 550 MPa. It should be noted that the overall height of the

hinged bearing must be exactly the same as that of the roller bearing.

The general layout and assumed dimensions of the hinged line rocker bear-

ing are shown in Figure 4.211. The brakingQlbk forces can be calculated as

follows:

Qlbk¼ 360+ 2:7�L¼ 360+ 2:7�40¼ 468 kN, for Load model 1
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Socket 

60 cm 5 5 

2.5 
2.5 5 

4 

17 cm 2.5 2.5 

7 7 

60 cm 5 5 5 5 

21.5 

2 

R=22.3 cm 

15 

21.5 

Socket 

15 cm 30.0 10 10 30.0 

80 cm 

90 cm 10 10 

7.5 

40.0 cm 40.0 cm 15 

fmax = 5.81 MPa 4.49 MPa 
fmin = 2.67 MPa 

– 

10 

90 

10 

80 

x x 

y 

y 

468 kN 
492.6 kN 

4433.9 kN 

s 

s 

s1 s1

Figure 4.210 Detailing of the hinged line rocker fabricated steel bridge bearings.

5  

21.5  

7.5 

5

7

17

5

34
 c

m

Figure 4.211 The designed roller and hinged line rocker fabricated steel bearings.
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See Figure 4.210 for the direction of the forces. Also, the reactions from

upper and lower wind bracings (Rtot) (see Figure 4.210 for the direction of

the forces) were previously calculated as follows:

Rtot ¼ 492:6 kN

We can now determine the normal stress distribution due to the applied

loads, shown in Figure 4.210, on the concrete foundation as follows:

f ¼�N

A
�Mx

Ix
y�My

Iy
x

N

A
¼ 4433:9�103

950�1100
¼ 4:24MPa

Mx

Ix
y¼ 492:6�103�290

950�11003=12
550¼ 0:75MPa

My

Iy
x¼ 468�103�290

1100�9503=12
475¼ 0:82MPa

fmax¼�4:24�0:75�0:82¼�5:81MPa

fmin¼�4:24+ 0:75+ 0:82¼�2:67MPa

The critical bending moment on the base plate of the hinged bearing is at

section s-s shown in Figure 4.210:

M ¼ 0:5�400�4:49ð Þ�1100�400=3+ 0:5�400�5:81ð Þ�1100

�400�2=3¼ 472,560,000Nmm

Wpl ¼ 1100� t24
4
¼ 275t24

M

Wpl

¼ fy

gM0

472,560,000

275t24
¼ 340

1:0

Then, t4¼71.1 mm, taken as 75 mm.

The normal stresses at section s1-s1, shown in Figure 4.210, of the line

rocker bearing can be checked as follows:

Mx ¼ 492:6�103�215¼ 105,909,000Nmm:

My ¼ 468�103�215¼ 100,620,000Nmm:

N

A
¼ 4433:9�103

150�800
¼ 36:95MPa
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Mx

Ix
y¼ 105,909,000

150�8003=12
400¼ 6:62MPa

My

Iy
x¼ 100,620,000

800�1503=12
75¼ 33:54MPa

fmax¼� 36:95+ 6:62+ 33:54ð Þ¼�77:11MPa< 340MPa ThenO:K:ð Þ
4.6.3.27 Design of Joint J1
It is now possible to design the joints of the main trusses after designing all

members and knowing all details regarding the joints. Let us start by design-

ing joint J1 (see Figure 4.212). For M27 high-strength pretensioned bolts

used, the following design values are calculated:

Fv,Rd¼176 kN (single shear) and 353 kN (double shear)

Fs,Rd¼117 kN (single shear) and 234 kN (double shear)

Fs,ult¼103 kN (single shear) and 206 kN (double shear)

Number of Bolts for the Vertical Member V1

N V1ð Þ¼ FEd

Fs,ult
¼ 4433:9

206
¼ 21:5 bolts, taken as 24 bolts (12 bolts in each side

acting in double shear)

Number of Bolts for the Diagonal Member D1

N D1ð Þ¼ FEd

Fs,ult
¼ 6203:9

206
¼ 30:1 bolts, taken as 32 bolts (16 bolts in each side

acting in double shear)

4.6.3.28 Design of Joint J2
Following the same procedures adopted for the design of joint J1, we can

design joint J2 (see Figure 4.213) using the same M27 high-strength preten-

sioned bolts as follows.

Number of Bolts for the Vertical Member V2

N V2ð Þ¼ FEd

Fs,ult
¼ 1878:6

103
¼ 18:2 bolts, taken as 20 bolts (10 bolts in each side

acting in single shear)

4.6.3.29 Design of Joint J3
Joint J3 (see Figure 4.214) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member D2

N D2ð Þ¼ FEd

Fs,ult
¼ 4706:6

206
¼ 22:8 bolts, taken as 24 bolts (12 bolts in each side

acting in double shear)
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Number of Bolts for the Vertical Member V3
The member is zero under the applied dead and live load cases of loading.

The number of bolts can be taken as the minimum number based on the

connection drawing. The number of connecting bolts of V3 is taken as

16 bolts (8 bolts in each side acting in single shear).

500 mm 

400 mm 

360 mm 

U1 

360 mm 

260 mm 360 mm 260 mm 

V1 

D1 Cover plate = 500×14 
2 Web plate = 400×14
Lower flange plate = 360×14

2 Flange  plates = 260×40 
2 Web plate = 280×30 

2 Flange plates = 260×34 
Web plate = 292×24 

500 mm 

360 mm 

Joint J1

10 mm thick 
splice plate 

400 mm 

Minimum
angle 15°  

R= 200 mm 

Figure 4.212 Details and drawings of the main truss joint J1.
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Number of Bolts for the Diagonal Member D3

N D3ð Þ¼ FEd

Fs,ult
¼ 3284:3

206
¼ 15:9 bolts, taken as 16 bolts (8 bolts in each side

acting in double shear)

4.6.3.30 Design of Joint J4
Joint J4 (see Figure 4.215) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

500 mm 500 mm 

400 mm 400 mm 

360 mm 360 mm 

U1 U2 

360 mm 

260 mm 

V2 

2 Flange plate = 260×20
Web plate = 320×10 

500 mm 

360 mm 

360 mm 

Joint J2

400 mm 

Minimum 15°

R= 20 mm  

Cover plate = 500×14
2 Web plate = 400×14
Lower flange plate = 360×14 

Cover plate = 500×14
2 Web plate = 400×14
Lower flange plate = 360×14 

500 mm 

360 mm 

400 mm 

260 mm 

Figure 4.213 Details and drawings of the main truss joint J2.
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Number of Bolts for the Vertical Member V4

N V4ð Þ¼ FEd

Fs,ult
¼ 1878:6

103
¼ 18:2 bolts, taken as 20 bolts (10 bolts in each side

acting in single shear)

4.6.3.31 Design of Joint J5
Joint J5 (see Figure 4.216) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

500 mm 

400 mm 

360 mm 

U3 

360 mm 

260 mm 

360 mm 

260 mm 

V3 

D3 

Cover plate = 500×36 
2 Web plate = 400×24 
Lower flange plate = 360×36 

2 Flange  plates = 260×10 
Web plate = 340×10

2 Flange plates = 260×16 
Web plate = 328×14 

500 mm 

360 mm 

Joint J3

400 mm

500 mm 

400  

360 mm 

Cover plate = 500×14 
2 Web plate = 400×14 
Lower flange plate = 360×14 

U2 

D2 

2 Flange plates = 260×30 
2 Web plate = 300×20 

260 mm 

360 mm 

360 mm 

260 mm 260 mm 

360 mm 

Figure 4.214 Details and drawings of the main truss joint J3.
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Number of Bolts for the Vertical Member D4

N D4ð Þ¼ FEd

Fs,ult
¼ 1935:7

103
¼ 18:8 bolts, taken as 20 bolts (10 bolts in each side

acting in single shear)

Number of Bolts for the Vertical Member V5
The member is zero under the applied dead and live load cases of loading.

The number of bolts can be taken as the minimum number based on the

500 mm 500 mm 

400 mm 400 mm 

360 mm 360 mm 

U3 U4 

360 mm 

260 mm 

V2 

Cover plate = 500×36
2 Web plate = 400×24
Lower flange plate = 360×36 

2 Flange plate = 260×20 
Web plate = 320×10 

500 mm 

360 mm 

360 mm 

Joint J4

400 mm 

Minimum 15°

R= 20 mm  

Cover plate = 500×36 
2 Web plate = 400×24 
Lower flange plate = 360×36 

500 mm 

360 mm 

400 mm 

260 mm 

Figure 4.215 Details and drawings of the main truss joint J4.
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connection drawing. The number of connecting bolts of V5 is taken as 16

bolts (8 bolts in each side acting in single shear).

Number of Bolts for the Diagonal Member D5

N D5ð Þ¼ FEd

Fs,ult
¼ 1935:7

103
¼ 18:8 bolts, taken as 20 bolts (10 bolts in each side

acting in single shear)

500 mm 

400 mm 

360 mm 

U4 

360 mm 

260 mm 

360 mm 

260 mm 

V4 

D5 

Cover plate = 500×36 
2 Web plate = 400×24
Lower flange plate = 360×36 

2 Flange  plates = 260×10
Web plate = 340×10

2 Flange plates = 260×26
Web plate = 308×26 

500 mm 

360 mm 

Joint J5

400 mm 

500 mm 

400  

360 mm 

Cover plate = 500×36 
2 Web plate = 400×24
Lower flange plate = 360×36 

U3 

D4 

2 Flange plates = 260×26
Web plate = 308×26 

260 mm 

360 mm 

360 mm 

260 mm 

260 mm 

360 mm 

260 mm 360 mm 

Figure 4.216 Details and drawings of the main truss joint J5.
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4.6.3.32 Design of Joint J6
Joint J7 (see Figure 4.217) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member V1

N V1ð Þ¼ FEd

Fs,ult
¼ 4433:9

206
¼ 21:5 bolts, taken as 24 bolts (12 bolts in each side

acting in double shear)

500 mm 

400 mm 

360 mm 

L1 

360 mm 

260 mm 

V1 

Cover plate = 500×10
2 Web plate = 400×10
Lower flange plate = 360×10 

2 Flange plates = 260×40
Web plate = 280×30 

Joint J6

Minimum
angle 15° 

360 mm 

260 mm 

2 Flange plates = 260×40
Web plate = 280×30 

Figure 4.217 Details and drawings of the main truss joint J6.
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4.6.3.33 Design of Joint J7
Joint J7 (see Figure 4.218) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member D1

N D1ð Þ¼ FEd

Fs,ult
¼ 6203:9

206
¼ 30:1 bolts, taken as 32 bolts (16 bolts in each side

acting in double shear)

Number of Bolts for the Vertical Member V2

N V2ð Þ¼ FEd

Fs,ult
¼ 1878:6

103
¼ 18:2 bolts, taken as 20 bolts (10 bolts in each side

acting in single shear)

L1 L2 

260 mm 

360 mm 

260 mm 

V6 

D1 

2 Flange plate = 260×20
Web plate = 320×10 

2 Flange plate = 260×34
Web plate = 392×24 

400 mm 

500 mm 

400 mm 

360 mm 

Cover plate = 500×20
2 Web plate = 400×20
Lower flange plate = 360×20 

400 mm 

360 mm 

Cover plate = 500×10 
2 Web plate = 400×10
Lower flange plate = 360×10 

500 mm 

400 mm 

350 mm 

JointJ7

D2 

500 mm 

2 Flange plates = 260×30
2 Web plate = 300×20 

360 mm 

360 mm 

Figure 4.218 Details and drawings of the main truss joint J7.
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Number of Bolts for the Diagonal Member D2

N D2ð Þ¼ FEd

Fs,ult
¼ 4706:6

206
¼ 22:8 bolts, taken as 24 bolts (12 bolts in each side

acting in double shear)

4.6.3.34 Design of Joint J8
Joint J8 (see Figure 4.219) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member V3
The member is zero under the applied dead and live load cases of loading.

The number of bolts can be taken as the minimum number based on the

connection drawing. The number of connecting bolts of V3 is taken as

16 bolts (8 bolts in each side acting in single shear).

500 mm 

400 mm 

360 mm 

L3 

400 mm 

260 mm 

V1 

Cover plate = 500×20 
2 Web plate = 400×20
Lower flange plate = 360×20 

2 Flange plates = 260×10
Web plate = 340×10 

Joint J8 

Minimum
angle 15°

400 mm

260 mm 

2 Flange plates = 260×10
Web plate = 340×10 

L2 

500 mm 

400 mm 

360 mm 

Cover plate = 500×20
2 Web plate = 400×20
Lower flange plate = 360×20 

Figure 4.219 Details and drawings of the main truss joint J8.
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4.6.3.35 Design of Joint J9
Joint J9 (see Figure 4.220) can be designed using the sameM27 high-strength

pretensioned bolts as follows.

Number of Bolts for the Vertical Member D3

N D3ð Þ¼ FEd

Fs,ult
¼ 3284:3

206
¼ 15:9 bolts, taken as 16 bolts (8 bolts in each side

acting in double shear)

Number of Bolts for the Vertical Member V4

N V4ð Þ¼ FEd

Fs,ult
¼ 1878:6

103
¼ 18:2 bolts, taken as 20 bolts (10 bolts in each side

acting in single shear)

L2 L3 

260 mm 

360 mm 

260 mm 

V6 

D1 

2 Flange plate = 260×20
Web plate = 320×10 

2 Flange plate = 260×34 
Web plate = 392×24 

400 mm 

500 mm 

400 mm 

360 mm 

Cover plate = 500×20
2 Web plate = 400×20
Lower flange plate = 360×20 

400 mm 

360 mm 

Cover plate = 500×20 
2 Web plate = 400×20 
Lower flange plate = 360×20 

500 mm 

400 mm 

350 mm 

Joint J9

D2 

500 mm 

2 Flange plates = 260×26
Web plate = 308×14 

360 mm 

360 mm 

Figure 4.220 Details and drawings of the main truss joint J9.

465Design Examples of Steel and Steel-Concrete Composite Bridges

Figure 4.220


Number of Bolts for the Diagonal Member D4

N D4ð Þ¼ FEd

Fs,ult
¼ 1935:7

103
¼ 18:8 bolts, taken as 20 bolts (10 bolts in each side

acting in single shear)

4.6.3.36 Design of Joint J10
Joint J10 (see Figure 4.221) can be designed using the same M27 high-

strength pretensioned bolts as follows.

Number of Bolts for the Vertical Member V5
The member is zero under the applied dead and live load cases of loading.

The number of bolts can be taken as the minimum number based on the

connection drawing. The number of connecting bolts of V5 is taken as

16 bolts (8 bolts in each side acting in single shear).

500 mm 

500 mm 

400 mm 

360 mm 

L5 

400 mm 

260 mm 

V5 

Cover plate = 500×26
2 Web plate = 400×26
Lower flange plate = 360×26 

2 Flange plates = 260×10 
Web plate = 340×10 

Joint J10

Minimum 
angle 15°

400 mm 

260 mm 

2 Flange plates = 260×10 
Web plate = 340×10 

L4 

500 mm 

400 mm 

360 mm 

Cover plate = 500×26 
2 Web plate = 400×26
Lower flange plate = 360×26 

Figure 4.221 Details and drawings of the main truss joint J10.
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4.6.3.37 Design of Joint J11
Joint J11 (see Figure 4.222) can be designed using the same M27 high-

strength pretensioned bolts as follows.

Number of Bolts for the Vertical Member V11

N V11ð Þ¼ FEd

Fs,ult
¼ 4433:9

206
¼ 21:5 bolts, taken as 24 bolts (12 bolts in each side

acting in double shear)

400 mm 

360 mm 

L8 

300 mm 

260 mm 

V1 

Cover plate = 500×10
2 Web plate = 400×10
Lower flange plate = 360×10 

2 Flange plates = 260×40
Web plate = 280×30 

Joint J11

Minimum
angle 15°

360 mm 

260 mm 

2 Flange plates = 260×40
Web plate = 280×30 

Figure 4.222 Details and drawings of the main truss joint J11.
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CHAPTER55
Finite Element Analysis of Steel
and Steel-Concrete Composite
Bridges
5.1 GENERAL REMARKS

Chapters 1–4 have provided literature review and the required background

regarding the general layout, material behavior of components and loads,

stability of bridges and bridge components, and design of steel and steel-

concrete composite bridges. It is now possible to present the main par-

ameters affecting finite element analysis and modeling of the bridges. This

chapter presents the more commonly used finite elements in meshing and

modeling of the bridges. The chapter highlights the choice of correct finite

element types and mesh size that can accurately simulate the complicated

behavior of the different components of steel and steel-concrete composite

bridges. The chapter provides a brief revision for the linear and nonlinear

analyses required to study the stability of the bridges and bridge components.

Also, the chapter details how to incorporate the nonlinear material proper-

ties of the different components, previously presented in Chapter 2, in the

finite element analyses. In addition, this chapter details modeling of shear

connection, previously presented in Chapters 2 and 3, for steel-concrete

composite bridges. Furthermore, the chapter presents the application of dif-

ferent loads and boundary conditions, previously presented in Chapter 3, on

the bridges. It should be noted that this chapter focuses on the finite element

modeling using any software or finite element package, as an example in this

book, the use of ABAQUS [1.29] software in finite element modeling.

The author aims that this chapter provides useful guidelines to readers,

students, researchers, academics, designers, and practitioners on how to

choose the best finite element type and mesh to represent different compo-

nents of steel and steel-concrete composite bridges. There are many param-

eters that control the choice of finite element type and mesh such as the

geometry, cross-section classification, and loading and boundary conditions

of the bridge components. The aforementioned issues are addressed in

this chapter. Accurate finite element modeling depends on the efficiency

in simulating the nonlinear material behavior of the bridge components.
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This chapter shows how to correctly represent different linear and nonlinear

regions in the stress-strain curves of the bridge components. Most of bridge

components have initial local and overall geometric imperfections as well as

residual stresses as a result of the manufacturing process. Ignoring the sim-

ulation of these initial imperfections and residual stresses would result in

poor finite element models that are unable to describe the performance of

the bridge components and the bridges as a whole. The correct simulation

of different initial geometric imperfections and residual stresses available in

the cross sections of the bridge components is addressed in this chapter. Steel

and steel-concrete composite bridges are subjected to moving live loads and

different boundary conditions, which differs from that commonly applied to

buildings. Improper simulation of the applied loads and boundary conditions

on a bridge component would not provide an accurate finite element model.

Therefore, correct simulation of different loads and boundary conditions

that are commonly associated with the bridge is the main focus of this

chapter.

5.2 CHOICE OF FINITE ELEMENT TYPES FOR STEEL
AND STEEL-CONCRETE COMPOSITE BRIDGES

To explain how to choose the best finite element type to simulate the behav-

ior of a bridge, let us look at the components of the typical steel and steel-

concrete composite bridges shown in Figures 1.20–1.22. We can see that

there are main bridge components comprising the structural steel members

and reinforced concrete deck slabs. On the other hand, there are also con-

necting bridge components comprising shear connectors, bolts, welds, brac-

ing members, bearings, etc. To simulate the behavior of the main and

connecting components of a bridge, we can use the different continuum,

structural, and special-purpose finite elements provided in most available

general-purpose finite element software, with ABAQUS [1.29] element

library presented as an example in this book. General-purpose continuum

elements cover all types of solid 1D, 2D, and 3D elements, while structural

elements cover most elements used in structural engineering such as mem-

brane, truss, beam, and shell elements. Finally, special-purpose finite ele-

ments cover elements used to simulate a special connecting element such

as springs and joint elements. There are also elements used to model the

interactions and contact behavior among main and connecting bridge

components, which are mainly general contact, contact pair, and interface

elements. The aforementioned elements will be highlighted in the coming
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section to help readers to choose the best finite elements to simulate the

different components of steel and steel-concrete composite bridges.

5.2.1 Main Continuum, Structural, and Special-Purpose
Finite Elements

To choose the best finite element for the structural steel members, we have

to look into the classification of the cross section, which is normally specified

in all current codes of practice. There are three commonly known cross-

section classifications that are compact, noncompact, and slender sections.

Compact sections have a thick plate thickness and can develop their plastic

moment resistance without the occurrence of local buckling. Noncompact

sections are sections in which the stress in the extreme fibers can reach the

yield stress, but local buckling is liable to prevent the development of the

plastic moment resistance. Finally, slender sections are those sections in

which local buckling will occur in one or more parts of the cross section

before reaching the yield strength. Compact sections in 3D can be modeled

using either solid elements or shell elements that are able to model thick sec-

tions. However, noncompact and slender sections are only modeled using

shell elements that are able to model thin sections. It should be noted that

many general-purpose programs have shell elements that are used to simulate

thin and thick sections.

Let us now look in more detail and classify shell elements commonly

used in modeling noncompact and slender structural members. There are

two main shell element categories known as conventional and continuum shell

elements, examples shown in Figure 5.1. Conventional shell elements cover ele-

ments used for 3D shell geometries, elements used for axisymmetric geom-

etries, and elements used for stress/displacement analysis. The conventional

shell elements can be classified as thick shell elements, thin shell elements,

and general-purpose shell elements that can be used for the analysis of thick

or thin shells. Conventional shell elements have 6 degrees of freedom per

node; however, it is possible to have shells with 5 degrees of freedom per

node. Numerical integration is normally used to predict the behavior within

the shell element. Conventional shell elements can use full or reduced numerical

integration, as shown in Figure 5.2. Reduced-integration shell elements use

lower-order integration to form the element stiffness. However, the mass

matrix and distributed loadings are still integrated exactly. Reduced integra-

tion usually provides accurate results provided that the elements are not dis-

torted or loaded in in-plane bending. Reduced integration significantly

reduces running time, especially in three dimensions. Shell elements are
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Conventional shell elements

S3 shell element S4 shell element S8 shell element
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6

2

5

1

4

4 3

1 2

8
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5

6

Figure 5.1 Shell element types.
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Figure 5.2 Full and reduced integration of shell elements.
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commonly identified based on the number of element nodes and the inte-

gration type. Hence, a shell element S8 means a stress-displacement shell

having eight nodes with full integration, while a shell element S8R means

a stress-displacement shell having eight nodes with reduced integration. On

the other hand, continuum shell elements are general-purpose shells that allow

finite membrane deformation and large rotations and, thus, are suitable for

nonlinear geometric analysis. These elements include the effects of trans-

verse shear deformation and thickness change. Continuum shell elements

employ first-order layer-wise composite theory and estimate through-

thickness section forces from the initial elastic moduli. Unlike conventional

shells, continuum shell elements can be stacked to provide more refined

through-thickness response. Stacking continuum shell elements allows for

a richer transverse shear stress and force prediction. It should be noted that

most metal structures are modeled using conventional shell elements, and

hence, they are detailed in this book.

General-purpose conventional shell elements allow transverse shear

deformation. They use thick shell theory as the shell thickness increases

and become discrete Kirchhoff thin shell elements as the thickness decreases.

The transverse shear deformation becomes very small as the shell thickness

decreases. Examples of these elements are S3, S3R, S4, and S4R shells.

Thick shells are needed in cases where transverse shear flexibility is impor-

tant and second-order interpolation is desired. When a shell is made of the

same material throughout its thickness, this occurs when the thickness is

more than about 1/15 of a characteristic length on the surface of the shell,

such as the distance between supports. An example of thick elements is S8R.

Thin shells are needed in cases where transverse shear flexibility is negligible

and the Kirchhoff constraint must be satisfied accurately (i.e., the shell nor-

mal remains orthogonal to the shell reference surface). For homogeneous

shells, this occurs when the thickness is less than about 1/15 of a character-

istic length on the surface of the shell, such as the distance between supports.

However, the thickness may be larger than 1/15 of the element length.

Conventional shell elements can also be classified as finite-strain and small-

strain shell elements. Element types S3, S3R, S4, and S4R account for finite

membrane strains and arbitrarily large rotations; therefore, they are suitable

for large-strain analysis. On the other hand, small-strain shell elements such

as S8R shell elements are used for not only arbitrarily large rotations but only

small strains. The change in thickness with deformation is ignored in these

elements. For conventional shell elements used in ABAQUS [1.29], we

must specify a section Poisson’s ratio as part of the shell section definition
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to allow for the shell thickness in finite-strain elements to change as a func-

tion of the membrane strain. If the section Poisson’s ratio is defined as zero,

the shell thickness will remain constant and the elements are, therefore,

suited for small-strain, large-rotation analysis. The change in thickness is

ignored for the small-strain shell elements in ABAQUS [1.29].

Conventional reduced-integration shell elements can be also classified

based on the number of degrees of freedom per node. Hence, there are two

types of conventional reduced-integration shell elements known as five-

degree-of-freedom and six-degree-of-freedom shells. Five-degree-of-freedom

conventional shells have 5 degrees of freedom per node, which are three

translational displacement components and two in-plane rotation compo-

nents. On the other hand, six-degree-of-freedom shells have 6 degrees of

freedom per node (three translational displacement components and three

rotation components). The number of degrees of freedom per node is

commonly denoted in the shell name by adding digit 5 or 6 at the end

of the reduced-integration shell element name. Therefore, reduced-

integration shell elements S4R5 and S4R6 have 5 and 6 degrees of freedom

per node, respectively. The elements that use 5 degrees of freedom per

node such as S4R5 and S8R5 can be more economical. However, they

are suitable only for thin shells and they cannot be used for thick shells.

The elements that use 5 degrees of freedom per node cannot be used

for finite-strain applications, although they model large rotations with

small strains accurately.

There are a number of issues that must be considered when using shell

elements. Both S3 and S3R refer to the same three-node triangular shell ele-

ment. This element is a degenerated version of S4R that is fully compatible

with S4 and S4R elements. S3 and S3R provide accurate results in most

loading situations. However, because of their constant bending and mem-

brane strain approximations, high mesh refinement may be required to cap-

ture pure bending deformations or solutions to problems involving high

strain gradients. Curved elements such as S8R5 shell elements are preferable

for modeling bending of a thin curved shell. Element type S8R5 may give

inaccurate results for buckling problems of doubly curved shells due to the

fact that the internally defined integration point may not be positioned on

the actual shell surface. Element type S4 is a fully integrated, general-

purpose, finite-membrane-strain shell element. Element type S4 has four

integration locations per element compared with one integration location

for S4R, which makes the element computation more expensive. S4 is com-

patible with both S4R and S3R. S4 can be used in areas where greater
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solution accuracy is required or for problems where in-plane bending is

expected. In all of these situations, S4 will outperform element type S4R.

Further details regarding the elements used in modeling steel and metal

structures are found in Ellobody et al. [5.1].

As mentioned earlier, steel and steel-concrete composite bridges that

are composed of compact steel sections can be modeled using solid ele-

ments. In addition, reinforced concrete deck slabs in steel-concrete com-

posite bridges can be modeled using either using thick shell elements,

previously highlighted, or more commonly using solid or continuum ele-

ments. Modeling of concrete deck slabs using solid elements has the edge

over modeling the slabs using thick shell elements since reinforcement

bars or prestressing tendons used with the slabs can be accurately repre-

sented. Solid or continuum elements are volume elements that do not

include structural elements such as beams, shells, and trusses. The ele-

ments can be composed of a single homogeneous material or can include

several layers of different materials for the analysis of laminated composite

solids. The naming conventions for solid elements depend on the element

dimensionality, number of nodes in the element, and integration type. For

example, C3D8R elements are continuum elements (C) having 3D eight

nodes (8) with reduced integration (R). Solid elements provide accurate

results if not distorted, particularly for quadrilaterals and hexahedra, as

shown in Figure 5.3. The triangular and tetrahedral elements are less sen-

sitive to distortion. Solid elements can be used for linear analysis and for

complex nonlinear analyses involving stress, plasticity, and large deforma-

tions. Solid element library includes first-order (linear) interpolation ele-

ments and second-order (quadratic) interpolation elements commonly in

three dimensions. Tetrahedra, triangular prisms, and hexahedra (bricks)

are very common 3D elements, as shown in Figure 5.3. Modified

second-order triangular and tetrahedral elements as well as reduced-

integration solid elements can be also used. First-order plane-strain, axi-

symmetric quadrilateral and hexahedral solid elements provide constant

volumetric strain throughout the element, whereas second-order ele-

ments provide higher accuracy than first-order elements for smooth prob-

lems that do not involve severe element distortions. They capture stress

concentrations more effectively and are better for modeling geometric

features. They can model a curved surface with fewer elements. Finally,

second-order elements are very effective in bending-dominated prob-

lems. First-order triangular and tetrahedral elements should be avoided

as much as possible in stress analysis problems; the elements are overly stiff
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Figure 5.3 Element types commonly used in metal structures.
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and exhibit slow convergence with mesh refinement, which is especially a

problem with first-order tetrahedral elements. If they are required, an

extremely fine mesh may be needed to obtain results with sufficient

accuracy.

Similar to the behavior of shells, reduced integration can be used with

solid elements to form the element stiffness. The mass matrix and distributed

loadings use full integration. Reduced integration reduces running time,

especially in three dimensions. For example, element type C3D20 has 27

integration points, while C3D20R has eight integration points only. There-

fore, element assembly is approximately 3.5� more costly for C3D20 than

for C3D20R. Second-order reduced-integration elements generally pro-

vide accurate results than the corresponding fully integrated elements. How-

ever, for first-order elements, the accuracy achieved with full versus reduced

integration is largely dependent on the nature of the problem. Triangular

and tetrahedral elements are geometrically flexible and can be used in many

models. It is very convenient to mesh a complex shape with triangular or

tetrahedral elements. A good mesh of hexahedral elements usually provides

a solution with equivalent accuracy at less cost. Quadrilateral and hexahedral

elements have a better convergence rate than triangular and tetrahedral ele-

ments. However, triangular and tetrahedral elements are less sensitive to ini-

tial element shape, whereas first-order quadrilateral and hexahedral elements

perform better if their shape is approximately rectangular. First-order trian-

gular and tetrahedral elements are usually overly stiff, and fine meshes are

required to obtain accurate results. For stress/displacement analyses, the

first-order tetrahedral element C3D4 is a constant stress tetrahedron, which

should be avoided as much as possible. The element exhibits slow conver-

gence with mesh refinement. This element provides accurate results only in

general cases with very fine meshing. Therefore, C3D4 is recommended

only for filling in regions of low stress gradient to replace the C3D8 or

C3D8R elements, when the geometry precludes the use of C3D8 or

C3D8R elements throughout the model. For tetrahedral element meshes,

the second-order or the modified tetrahedral elements such as C3D10

should be used. Similarly, the linear version of the wedge element C3D6

should generally be used only when necessary to complete a mesh, and, even

then, the element should be far from any area where accurate results are

needed. This element provides accurate results only with very fine meshing.

A solid section definition is used to define the section properties of solid ele-

ments. A material definition must be defined with the solid section defini-

tion, which is assigned to a region in the finite element model.

477Finite Element Analysis of Steel and Steel-Concrete Composite Bridges



Plane-stress and plane-strain structures can be modeled using 2D solid

elements. The naming conventions for the elements depend on the element

type (PE or PS) for (plane strain or plane stress), respectively, and number of

nodes in the element. For example, CPE3 elements are continuum (C),

plane-strain (PE) linear elements having three (3) nodes, as shown in Fig-

ure 5.3. The elements have 2 active degrees of freedom per node in the ele-

ment plane. Quadratic 2D elements are suitable for curved geometry of

structures. Structural metallic link members and metallic truss members

can be modeled using 1D solid elements. The naming conventions for

1D solid elements depend on the number of nodes in the element. For

example, C1D3 elements are continuum (C) elements having three (3)

nodes. The elements have 1 active degree of freedom per node.

Axisymmetric solid elements are 3D elements that are used to model

metal structures that have axisymmetric geometry. The element nodes are

commonly using cylindrical coordinates (r, y, z), where r is the radius from
origin (coordinate 1), y is the angle in degrees measured from horizontal axis

(coordinate 2), and z is the perpendicular dimension (coordinate 3) as shown

in Figure 5.4. Coordinate 1 must be greater than or equal to zero. Degree of

freedom 1 is the translational displacement along the radius (ur) and degree of

freedom 2 is the translational displacement along the perpendicular direction

(uz). The naming conventions for axisymmetric solid elements with non-

linear asymmetric deformation depend on the number of nodes in the ele-

ment and integration type. For example, CAXA8R elements are continuum

(C) elements and axisymmetric solid elements with nonlinear asymmetric

X

Y

Z

z

(r, q, z)

r

Angle in degrees

q

Figure 5.4 Cylindrical coordinates for axisymmetric solid elements.
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deformation (AXA) having eight (8) nodes with reduced (R) integration as

shown in Figure 5.5. Stress/displacement axisymmetric solid elements with-

out twist have two active degrees of freedom per node.

Reinforcement bars and prestressing tendons are commonly modeled in

general-purpose software as “embedded” uniaxial (1D) finite elements in the

form of individual bars or smeared layers. As an example in ABAQUS [1.29],

reinforcement bars and prestressing tendons are included in the “host” ele-

ments (concrete elements) using the REBAR option. The option is used to

define layers of uniaxial reinforcement in membrane, shell, and solid ele-

ments. Such layers are treated as a smeared layer with a constant thickness

equal to the area of each reinforcing bar divided by the reinforcing bar spac-

ing. The option also can be used to add additional stiffness, volume, andmass

to the model. In additions, it can be used to add discrete axial reinforcement

in beam elements. Embedded rebars can have material properties that are

distinct from those of the underlying or host element. To define a rebar

layer, modelers can specify one or multiple layers of reinforcement in mem-

brane, shell, or solid elements. For each layer, modelers can specify the rebar

properties by including the rebar layer name; the cross-sectional area of each

rebar; the rebar spacing in the plane of themembrane, shell, or solid element;

the position of the rebars in the thickness direction (for shell elements only),

measured from the midsurface of the shell (positive in the direction of the

positive normal to the shell); the rebar material name; the initial angular ori-

entation, in degrees, measured relative to the local 1-direction; and the iso-

parametric direction from which the rebar angle output will be measured.

Figures 5.6–5.8 show examples of reinforcement bars imbedded in different

finite elements as presented in ABAQUS [1.29].
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Figure 5.5 CAXA8R axisymmetric solid elements.
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Figure 5.6 Rebar location in a beam section as presented in ABAQUS [1.29].
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Figure 5.7 Rebar location in a 3D shell or membrane element as presented in ABAQUS
[1.29].
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Figure 5.8 Rebar orientation in a 3D solid element as presented in ABAQUS [1.29].
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For prestressed concrete structures, prestress forces in the tendons can be

defined using INITIAL CONDITION option, which can add prestress

forces in the rebars. If prestress is defined in the rebars and unless the prestress

is held fixed, it will be allowed to change during an equilibrating static anal-

ysis step. This is a result of the straining of the structure as the self-

equilibrating stress state establishes itself. An example is the pretension type

of concrete prestressing in which reinforcing tendons are initially stretched

to a desired tension before being covered by concrete. After the concrete

cures and bonds to the rebar, the release of the initial rebar tension transfers

load to the concrete, introducing compressive stresses in the concrete. The

resulting deformation in the concrete reduces the stress in the rebar. Alter-

natively, modelers can keep the initial stress defined in some or all of the

rebars constant during the initial equilibrium solution. An example is the

posttension type of concrete prestressing; the rebars are allowed to slide

through the concrete (normally they are in conduits), and the prestress load-

ing is maintained by some external source (prestressing jacks). The magni-

tude of the prestress in the rebar is normally part of the design requirements

and must not be reduced as the concrete compresses under the loading of the

prestressing. Normally, the prestress is held constant only in the first step of

an analysis. This is generally the more common assumption for prestressing.

If the prestress is not held constant in analysis steps following the step in

which it is held constant, the stress in the rebar will change due to additional

deformation in the concrete. If there is no additional deformation, the stress

in the rebar will remain at the level set by the initial conditions. If the loading

history is such that no plastic deformation is induced in the concrete or rebar

in steps subsequent to the steps in which the prestress is held constant, the

stress in the rebar will return to the level set by the initial conditions upon the

removal of the loading applied in those steps.

Rebar force output detailed in ABAQUS [1.29] is available at the rebar

integration locations. The rebar force is equal to the rebar stress times the

current rebar cross-sectional area. The current cross-sectional area of the

rebar is calculated by assuming the rebar is made of an incompressible mate-

rial, regardless of the actual material definition. For rebars in membrane,

shell, or solid elements (see Figures 5.6–5.8), output variables identify the

current orientation of rebar within the element and the relative rotation

of the rebar as a result of finite deformation. These quantities are measured

with respect to the user-specified isoparametric direction in the element,

not the default local element system or the orientation-defined system.

The output quantities of rebar angles can be measured from either of the
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isoparametric directions in the plane of the membrane, shell, or solid ele-

ments. Modelers can specify the desired isoparametric direction from which

the rebar angle will be measured (1 or 2). The rebar angle is measured from

the isoparametric direction to the rebar with a positive angle defined as a

counterclockwise rotation around the element’s normal direction. The

default direction is the first isoparametric direction.

Bolted connections and shear connectors can be modeled using combina-

tions of spring elements. Spring elements available in ABAQUS [1.29] can

couple a force with a relative displacement and can couple a moment with

a relative rotation. Spring elements can be linear or nonlinear. Figure 5.9

shows the definition of symbols for spring elements. The terms “force” and

“displacement” are used throughout the description of spring elements.When

the spring is associated with displacement degrees of freedom, these variables

are the force and relative displacement in the spring. If the springs are associ-

ated with rotational degrees of freedom, they are torsional springs. In this case,

the variables will be the moment transmitted by the spring and the relative

rotation across the spring. Spring elements are used to model actual physical

springs as well as idealizations of axial or torsional components. They can also

model restraints to prevent rigid-bodymotion. They are also used to represent

structural dampers by specifying structural damping factors to form the

imaginary part of the spring stiffness. SPRING1, SPRING2, and SPRINGA

elements are available in ABAQUS [1.29]. SPRING1 is between a node

and ground, acting in a fixed direction. SPRING2 is between two nodes,

acting in a fixed direction. While, SPRINGA acts between two nodes, with

its line of action being the line joining the two nodes, so that this line of

action can rotate in large-displacement analysis. The spring behavior can be

linear or nonlinear in any of the spring elements. Element types SPRING1

and SPRING2 can be associated with displacement or rotational degrees

of freedom.

The relative displacement definition depends on the element type. The

relative displacement across a SPRING1 element is the ith component of

displacement of the spring’s node, with i defined as shown in Figure 5.9.

The relative displacement across a SPRING2 element is the difference

1 2 

i j

Figure 5.9 Definition of symbols for spring elements.
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between the ith component of displacement of the spring’s first node and the

jth component of displacement of the spring’s second node, with i and j

defined as shown in Figure 5.9. For a SPRINGA element, the relative dis-

placement in a geometrically linear analysis is measured along the direction

of the SPRINGA element. While in geometrically nonlinear analysis, the

relative displacement across a SPRINGA element is the change in length

in the spring between the initial and the current configuration.

The spring behavior can be linear or nonlinear. In either case, modelers

must associate the spring behavior with a region of their model. Modelers

can define linear spring behavior by specifying a constant spring stiffness

(force per relative displacement). The spring stiffness can depend on temper-

ature and field variables. For direct-solution steady-state dynamic analysis,

the spring stiffness can depend on frequency, as well as on temperature

and field variables. On the other hand, modelers can define nonlinear spring

behavior by giving pairs of force-relative displacement values. These values

should be given in ascending order of relative displacement and should be

provided over a sufficiently wide range of relative displacement values so

that the behavior is defined correctly. ABAQUS [1.29] assumes that the

force remains constant (which results in zero stiffness) outside the range

given; see Figure 5.10. Initial forces in nonlinear springs should be defined

by giving a nonzero force at zero relative displacement. The spring stiffness

can depend on temperature and field variables. Modelers can define the

direction of action for SPRING1 and SPRING2 elements by giving the

Force, F

Displacement, u

F1

F2

F3

F4

F (0)

u1

u2 u3 u4

Continuation assumed
if u < u1

Continuation assumed
if u > u4

Figure 5.10 Nonlinear spring force-relative displacement relationship according to
ABAQUS [1.29].

483Finite Element Analysis of Steel and Steel-Concrete Composite Bridges

Figure 5.10


degree of freedom at each node of the element. This degree of freedommay

be in a local coordinate system. The local system is assumed to be fixed; even

in large-displacement analysis, SPRING1 and SPRING2 elements act in a

fixed direction throughout the analysis.

ABAQUS [1.29] also provides the capability of modeling flexible joints

using JOINTC elements; see Figure 5.11. The elements are used to model

joint interactions and are made up of translational and rotational springs and

parallel dashpots, which are elements that can couple a force with a relative

velocity, in a local, corotational coordinate system. The JOINTC element is

provided to model the interaction between two nodes that are (almost) coin-

cident geometrically and that represent a joint with internal stiffness and/or

damping so that the second node of the joint can displace and rotate slightly

with respect to the first node. Similar functionality is available using connec-

tor elements. The joint behavior consists of linear or nonlinear springs and

dashpots in parallel, coupling the corresponding components of relative dis-

placement and of relative rotation in the joint. Each spring or dashpot def-

inition defines the behavior for one of the six local directions; up to six spring

definitions and six dashpot definitions can be included. If no specification is

given for a particular local relative motion in the joint, the joint is assumed to

have no stiffness with respect to that component. The joint behavior can be

defined in a local coordinate system that rotates with the motion of the first

node of the element. If a local coordinate system is not defined, the global

system is used. In large-displacement analysis, the formulation for the rela-

tionship between moments and rotations limits the usefulness of these ele-

ments to small relative rotations. The relative rotation across a JOINTC

element should be of a magnitude to qualify as a small rotation. ABAQUS

[1.29] also offers different connector types and connector elements to model

the behavior of connectors. The analyst is often faced with modeling

1
2

x'

y'

z'

JOINT C

(Local system attached to node 1)

Figure 5.11 JOINTC elements available in ABAQUS [1.29].
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problems in which two different parts are connected in some way.

Sometimes, connections are simple, such as two panels of sheet metal spot

welded together or a link member connected to a frame with a hinge.

Connector elements can account for internal friction, such as the lateral

force or moments on a bolt generating friction in the translation of the bolt

along a slot. Failure conditions are reached, where excess force or displace-

ment inside the connection causes the entire connection or a single compo-

nent of relative motion to break free. Connector elements can provide an

easy and versatile way to model many types of physical mechanisms whose

geometry is discrete (i.e., node to node), yet the kinematic and kinetic

relationships describing the connection are complex.

5.2.2 Contact and Interaction Elements

5.2.2.1 General
Contact between two bodies can be modeled using the contact analysis

capabilities in ABAQUS [1.29]. The software provides more than one

approach for defining contact comprising general contact (Figure 5.12),

contact pairs (Figure 5.13), and contact elements. Each approach has unique

advantages and limitations. A contact simulation using contact pairs or gen-

eral contact is defined by specifying surface definitions for the bodies that

could potentially be in contact. The surfaces will interact with one another

(the contact interactions). The mechanical and thermal contact property

models can be specified in these types of contact, such as the pressure-

overclosure relationship, the friction coefficient, or the contact conduction

Figure 5.12 An example of general contact approach with feature edges at the
perimeter of an active contact region as given in ABAQUS [1.29].
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coefficient. Surfaces can be defined at the beginning of a simulation or upon

restart as part of the model definition. ABAQUS [1.29] has four classifica-

tions of contact surfaces comprising element-based deformable and rigid sur-

faces, node-based deformable and rigid surfaces, analytical rigid surfaces, and

Eulerian material surfaces.

Contact interactions for contact pairs and general contact are defined in

ABAQUS [1.29] by specifying surface pairings and self-contact surfaces. Gen-

eral contact interactions typically are defined by specifying self-contact for the

default surface, which allows an easy, yet powerful, definition of contact. Self-

contact for a surface that spans multiple bodies implies self-contact for each

body as well as contact between the bodies. At least one surface in an inter-

action must be a non-node-based surface, and at least one surface in an inter-

action must be a nonanalytical rigid surface. Surface properties can be defined

for particular surfaces in a contact model. Contact interactions in a model can

refer to a contact property definition, in much the same way that elements

refer to an element property definition. By default, the surfaces interact (have

constraints) only in the normal direction to resist penetration. The other

mechanical contact interaction models available depend on the contact algo-

rithm. Some of the available models are softened contact, contact damping,

friction, and spot welds bonding two surfaces together until the welds fail.

According to ABAQUS [1.29], contact pairs and general contact com-

bine to provide the capability of modeling contact between two deformable

bodies, with the structures being either 2D or 3D, and they can undergo

either small or finite sliding. They can model contact between a rigid surface

and a deformable body, with the structures can be either 2D or 3D, and they

can undergo either small or finite sliding. They can also model finite-sliding

Master
surface

Outward normal

Slave surface

Figure 5.13 An example of contact pair approach with master and slave surfaces as
given in ABAQUS [1.29].
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self-contact of a single deformable body. In addition, they can model

small-sliding or finite-sliding interaction between a set of points and a rigid

surface. These models can be either 2D or 3D. Also, they can model contact

between a set of points and a deformable surface. These models can be either

2D or 3D. They can also model problems where two separate surfaces need

to be “tied” together so that there is no relative motion between them.

This modeling technique allows for joining dissimilar meshes. Furthermore,

contact pairs and general contact can model coupled thermal-mechanical

interaction between deformable bodies with finite relative motion.

For most contact problems, modelers can choose whether to define con-

tact interactions using general contact or contact pairs. The distinction

between general contact and contact pairs lies primarily in the user interface,

the default numerical settings, and the available options. The general contact

and contact pair implementations share many underlying algorithms. The

contact interaction domain, contact properties, and surface attributes are

specified independently for general contact, offering a more flexible way

to add detail incrementally to a model. The simple interface for specifying

general contact allows for a highly automated contact definition; however, it

is also possible to define contact with the general contact interface to mimic

traditional contact pairs. Conversely, specifying self-contact of a surface

spanning multiple bodies with the contact pair user interface (if the

surface-to-surface formulation is used) mimics the highly automated

approach often used for general contact. Pairwise specifications of contact

interactions will often result in more efficient or robust analyses as compared

to an all-inclusive self-contact approach to defining contact. General contact

uses the finite-sliding, surface-to-surface formulation. Contact pairs use the

finite-sliding, node-to-surface formulation by default.

General contact automatically accounts for thickness and offsets associ-

ated with shell-like surfaces. Contact pairs that use the finite-sliding, node-

to-surface formulation do not account for shell thickness and offsets. General

contact uses the penalty method to enforce the contact constraints by

default. Contact pairs that use the finite-sliding, node-to-surface formula-

tion use a Lagrange multiplier method to enforce contact constraints by

default in most cases. General contact automatically assigns pure master

and slave roles for most contact interactions and automatically assigns bal-

anced master-slave roles to other contact interactions. Contact pairs have

unique capabilities, which are not available for general contact such as

modeling contact involving node-based surfaces or surfaces on 3D beam

elements; small-sliding contact and tied contact; the finite-sliding,
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node-to-surface contact formulation; debonding and cohesive contact behav-

ior; and surface interactions in analyses without displacement degrees of

freedom, such as pure heat transfer and pressure-penetration loading.

Surface-based contact methods associated with general contact and contact

pairs cannot be used for certain classes of problems such as contact interaction

between two pipelines or tubes modeled with pipe, beam, or truss elements

where one pipe lies inside the other; contact between two nodes along a fixed

direction in space; simulations using axisymmetric elements with asymmetric

deformations; and heat transfer analyses where the heat flow is 1D. These

situations require defining a contact simulation using contact elements.

5.2.2.2 Defining General Contact Interactions
ABAQUS [1.29] provides two algorithms for modeling contact and inter-

action problems, which are the general contact algorithm and the contact

pair algorithm. The general contact algorithm is specified as part of the

model definition. It allows very simple definitions of contact with very

few restrictions on the types of surfaces involved. Also, it uses sophisticated

tracking algorithms to ensure that proper contact conditions are enforced

efficiently. It can be used simultaneously with the contact pair algorithm

(i.e., some interactions can be modeled with the general contact algorithm,

while others are modeled with the contact pair algorithm). In addition, it can

be used with 2D or 3D surfaces. Furthermore, it uses the finite-sliding,

surface-to-surface contact formulation.

The definition of a general contact interaction consists of specifying the

general contact algorithm and defining the contact domain (i.e., the surfaces

that interact with one another), the contact surface properties, and the

mechanical contact property models. The general contact algorithm allows

for quite general characteristics in the surfaces that it uses. A convenient

method of specifying the contact domain is using cropped surfaces. Such sur-

faces can be used to perform “contact in a box” by using a contact domain

that is enclosed in a specified rectangular box in the original configuration.

The general contact algorithm uses the surface-to-surface contact formula-

tion as the primary formulation and can use the edge-to-surface contact for-

mulation as a supplementary formulation. The general contact algorithm

does not consider contact involving analytical surfaces or node-based sur-

faces, although these surface types can be included in contact pairs in analyses

that also use general contact. The general contact algorithm can consider 3D

edge-to-surface contact, which is more effective at resolving some interac-

tions than the surface-to-surface contact formulation. The edge-to-surface
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contact formulation is primarily intended to avoid localized penetration of a

feature’s edge of one surface into a relatively smooth portion of another sur-

face when the normal directions of the respective surface facets in the active

contact region form an oblique angle.

When a surface is used in a general contact interaction, all applicable

facets are included in the contact definition; however, modelers can specify

which edges to consider for edge-to-surface contact. The contact area asso-

ciated with a feature edge depends on the mesh size; therefore, contact pres-

sures (in units of force per area) associated with edge-to-surface contact are

mesh-dependent. Both surface-to-surface and edge-to-surface contact con-

straints may be active at the same nodes. To help avoid numerical overcon-

straint issues, edge-to-surface contact constraints are always enforced with a

penalty method. General contact is defined at the beginning of an analysis.

Only one general contact definition can be specified, and this definition is in

effect for every step of the analysis. Modelers can specify the regions of the

model that can potentially come into contact with each other by defining

general contact inclusions and exclusions. Only one contact inclusions def-

inition and one contact exclusions definition are allowed in the model def-

inition. All contact inclusions in an analysis are applied first, and then, all

contact exclusions are applied, regardless of the order in which they are spec-

ified. The contact exclusions take precedence over the contact inclusions.

The general contact algorithmwill consider only those interactions specified

by the contact inclusions definition and not specified by the contact exclu-

sions definition. General contact interactions typically are defined by spec-

ifying self-contact for the default automatically generated surface provided

by ABAQUS [1.29]. All surfaces used in the general contact algorithm

can span multiple unattached bodies, so self-contact in this algorithm is

not limited to contact of a single body with itself. For example, self-contact

of a surface that spans two bodies implies contact between the bodies as well

as contact of each body with itself.

Defining contact inclusions means specifying the regions of the model

that should be considered for contact purposes. Modelers can specify self-

contact for a default unnamed, all-inclusive surface defined automatically

by ABAQUS. This default surface contains, with the exceptions noted later,

all exterior element faces. This is the simplest way to define the contact

domain. On the other hand, modelers can refine the contact domain defi-

nition by specifying the regions of the model to exclude from contact. Pos-

sible motivations for specifying contact exclusions include (1) avoiding

physically unreasonable contact interactions; (2) improving computational
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performance by excluding parts of the model that are not likely to interact;

(3) ignoring contact for all the surface pairings specified, even if these inter-

actions are specified directly or indirectly in the contact inclusions defini-

tion; and finally (4) excluding multiple surface pairings from the contact

domain. All of the surfaces specified must be element-based surfaces. Keep

in mind that surfaces can be defined to span multiple unattached bodies, so

self-contact exclusions are not limited to exclusions of single-body contact.

When you specify pure master-slave contact surface weighting for a partic-

ular general contact surface pair, contact exclusions are generated automat-

ically for the master-slave orientation opposite to that specified. ABAQUS

[1.29] assigns default pure master-slave roles for contact involving discon-

nected bodies within the general contact domain, and contact exclusions

are generated by default for the opposite master-slave orientations.

5.2.2.3 Defining Contact Pair Interactions
Contact pairs in ABAQUS [1.29] can be used to define interactions between

bodies in mechanical, coupled temperature-displacement, and heat transfer

simulations. Contact pairs can be formed using a pair of rigid or deformable

surfaces or a single deformable surface. Modelers do not have to use surfaces

with matching meshes. Contact pairs cannot be formed with one 2D surface

and one 3D surface. Modelers can define contact in terms of two surfaces

that may interact with each other as a “contact pair” or in terms of a single

surface that may interact with itself in “self-contact.” ABAQUS enforces

contact conditions by forming equations involving groups of nearby nodes

from the respective surfaces or, in the case of self-contact, from separate

regions of the same surface. To define a contact pair, modelers must indicate

which pairs of surfaces may interact with one another or which surfaces may

interact with themselves. Contact surfaces should extend far enough to

include all regions that may come into contact during an analysis; however,

including additional surface nodes and faces that never experience contact

may result in significant extra computational cost (e.g., extending a slave sur-

face such that it includes many nodes that remain separated from the master

surface throughout an analysis can significantly increase memory usage

unless penalty contact enforcement is used). Every contact pair is assigned

a contact formulation andmust refer to an interaction property. Contact for-

mulations are based on whether the tracking approach assumes finite- or

small-sliding and whether the contact discretization is based on a node-

to-surface or surface-to-surface approach. When a contact pair contains

two surfaces, the two surfaces are not allowed to include any of the same
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nodes, and modelers must choose which surface will be the slave and which

will be the master. The larger of the two surfaces should act as the master

surface. If the surfaces are of comparable size, the surface on the stiffer body

should act as the master surface. If the surfaces are of comparable size and

stiffness, the surface with the coarser mesh should act as the master surface.

For node-to-surface contact, it is possible for master surface nodes to

penetrate the slave surface without resistance. This penetration tends to

occur if the master surface is more refined than the slave surface or a large

contact pressure develops between soft bodies. Refining the slave surface

mesh often minimizes the penetration of the master surface nodes. If the

refinement technique does not work or is not practical, a symmetric

master-slave method can be used if both surfaces are element-based surfaces

with deformable or deformable-made-rigid parent elements. To use this

method, modelers can define two contact pairs using the same two surfaces,

but they have to switch the roles of master and slave surfaces for the two

contact pairs. Using symmetric master-slave contact pairs can lead to over-

constraint problems when very stiff or “hard” contact conditions are

enforced. For softened contact conditions, use of symmetric master-slave

contact pairs will cause deviations from the specified pressure-versus-

overclosure behavior, because both contact pairs contribute to the overall

interface stress without accounting for one another. Likewise, use of sym-

metric master-slave contact pairs will cause deviations from the friction

model if an optional shear stress limit is specified, because the contact stresses

observed by each contact pair will be approximately one-half of the total

interface stress. Similarly, it can be difficult to interpret the results at the

interface for symmetric master-slave contact pairs. In this case, both surfaces

at the interface act as slave surfaces, so each has contact constraint values asso-

ciated with it. The constraint values that represent contact pressures are not

independent of each other.

ABAQUS [1.29] requires master contact surfaces to be single-sided for

node-to-surface contact and for some surface-to-surface contact formula-

tions. This requires that modelers consider the proper orientation for master

surfaces defined on elements, such as shells and membranes, that have pos-

itive and negative directions. For node-to-surface contact, the orientation of

slave surface normals is irrelevant, but for surface-to-surface contact, the ori-

entation of single-sided slave surfaces is taken into consideration. Double-

sided element-based surfaces are allowed for the default surface-to-surface

contact formulations, although they are not always appropriate for cases

with deep initial penetrations. If the master and slave surfaces are both

491Finite Element Analysis of Steel and Steel-Concrete Composite Bridges



double-sided, the positive or negative orientation of the contact normal

direction will be chosen such as to minimize (or avoid) penetrations for each

contact constraint. If either or both of the surfaces are single-sided, the pos-

itive or negative orientation of the contact normal direction will be deter-

mined from the single-sided surface normals rather than the relative

positions of the surfaces.

When the orientation of a contact surface is relevant to the contact for-

mulation, modelers must consider the following aspects for surfaces on struc-

tural (beam and shell), membrane, truss, or rigid elements:

(1) Adjacent surface faces must have consistent normal directions.

(2) The slave surface should be on the same side of the master surface as the

outward normal. If, in the initial configuration, the slave surface is on

the opposite side of the master surface as the outward normal, ABAQUS

[1.29] will detect overclosure of the surfaces and may have difficulty

finding an initial solution if the overclosure is severe. An improper spec-

ification of the outward normal will often cause an analysis to immedi-

ately fail to converge.

(3) Contact will be ignored with surface-to-surface discretization if single-

sided slave and master surfaces have normal directions that are in

approximately the same direction. It should be noted that discontinuous

contact surfaces are allowed in many cases, but the master surface for

finite-sliding, node-to-surface contact cannot be made up of two or

more disconnected regions (they must be continuous across element

edges in 3D models or across nodes in 2D models). ABAQUS [1.29]

cannot use 3D beams or trusses to form a master surface because the ele-

ments do not have enough information to create unique surface nor-

mals. However, these elements can be used to define a slave surface.

2D beams and trusses can be used to form both master and slave surfaces.

For small-sliding contact problems, the contact area is calculated in the

input file preprocessor from the undeformed shape of the model; thus, it

does not change throughout the analysis, and contact pressures for small-

sliding contact are calculated according to this invariant contact area.

This behavior is different from that in finite-sliding contact problems,

where the contact area and contact pressures are calculated according

to the deformed shape of the model.

5.2.2.4 Defining Contact with Contact Elements
As mentioned earlier, some contact problems cannot be modeled using gen-

eral contact and contact pair formulations. Therefore, ABAQUS [1.29]
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offers a variety of contact elements that can be used when contact between

two bodies cannot be simulated with the surface-based contact approach.

These elements include the following:

(1) Gap contact elements, which can be used for mechanical and thermal

contact between two nodes. For example, these elements can be used

to model the contact between a piping system and its supports. They

can also be used to model an inextensible cable that supports only tensile

loads.

(2) Tube-to-tube contact elements, which can be used to model contact

between two pipes or tubes in conjunction with slide lines.

(3) Slide line contact elements, which can be used to model finite-sliding

contact between two axisymmetric structures that may undergo asym-

metric deformations in conjunction with slide lines. Slide line elements

can, for example, be used to model threaded connectors.

(4) Rigid surface contact elements can be used tomodel contact between an

analytical rigid surface and an axisymmetric deformable body that may

undergo asymmetric deformations. For example, rigid surface contact

elements might be used to model the contact between a rubber seal

and a much stiffer structure.

5.2.2.5 Frictional Behavior
When surfaces are in contact, they usually transmit shear as well as normal

forces across their interface. There is generally a relationship between these

two force components. The relationship, known as the friction between the

contacting bodies, is usually expressed in terms of the stresses at the interface

of the bodies. The friction models available in ABAQUS [1.29] can include

the classical isotropic Coulomb friction model, which in its general form

allows the friction coefficient to be defined in terms of slip rate, contact pres-

sure, average surface temperature at the contact point, and field variables; see

Figure 5.14. Coulomb friction model provides the option for modelers to

define a static friction coefficient and a kinetic friction coefficient with a

smooth transition zone defined by an exponential curve. Coulomb friction

model also allows the introduction of a shear stress limit, which is the max-

imum value of shear stress that can be carried by the interface before the sur-

faces begin to slide. ABAQUS assumes by default that the interaction

between contacting bodies is frictionless. Modelers can include a friction

model in a contact property definition for both surface-based contact and

element-based contact. The basic concept of the Coulomb friction model

is to relate the maximum allowable frictional (shear) stress across an interface
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to the contact pressure between the contacting bodies. In the basic form of

the Coulomb friction model, two contacting surfaces can carry shear stresses

up to a certain magnitude across their interface before they start sliding

relative to one another; this state is known as sticking. The Coulomb

friction model defines this critical shear stress, tcrit, at which sliding of the

surfaces starts as a fraction of the contact pressure, p, between the surfaces

(tcrit¼mp). The stick/slip calculations determine when a point transitions

from sticking to slipping or from slipping to sticking. The fraction, m, is
known as the coefficient of friction. For the case when the slave surface

consists of a node-based surface, the contact pressure is equal to the normal

contact force divided by the cross-sectional area at the contact node. In

ABAQUS [1.29], the default cross-sectional area is 1.0, and modelers can

specify a cross-sectional area associated with every node in the node-based

surface when the surface is defined or, alternatively, assign the same area to

every node through the contact property definition. The basic friction

model assumes that it is the same in all directions (isotropic friction).

For a 3D simulation, there are two orthogonal components of shear stress

along the interface between the two bodies. These components act in the

slip directions for the contact surfaces or contact elements.

There are two ways to define the basic Coulomb friction model in ABA-

QUS [1.29]. In the default model, the friction coefficient is defined as a

function of the equivalent slip rate and contact pressure. The coefficient

of friction can be set to any nonnegative value. A zero friction coefficient

means that no shear forces will develop and the contact surfaces are free

to slide. You do not need to define a friction model for such a case.

µ (constant friction coefficient)
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Figure 5.14 The basic Coulomb friction model as given in ABAQUS [1.29].
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Experimental data show that the friction coefficient that opposes the

initiation of slipping from a sticking condition is different from the friction

coefficient that opposes established slipping. The former is typically referred

to as the “static” friction coefficient, and the latter is referred to as the

“kinetic” friction coefficient. Typically, the static friction coefficient is

higher than the kinetic friction coefficient. In the default model, the static

friction coefficient corresponds to the value given at zero slip rate, and the

kinetic friction coefficient corresponds to the value given at the highest slip

rate. The transition between static friction and kinetic friction is defined by

the values given at intermediate slip rates. In this model, the static and kinetic

friction coefficients can be functions of contact pressure, temperature, and

field variables. ABAQUS [1.29] also provides a model to specify a static fric-

tion coefficient and a kinetic friction coefficient directly. In this model, it is

assumed that the friction coefficient decays exponentially from the static

value to the kinetic value according to a formula given in the software.Mod-

elers can specify an optional equivalent shear stress limit, tmax, so that,

regardless of the magnitude of the contact pressure stress, sliding will occur

if the magnitude of the equivalent shear stress reaches this value; see

Figure 5.15. A value of zero is not allowed. This shear stress limit is typically

introduced in cases when the contact pressure stress may become very large

(as can happen in somemanufacturing processes), causing the Coulomb the-

ory to provide a critical shear stress at the interface that exceeds the yield

stress in the material beneath the contact surface. A reasonable upper bound

µ (constant friction coefficient)
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Figure 5.15 Friction model with a limit on the critical shear stress as given in ABAQUS
[1.29].
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estimate for tmax is
syffiffi
3

p , where sy is the Mises yield stress of the material adja-

cent to the surface. It should be noted that ABAQUS [1.29] offers the option

of specifying an infinite coefficient of friction (m¼1). This type of surface

interaction is called “rough” friction, and with it, all relative sliding motion

between two contacting surfaces is prevented (except for the possibility of

“elastic slip” associated with penalty enforcement) as long as the correspond-

ing normal-direction contact constraints are active. Rough friction is

intended for nonintermittent contact; once surfaces close and undergo

rough friction, they should remain closed. Convergence difficulties may

arise in ABAQUS if a closed contact interface with rough friction opens,

especially if large shear stresses have developed. The rough friction model

is typically used in conjunction with the no separation contact pressure-

overclosure relationship for motions normal to the surfaces, which prohibits

separation of the surfaces once they are closed. It should also be noted that in

ABAQUS [1.29], the sticking constraints at an interface between two sur-

faces can be enforced exactly by using the Lagrange multiplier implementa-

tion. With this method, there is no relative motion between two closed

surfaces until t¼tcrit. However, the Lagrange multipliers increase the com-

putational cost of the analysis by adding more degrees of freedom to the

model and often by increasing the number of iterations required to obtain

a converged solution. The Lagrange multiplier formulation may even pre-

vent convergence of the solution, especially if many points are iterating

between sticking and slipping conditions. This effect can occur particularly

if locally, there is a strong interaction between slipping/sticking conditions

and contact stresses.

5.3 CHOICE OF FINITE ELEMENT MESH FOR THE BRIDGES
AND BRIDGE COMPONENTS

The brief survey of the different finite elements mentioned earlier, available

in ABAQUS [1.29] element library, provided a useful background to help

beginners to choose the best finite element types to represent the different

components of steel and steel-concrete composite bridges. After choosing

the best finite element type, we need to look into the geometry of the bridge

and the bridge components to decide the best finite element mesh. Now, we

need to differentiate between modeling the individual bridge components

and modeling the whole bridge. To make it clear for readers, if we, for

example, model the shear connection of headed stud shear connectors in

solid concrete slabs, we will include the exact dimensions of the connection
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components comprising the headed studs, surrounding concrete, steel beam,

and interfaces among the aforementioned components. In this case, the

finite element mesh will be simulating the shear connection behavior and

the finite element model developed can be used to predict the local behavior

of the shear connection. The finite element model in this case can evaluate

the shear connection capacity, failure mode, and load-slip characteristic of

the headed stud. This has been reported previously by the author in

[2.68, 2.69]. However, if we model full-scale composite girders with solid

slabs having numerous headed stud shear connectors, then the finite element

mesh used to model the local shear connection behavior will not be used.

This is attributed to the fact that including all the details of every connection

around every headed stud will result in a huge finite element mesh for the

composite girder that may be impossible to be analyzed. In this case, we can

incorporate the local behavior of the headed stud in a shear connection to

the overall composite beam behavior using springs or JOINTC elements. In

this case, we can study the overall behavior of the composite beam using the

developed finite element model. In this case, the finite element mesh of the

composite girder will be reasonable in size, and the finite element model can

evaluate the moment resistance of the composite beam, load-displacement

relationships, failure modes, etc. This was also previously reported by the

author in [2.68, 5.2]. Using the same approach, we can develop a finite ele-

ment mesh to study the whole bridge behavior, and in parallel, we can

develop other local finite element models to study the behavior of the indi-

vidual components and incorporate them in the whole bridge model. In this

book, Chapters 6 and 7 will include finite element models developed for the

individual bridge components as well as for the whole bridges.

Structural steel members have flat and curved regions. Therefore, the

finite element mesh of the individual members has to cover both flat and

curved regions. Also, most structural steel members have short dimensions,

which are commonly the lateral dimensions of the cross section, and long

dimensions, which are the longitudinal axial dimension of the structural

member that defines the structural member length. Therefore, the finite ele-

ment mesh has to cover both lateral and longitudinal regions of the structural

steel member. To mesh the structural steel member correctly using shell ele-

ments, we have to start with a short dimension for the chosen shell element

and decide the best aspect ratio. The aspect ratio is defined as the ratio of the

longest dimension to the shortest dimension of a quadrilateral finite element.

As the aspect ratio is increased, the accuracy of the results is decreased. The

aspect ratio should be kept approximately constant for all finite element
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analyses performed on the member. Therefore, most general-purpose finite

element computer programs specify a maximum value for the aspect

ratio that should not be exceeded; otherwise, the results will be inaccurate.

Figure 5.16 presents a schematic diagram showing the effect of aspect ratio

on the accuracy of results. The best aspect ratio is one and the maximum

value, as an example the value recommended by ABAQUS [1.29], is five.

It should be noted that the smaller the aspect ratio, the larger the number

of elements and the longer the computational time. Hence, it is recom-

mended to start with an aspect ratio of one and mesh the structural steel

member and compare the numerical results against test results or exact

closed-form solutions. Then, we can repeat the procedure using aspect ratios

of two and three and plot the three numerical results against test results or

exact solutions. After that, we can go back and choose different short dimen-

sions smaller or larger than that initially chosen for the shell finite element

and repeat the aforementioned procedures and again plot the results against

test results or exact closed-form solutions. Plotting the results will determine

the best finite element mesh that provides accurate results with less compu-

tational time. The studies we conduct to choose the best finite element mesh

are commonly called as convergence studies. It should be noted that in regions

of the structural member where the stress gradient is small, aspect ratios

higher than five can be used and still can produce satisfactory results.

Similar to structural steel members, concrete slab decks can be

meshed using the same approach. If we use solid elements to model the
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Figure 5.16 Effect of aspect ratio of finite elements on the accuracy of results.
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concrete slab deck, then we keep an aspect ratio of approximately 1:1:1

(width�height� length) andwe start through the depth of the concrete slab

and extend towards the length. The maximum aspect ratio is 1:1:5 in regions

with high stress gradient. Structural steel members and concrete slab decks

having cross sections that are symmetric about one or two axes can be mod-

eled by cutting half or quarter of the member, respectively, owing to sym-

metry. Use of symmetry reduces the size of the finite element mesh

considerably and consequently reduces the computational time significantly.

Detailed discussions on how symmetry can be efficiently used in finite ele-

ment modeling are presented in [5.1, 5.3]. However, researchers and mod-

elers have to be very careful when using symmetry to reduce the mesh size of

the individual components of bridges and the whole bridges. This is attrib-

uted to the fact that most structural steel members that have slender cross

sections can fail owing to local buckling or local yielding. Failure due to local

buckling or local yielding can occur in any region of the structural steel

member due to initial local and overall geometric imperfections. Therefore,

the whole structural steel members have to be modeled even if the cross sec-

tion is symmetric about the two axes. In addition, symmetries have to be in

loading, boundary conditions, geometry, andmaterial properties. If the cross

section is symmetric but the bridge component or the whole bridge is sub-

jected to different loading along the length or width of the bridge or the

boundary conditions are not the same at both ends, the whole bridge com-

ponent or the whole bridge has to be modeled. Therefore, it is better to

define symmetry in this book as correspondence in size, shape, and position

of loads; material properties; boundary conditions; residual stresses due to

processing; and initial local and overall geometric imperfections that are

on opposite sides of a dividing line or plane. The posttensioned concrete

slabs tested and modeled by Ellobody and Bailey [5.4] are examples of

how using symmetry can considerably limit the size of the mesh and result

in a significant saving in the solution time (see Figures 5.17 and 5.18). A

combination of C3D8 and C3D6 elements available within the ABAQUS

[1.29] element library was used to model the concrete slab, tendon, and

anchorage elements. The slab had dimensions of 4300�1600�160 mm

(length�width�depth). Due to symmetry, only one quarter of the slab

was modeled (Figure 5.17) and the total number of elements used in the

model was 6414, including the interface elements. A sensitivity study was

carried out and it was found that a mesh size of 24 mm (width),

23.25 mm (depth), and 100 mm (length), for most of the elements, achieved

accurate results. All nodes at symmetry surfaces (1) and (2) were prevented to
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displace in 2-direction and 1-direction, respectively. All nodes at the corner

location were prevented to displace in 1-direction and 2-direction.

It should be noted most current efficient general-purpose finite element

computer programs have the ability to perform meshing of the metal struc-

tures automatically. However, in many cases, the resulting finite element

meshes may be very fine so that it takes huge time in the analysis process.

Concrete

Tendon

Anchorage

Symmetry surface (2)

Edge line support

1

2

3

Symmetry corner
Symmetry
surface (1)

Figure 5.17 Using symmetry to model posttensioned concrete slabs tested and
modeled by Ellobody and Bailey [5.4].

Figure 5.18 Full-scale specimens of posttensioned concrete slabs tested and modeled
by Ellobody and Bailey [5.4].
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Therefore, it is recommended in this book to use guided meshing where the

modelers apply the aforementioned fundamentals in developing the finite

element mesh using current software. In this case, automatic meshing soft-

ware can be of great benefit for modelers.

5.4 MATERIAL MODELING OF THE BRIDGE COMPONENTS

5.4.1 General
As mentioned previously, if we classify steel and steel-concrete composite

bridges according to the materials of construction, we will find mainly

two materials. The two materials are the structural steel and concrete, which

are briefly highlighted in Chapter 2 based on the information presented in

current codes of practice. In this section, it is important to detail how the

stress-strain curves of the two main components are accurately incorporated

in finite element modeling. It should be noted that there are other steels used

in bridges, whichmay have higher ultimate stresses compared with structural

steels such as steels used in bearings, shear connectors, bolts, prestressing ten-

dons, and reinforcement bars. However, these can be incorporated in the

same way as structural steels. Also, it should be noted that bridges may have

different other materials such as stainless steels, aluminum, and cold-formed

steel. These also can be treated following the same approach as the structural

steel as previously presented in [5.1]. However, it is recommended in this

book that other materials used in bridges of special nature should be inves-

tigated individually and incorporated differently in the model such as

advanced composite laminates, materials used in bearings (elastomeric mate-

rials), and dampers. In the coming sections, the author aims to provide a

good insight regarding material modeling of structural steel and concrete

as adopted in most available general-purpose computer programs, with

ABAQUS [1.29] presented as an example.

5.4.2 Material Modeling of Structural Steel
Structural steel members have linear-nonlinear stress-strain curves, as shown

in Figure 2.3. The engineering stress-strain curves are determined from ten-

sile coupon tests or stub column tests specified in most current international

specifications. Although the testing procedures of tensile coupon tests and

stub column tests are outside the scope of this book, it is important in this

chapter to detail how the linear and nonlinear regions of the stress-strain

curves are incorporated in the finite element models. The main important
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parameters needed from the stress-strain curve are the measured initial

Young’s modulus (Eo), the measured proportional limit stress (sp), the mea-

sured static yield stress (sy) that is commonly taken as the 0.1% or 0.2% proof

stress (s0.1 or s0.2) for materials having a rounded stress-strain curve with no

distinct yield plateau, the measured ultimate tensile strength (su), and the

measured elongation after fracture (ef). It should be noted that structural steel
members used in bridges undergo large inelastic strains. Therefore, the engi-

neering stress-strain curves must be converted to true stress-logarithmic plas-

tic true strain curves. The true stress (strue) and plastic true strain (etrue
pl ) were

calculated using Equations (5.1) and (5.2) as given in ABAQUS [1.29]:

strue ¼ s 1+ eð Þ ð5:1Þ
epltrue ¼ ln 1 + eð Þ�strue=Eo ð5:2Þ

where Eo is the initial Young’s modulus s and e are the measured nominal

(engineering) stress and strain values, respectively.

The initial part of the stress-strain curve from origin to the proportional limit

stress can be represented based on linear elastic model as given in ABAQUS

[1.29]. The linear elastic model can define isotropic, orthotropic, or aniso-

tropic material behavior and is valid for small elastic strains (normally less

than 5%). Depending on the number of symmetry planes for the elastic

properties, a material can be classified as either isotropic (an infinite number

of symmetry planes passing through every point) or anisotropic (no symme-

try planes). Some materials have a restricted number of symmetry planes

passing through every point; for example, orthotropic materials have two

orthogonal symmetry planes for the elastic properties. The number of inde-

pendent components of the elasticity tensor depends on such symmetry

properties. The simplest form of linear elasticity is the isotropic case. The

elastic properties are completely defined by giving the Young’s modulus

(Eo) and the Poisson’s ratio (u). The shear modulus (G) can be expressed

in terms of Eo. Values of Poisson’s ratio approaching 0.5 result in nearly

incompressible behavior.

The nonlinear part of the curve passed the proportional limit stress can be

represented based on classical plasticity model as given in ABAQUS [1.29].

The model allows the input of a nonlinear curve by giving tabular values of

stresses and strains. When performing an elastic-plastic analysis at finite

strains, it is assumed that the plastic strains dominate the deformation and

that the elastic strains are small. It is justified because structural steels used

in bridges have a well-defined yield stress.
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The classical metal plasticity models use Mises or Hill yield surfaces with

associated plastic flow, which allow for isotropic and anisotropic yield,

respectively. The models assume perfect plasticity or isotropic hardening

behavior. Perfect plasticity means that the yield stress does not change with

plastic strain. Isotropic hardening means that the yield surface changes size

uniformly in all directions such that the yield stress increases (or decreases) in

all stress directions as plastic straining occurs. Associated plastic flow means

that as the material yields, the inelastic deformation rate is in the direction of

the normal to the yield surface (the plastic deformation is volume-invariant).

This assumption is generally acceptable for most calculations with metal.

The classical metal plasticity models can be used in any procedure that uses

elements with displacement degrees of freedom. The Mises and Hill yield

surfaces assume that yielding of the metal is independent of the equivalent

pressure stress. The Mises yield surface is used to define isotropic yielding. It

is defined by giving the value of the uniaxial yield stress as a function of uni-

axial equivalent plastic strain as mentioned previously. The Hill yield surface

allows anisotropic yielding to be modeled. Further details regarding the

modeling of different metals are found in [5.1].

5.4.3 Material Modeling of Concrete
5.4.3.1 General
There are mainly two material modeling approaches for concrete in ABA-

QUS [1.29], which are concrete smeared cracking and concrete damaged

plasticity. Both models can be used to model plain and reinforced concrete.

The reinforcement bars can be used with both models as previously

highlighted in Section 5.2. In the coming sections, the two modeling

approaches are briefly highlighted to enable modelers to choose the appro-

priate approach.

5.4.3.2 Concrete Smeared Cracking
Concrete smeared cracking model in ABAQUS [1.29] provides a general

capability for modeling concrete in all types of structures, including beams,

trusses, shells, and solids. The model can be used for plain concrete, even

though it is intended primarily for the analysis of reinforced concrete

structures. Also, the model can be used with rebar to model concrete rein-

forcement. In addition, concrete smeared cracking model is designed for

applications in which the concrete is subjected to essentially monotonic strain-

ing at low confining pressures. The model consists of an isotropically harden-

ing yield surface that is active when the stress is dominantly compressive and
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an independent “crack detection surface” that determines if a point fails by

cracking. The model uses oriented damaged elasticity concepts (smeared

cracking) to describe the reversible part of the material’s response after crack-

ing failure. Themodel requires that the linear elastic material model be used to

define elastic properties and cannot be used with local orientations; see

Figure 5.19.

Reinforcement in concrete structures is typically provided by means of

rebars, which are 1D strain theory elements (rods) that can be defined singly

or embedded in oriented surfaces. Rebars are typically used with metal plas-

ticity models to describe the behavior of the rebar material and are super-

posed on a mesh of standard element types used to model the concrete.

With concrete smeared cracking modeling approach, the concrete behavior

is considered independently of the rebar. Effects associated with the rebar/

concrete interface, such as bond slip and dowel action, are modeled approx-

imately by introducing some “tension stiffening” into the concrete model-

ing to simulate load transfer across cracks through the rebar. Defining the

rebar can be tedious in complex problems, but it is important that this be

done accurately since it may cause an analysis to fail due to lack of reinforce-

ment in key regions of a model.

Concrete smeared cracking model is intended as a model of concrete

behavior for relatively monotonic loadings under fairly low confining pres-

sures (less than 4-5� the magnitude of the largest stress that can be carried by

the concrete in uniaxial compression); see Figure 5.20. Cracking is assumed

Failure point in compression
(peak stress) 

Unload/reload response

Idealised elastic unload/reload response 

Start of inelastic
behavior 

Stress

Strain
Cracking failure

Softening

Figure 5.19 Uniaxial behavior of plain concrete as given in ABAQUS [1.29].
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to be the most important aspect of the behavior, and representation of crack-

ing and of postcracking behavior dominates the modeling. Cracking is

assumed to occur when the stress reaches a failure surface that is called

the “crack detection surface.” This failure surface is a linear relationship

between the equivalent pressure stress, p, and theMises equivalent deviatoric

stress, q; see Figure 5.21. When a crack has been detected, its orientation is

Uniaxial compression

Crack detection surface

Compression surface

Biaxial
tension

s1

s2

Biaxial compression

Uniaxial
tension

Figure 5.20 Yield and failure surfaces in plane stress as given in ABAQUS [1.29].
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Figure 5.21 Yield and failure surfaces in the (p-q) plane as given in ABAQUS [1.29].
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stored for subsequent calculations. Subsequent cracking at the same point is

restricted to being orthogonal to this direction since stress components asso-

ciated with an open crack are not included in the definition of the failure

surface used for detecting the additional cracks. Cracks are irrecoverable:

they remain for the rest of the calculation (but may open and close). No

more than three cracks can occur at any point (two in a plane-stress case

and one in a uniaxial stress case). Following crack detection, the crack affects

the calculations because a damaged elasticity model is used. Concrete

smeared cracking model is a smeared crack model in the sense that it does

not track individual “macrocracks.” Constitutive calculations are performed

independently at each integration point of the finite element model.

The presence of cracks enters into these calculations by the way in which

the cracks affect the stress and material stiffness associated with the integra-

tion point.

The postfailure behavior for direct straining across cracks is modeled

with tension stiffening, which allows modelers to define the strain-softening

behavior for cracked concrete; see Figure 5.22. This behavior also allows for

the effects of the reinforcement interaction with concrete to be simulated in

a simple manner. Tension stiffening is required in the concrete smeared

cracking model. Modelers can specify tension stiffening by means of a post-

failure stress-strain relation or by applying a fracture energy cracking crite-

rion; see Figure 5.23. Specification of strain-softening behavior in reinforced

concrete generally means specifying the postfailure stress as a function

of strain across the crack. In cases with little or no reinforcement, this

Stress, s

Strain, e

u
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Tension stiffening curve 

Figure 5.22 Tension-stiffening model as given in ABAQUS [1.29].
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specification often introduces mesh sensitivity in the analysis results in the

sense that the finite element predictions do not converge to a unique solu-

tion as the mesh is refined because mesh refinement leads to narrower crack

bands. This problem typically occurs if only a few discrete cracks form in the

structure and mesh refinement does not result in the formation of additional

cracks. If cracks are evenly distributed (either due to the effect of rebar or due

to the presence of stabilizing elastic material, as in the case of plate bending),

mesh sensitivity is less of a concern.

In practical calculations for reinforced concrete, the mesh is usually such

that each element contains rebars. The interaction between the rebars and

the concrete tends to reduce the mesh sensitivity, provided that a reasonable

amount of tension stiffening is introduced in the concrete model to simulate

this interaction; see Figure 5.22. The tension-stiffening effect must be esti-

mated. It depends on such factors as the density of reinforcement, the quality

of the bond between the rebar and the concrete, the relative size of the con-

crete aggregate compared to the rebar diameter, and the mesh. A reasonable

starting point for relatively heavily reinforced concrete modeled with a fairly

detailed mesh is to assume that the strain softening after failure reduces the

stress linearly to zero at a total strain of about 10� the strain at failure. The

strain at failure in standard concretes is typically 10�4, which suggests that

tension stiffening that reduces the stress to zero at a total strain of about

10�3 is reasonable. This parameter should be calibrated to a particular case.

The choice of tension-stiffening parameters is important in ABAQUS [1.29]

since, generally, more tension stiffening makes it easier to obtain numerical

solutions. Too little tension stiffening will cause the local cracking failure in

the concrete to introduce temporarily unstable behavior in the overall

response of the model. Few practical designs exhibit such behavior, so that

Stress, s

Displacement, u
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u
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Figure 5.23 Fracture energy cracking model as given in ABAQUS [1.29].
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the presence of this type of response in the analysis model usually indicates

that the tension stiffening is unreasonably low.

As the concrete cracks, its shear stiffness is diminished. This effect is

defined by specifying the reduction in the shear modulus as a function of

the opening strain across the crack. You can also specify a reduced shear

modulus for closed cracks. This reduced shear modulus will also have an

effect when the normal stress across a crack becomes compressive. The

new shear stiffness will have been degraded by the presence of the crack.

When the principal stress components are dominantly compressive, the

response of the concrete is modeled by an elastic-plastic theory using a

simple form of yield surface written in terms of the equivalent pressure stress,

p, and the Mises equivalent deviatoric stress, q; this surface is illustrated in

Figure 5.21. Associated flow and isotropic hardening are used. This model

significantly simplifies the actual behavior. The associated flow assumption

generally overpredicts the inelastic volume strain. The yield surface cannot

be matched accurately to data in triaxial tension and triaxial compression

tests because of the omission of third stress invariant dependence. When

the concrete is strained beyond the ultimate stress point, the assumption that

the elastic response is not affected by the inelastic deformation is not realistic.

In addition, when concrete is subjected to very high pressure stress, it

exhibits inelastic response: no attempt has been made to build this behavior

into the model. Modelers can define the stress-strain behavior of plain con-

crete in uniaxial compression outside the elastic range. Compressive stress

data are provided as a tabular function of plastic strain and, if desired, tem-

perature and field variables. Positive (absolute) values should be given for the

compressive stress and strain. The stress-strain curve can be defined beyond

the ultimate stress, into the strain-softening regime.

The cracking and compressive responses of concrete that are incorpo-

rated in the concrete model are illustrated by the uniaxial response of a spec-

imen shown in Figure 5.19. When concrete is loaded in compression, it

initially exhibits elastic response. As the stress is increased, some nonrecov-

erable (inelastic) straining occurs and the response of the material softens. An

ultimate stress is reached, after which the material loses strength until it can

no longer carry any stress. If the load is removed at some point after inelastic

straining has occurred, the unloading response is softer than the initial elastic

response: the elasticity has been damaged. This effect is ignored in the

model, since we assume that the applications involve primarily monotonic

straining, with only occasional, minor unloadings.When a uniaxial concrete

specimen is loaded in tension, it responds elastically until, at a stress that is
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typically 7-10% of the ultimate compressive stress, cracks form. Cracks form

so quickly that, even in the stiffest testing machines available, it is very dif-

ficult to observe the actual behavior. Themodel assumes that cracking causes

damage, in the sense that open cracks can be represented by a loss of elastic

stiffness. It is also assumed that there is no permanent strain associated with

cracking. This will allow cracks to close completely if the stress across them

becomes compressive.

In multiracial stress states, these observations are generalized through the

concept of surfaces of failure and flow in stress space. These surfaces are fitted

to experimental data. The surfaces used are shown in Figures 5.20 and 5.21.

Modelers can specify failure ratios to define the shape of the failure surface

(possibly as a function of temperature and predefined field variables). Four

failure ratios can be specified, which are (1) the ratio of the ultimate biaxial

compressive stress to the ultimate uniaxial compressive stress; (2) the abso-

lute value of the ratio of the uniaxial tensile stress at failure to the ultimate

uniaxial compressive stress; (3) the ratio of the magnitude of a principal com-

ponent of plastic strain at ultimate stress in biaxial compression to the plastic

strain at ultimate stress in uniaxial compression; and finally (4) the ratio of the

tensile principal stress at cracking, in plane stress, when the other principal

stress is at the ultimate compressive value, to the tensile cracking stress under

uniaxial tension. It should be noted that, because the model is intended for

application to problems involving relatively monotonic straining, no

attempt is made to include the prediction of cyclic response or of the reduc-

tion in the elastic stiffness caused by inelastic straining under predominantly

compressive stress. Nevertheless, it is likely that, even in those applications

for which the model is designed, the strain trajectories will not be entirely

radial, so that the model should predict the response to occasional strain

reversals and strain trajectory direction changes in a reasonable way. Isotro-

pic hardening of the “compressive” yield surface forms the basis of this aspect

of the model’s inelastic response prediction when the principal stresses are

dominantly compressive.

5.4.3.3 Concrete Damaged Plasticity
Concrete damaged plasticity model in ABAQUS [1.29] provides a general

capability for modeling concrete and other quasibrittle materials in all types

of structures (beams, trusses, shells, and solids). The model uses concepts of

isotropic damaged elasticity in combination with isotropic tensile and com-

pressive plasticity to represent the inelastic behavior of concrete. Also, the

model can be used for plain concrete, even though it is intended primarily
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for the analysis of reinforced concrete structures, and can be used with rebar

to model concrete reinforcement. In addition, the model is designed

for applications in which concrete is subjected to monotonic, cyclic, and/

or dynamic loading under low confining pressures. The model consists of

the combination of nonassociated multihardening plasticity and scalar

(isotropic) damaged elasticity to describe the irreversible damage that occurs

during the fracturing process. Furthermore, the model allows user control of

stiffness recovery effects during cyclic load reversals and can be defined to be

sensitive to the rate of straining. The model can be used in conjunction with

a viscoplastic regularization of the constitutive equations in ABAQUS to

improve the convergence rate in the softening regime.

Concrete damaged plasticity model requires that the elastic behavior of

the material be isotropic and linear. The model is a continuum, plasticity-

based, damage model for concrete. It assumes that the main two failure

mechanisms are tensile cracking and compressive crushing of the concrete

material. The evolution of the yield (or failure) surface is controlled by two

hardening variables, et
pl and ec

pl, linked to failure mechanisms under tension

and compression loading, respectively. ABAQUS refers to et
pl and ec

pl as

tensile and compressive equivalent plastic strains, respectively. The model

assumes that the uniaxial tensile and compressive response of concrete is

characterized by damaged plasticity, as shown in Figure 5.24. Under uni-

axial tension, the stress-strain response follows a linear elastic relationship

until the value of the failure stress, sto, is reached. The failure stress cor-

responds to the onset of microcracking in the concrete material. Beyond

the failure stress, the formation of microcracks is represented macroscop-

ically with a softening stress-strain response, which induces strain localiza-

tion in the concrete structure. Under uniaxial compression, the response is

linear until the value of initial yield, sco. In the plastic regime, the response

is typically characterized by stress hardening followed by strain softening

beyond the ultimate stress, scu. This representation, although somewhat

simplified, captures the main features of the response of concrete. It is

assumed that the uniaxial stress-strain curves can be converted into stress

versus plastic-strain curves. As shown in Figure 5.25, when the concrete

specimen is unloaded from any point on the strain-softening branch of

the stress-strain curves, the unloading response is weakened: the elastic

stiffness of the material appears to be damaged (or degraded). The degra-

dation of the elastic stiffness is characterized by two damage variables, dt
and dc, which are assumed to be functions of the plastic strains, tempera-

ture, and field variables.
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In ABAQUS [1.29], reinforcement in concrete structures is typically

provided by means of rebars, which are 1D rods that can be defined singly

or embedded in oriented surfaces. Rebars are typically used with metal plas-

ticity models to describe the behavior of the rebar material and are super-

posed on a mesh of standard element types used to model the concrete.

With this modeling approach, the concrete behavior is considered indepen-

dently of the rebar. Effects associated with the rebar/concrete interface, such

as bond slip and dowel action, are modeled approximately by introducing

Eo

(1–dt)Eo

εt
pl

tε el
tε

sc

st

scu

sco

Eo (1–dc)Eo

pl
cε el

cε
εc

Tension response 

Compression response 

(b)

(a)

Figure 5.24 Response of concrete to uniaxial loading as given in ABAQUS [1.29].
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some “tension stiffening” into the concrete modeling to simulate load trans-

fer across cracks through the rebar. Defining the rebar can be tedious in

complex problems, but it is important that this be done accurately since it

may cause an analysis to fail due to the lack of reinforcement in key regions

of a model. The postfailure behavior for direct straining is modeled with ten-

sion stiffening, which allows modelers to define the strain-softening behav-

ior for cracked concrete. This behavior also allows for the effects of the

reinforcement interaction with concrete to be simulated in a simple manner.

Tension stiffening is required in the concrete damaged plasticity model.

Modelers can specify tension stiffening by means of a postfailure stress-strain

relation or by applying a fracture energy cracking criterion.

In reinforced concrete, the specification of postfailure behavior generally

means giving the postfailure stress as a function of cracking strain, et
ck. The

cracking strain is defined as the total strain minus the elastic strain corre-

sponding to the undamaged material as illustrated in Figure 5.25. To avoid

potential numerical problems, ABAQUS [1.29] enforces a lower limit on

the postfailure stress equal to 100 of the initial failure stress (sto/100).
Tension-stiffening data are given in terms of the cracking strain, et

ck. When

unloading data are available, the data are provided to ABAQUS in terms of

tensile damage curves, and the software automatically converts the cracking

strain values to plastic-strain values. In cases with little or no reinforcement,

the specification of a postfailure stress-strain relation introduces mesh sensi-

tivity in the results, in the sense that the finite element predictions do not

converge to a unique solution as the mesh is refined because mesh

st

Eo

(1–dt)Eo

εt

pl
tε el

tε

Eo

el
otεck

tε

sto

Figure 5.25 Illustration of the definition of the cracking strain Et
ck used for the definition

of tension-stiffening data as given in ABAQUS [1.29].
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refinement leads to narrower crack bands. This problem typically occurs if

cracking failure occurs only at localized regions in the structure and mesh

refinement does not result in the formation of additional cracks. If cracking

failure is distributed evenly (either due to the effect of rebar or due to the

presence of stabilizing elastic material, as in the case of plate bending), mesh

sensitivity is less of a concern.

In practical calculations for reinforced concrete, the mesh is usually such

that each element contains rebars. The interaction between the rebars and

the concrete tends to reduce the mesh sensitivity, provided that a reasonable

amount of tension stiffening is introduced in the concrete model to simulate

this interaction. This requires an estimate of the tension-stiffening effect,

which depends on such factors as the density of reinforcement, the quality

of the bond between the rebar and the concrete, the relative size of the con-

crete aggregate compared to the rebar diameter, and the mesh. A reasonable

starting point for relatively heavily reinforced concrete modeled with a fairly

detailed mesh is to assume that the strain softening after failure reduces the

stress linearly to zero at a total strain of about 10� the strain at failure. The

strain at failure in standard concretes is typically 10�4, which suggests that

tension stiffening that reduces the stress to zero at a total strain of about

10�3 is reasonable. This parameter should be calibrated to a particular case.

The choice of tension-stiffening parameters is important since, generally,

more tension stiffening makes it easier to obtain numerical solutions. Too

little tension stiffening will cause the local cracking failure in the concrete

to introduce temporarily unstable behavior in the overall response of the

model. Few practical designs exhibit such behavior, so that the presence

of this type of response in the analysis model usually indicates that the tension

stiffening is unreasonably low.

When there is no reinforcement in significant regions of the model, the

tension-stiffening approach described earlier will introduce unreasonable

mesh sensitivity into the results. However, it is generally accepted that

Hillerborg’s [5.5] fracture energy proposal is adequate to allay the concern

for many practical purposes. Hillerborg defines the energy required to open

a unit area of crack, Gf, as a material parameter, using brittle fracture con-

cepts. With this approach, the concrete’s brittle behavior is characterized by

a stress-displacement response rather than a stress-strain response; see

Figure 5.26. Under tension, a concrete specimen will crack across some sec-

tion. After it has been pulled apart sufficiently for most of the stress to be

removed (so that the undamaged elastic strain is small), its length will be

determined primarily by the opening at the crack. The opening does not

513Finite Element Analysis of Steel and Steel-Concrete Composite Bridges



depend on the specimen’s length. This fracture energy cracking model can

be invoked by specifying the postfailure stress as a tabular function of crack-

ing displacement, as shown in Figure 5.26. Alternatively, the fracture

energy, Gf, can be specified directly as a material property and, in this case,

define the failure stress, sto, as a tabular function of the associated fracture

energy. This model assumes a linear loss of strength after cracking, as shown

in Figure 5.27. The cracking displacement at which complete loss of

strength takes place is, therefore, (uto¼2Gf/sto). Typical values of Gf range

from 40 (0.22 lb/in) for a typical construction concrete (with a compressive

strength of approximately 20 MPa, 2850 lb/in.2) to 120 N/m (0.67 lb/in)

for a high-strength concrete (with a compressive strength of approximately

40 MPa, 5700 lb/in.2). If tensile damage, dt, is specified, ABAQUS auto-

matically converts the cracking displacement values to “plastic” displace-

ment values. The implementation of this stress-displacement concept in a

finite element model requires the definition of a characteristic length asso-

ciated with an integration point. The characteristic crack length is based on

the element geometry and formulation. This definition of the characteristic

crack length is used because the direction in which cracking occurs is

not known in advance. Therefore, elements with large aspect ratios will

have rather different behaviors depending on the direction in which they

st

ck
tu

Figure 5.26 Postfailure stress-displacement curve as given in ABAQUS [1.29].

s t

s to
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Figure 5.27 Postfailure stress-fracture energy curve as given in ABAQUS [1.29].
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crack: somemesh sensitivity remains because of this effect, and elements that

have aspect ratios close to one are recommended.

Modelers can define the stress-strain behavior of plain concrete in uni-

axial compression outside the elastic range. Compressive stress data are pro-

vided as a tabular function of inelastic (or crushing) strain, ec
in, and, if desired,

strain rate, temperature, and field variables. Positive (absolute) values should

be given for the compressive stress and strain. The stress-strain curve can be

defined beyond the ultimate stress, into the strain-softening regime. Hard-

ening data are given in terms of an inelastic strain, ec
in, instead of plastic strain,

ec
pl. The compressive inelastic strain is defined as the total strain minus the

elastic strain corresponding to the undamaged material, ec
in¼ ec� eoc

el , where

eoc
el ¼sc/Eo as illustrated in Figure 5.28. Damage, dt and/or dc, can be

specified in tabular form. (If damage is not specified, the model behaves

as a plasticity model; consequently, et
pl¼ et

ck, ec
pl¼ ec

in.) In ABAQUS

[1.29], the damage variables are treated as nondecreasing material point

quantities. At any increment during the analysis, the new value of each dam-

age variable is obtained as the maximum between the value at the end of the

previous increment and the value corresponding to the current state (inter-

polated from the user-specified tabular data). The choice of the damage

properties is important since, generally, excessive damage may have a critical

effect on the rate of convergence. It is recommended to avoid using values of

the damage variables above 0.99, which corresponds to a 99% reduction of

the stiffness. Also, modelers can define the uniaxial tension damage variable,

dt, as a tabular function of either cracking strain or cracking displacement and

Eo

(1–dc)Eo

pl
cε el

cε

εc

Eo

el
ocεin

cε

s c

s cu

s co

Figure 5.28 Definition of the compressive inelastic strain used for the definition of
compression hardening data as given in ABAQUS [1.29].
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the uniaxial compression damage variable, dc, as a tabular function of inelas-

tic (crushing) strain. Modelers also can define flow potential, yield surface,

and ABAQUS viscosity parameters for the concrete damaged plasticity

material model. The concrete damaged plasticity model assumes nonasso-

ciated potential plastic flow. The flow potential used for this model is the

Drucker-Prager hyperbolic approach. This flow potential, which is contin-

uous and smooth, ensures that the flow direction is always uniquely defined.

The function approaches the linear Drucker-Prager flow potential asymp-

totically at high confining pressure stress and intersects the hydrostatic pres-

sure axis at 90�. The model makes use of the yield function of Lubliner et al.

[5.6], with the modifications proposed by Lee and Fenves [5.7] to account

for different evolution of strength under tension and compression. The evo-

lution of the yield surface is controlled by the hardening variables, et
pl and ec

pl.

Unlike concrete models based on the smeared crack approach, the con-

crete damaged plasticity model does not have the notion of cracks develop-

ing at the material integration point. However, it is possible to introduce the

concept of an effective crack direction with the purpose of obtaining a

graphic visualization of the cracking patterns in the concrete structure. Dif-

ferent criteria can be adopted within the framework of scalar-damage plas-

ticity for the definition of the direction of cracking. Following Lubliner et al.

[5.6], ABAQUS [1.29] assumes that cracking initiates at points where the

tensile equivalent plastic strain is greater than zero, et
pl>0, and themaximum

principal plastic strain is positive. The direction of the vector normal to the

crack plane is assumed to be parallel to the direction of the maximum prin-

cipal plastic strain. ABAQUS offers a variety of elements for use with the

concrete damaged plasticity model: truss, shell, plane-stress, plane-strain,

generalized plane-strain, axisymmetric, and 3D elements. Most beam ele-

ments can be use. For general shell analysis, more than the default number

of five integration points through the thickness of the shell should be used;

nine thickness integration points are commonly used to model progressive

failure of the concrete through the thickness with acceptable accuracy.

5.5 LINEAR AND NONLINEAR ANALYSES OF THE BRIDGES
AND BRIDGE COMPONENTS

5.5.1 General
In linear analyses, it is assumed that the displacements of the finite element

model are infinitesimally small and that the material is linearly elastic. In

addition, it was assumed that the boundary conditions remain unchanged
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during the application of loading on the finite element model. The finite

element equations correspond to linear analysis of a structural problem

because the displacement response is a linear function of the applied force

vector. This means that if the forces are increased with a constant factor,

the corresponding displacements will be increased with the same factor.

On the other hand, in nonlinear analysis, the aforementioned assumptions

are not valid. The assumption is that the displacement must be small

and the finite element stiffness matrix and force vector are constant and

independent on the element displacements, because all integrations have

been performed over the original volume of the finite elements and the

strain-displacement relationships. The assumption of a linear elastic material

was implemented in the use of constant stress-strain relationships. Finally,

the assumption that the boundary conditions remain unchanged was

reflected in the use of constant restraint relations for the finite element equi-

librium equation.

Recognizing the previous discussion, we can define three main non-

linear analyses commonly known as materially nonlinear analysis, geometrically

(large displacement and large rotation) nonlinear analysis, andmaterially and geomet-

rically nonlinear analysis. In materially nonlinear analysis, the nonlinear effect

lies in the nonlinear stress-strain relationship, with the displacements and

strains infinitesimally small. Therefore, the usual engineering stress and strain

measurements can be employed. In geometrically nonlinear analysis, the

structure undergoes large rigid-body displacements and rotations. Majority

of geometrically nonlinear analyses were based on von Karman nonlinear

equations such as the analyses presented in [5.8–5.15]. The equations allow

coupling between bending and membrane behavior with the retention of

Kirchhoff normality constraint [1.16]. Finally, materially and geometrically

nonlinear analysis combines both nonlinear stress-strain relationship and

large displacements and rotations experienced by the structure.

Most available general-purpose finite element computer program divides

the problem history (overall finite element analysis) into different steps as

shown in Figure 5.29. An analysis procedure can be specified for each step,

with prescribing loads, boundary conditions, and output requests specified

for each step. A step is a phase of the problem history, and in its simplest

form, a step can be just a static analysis of a load changing from one magni-

tude to another. For each step, modelers can choose an analysis procedure.

This choice defines the type of analysis to be performed during the step such

as static stress analysis, eigenvalue buckling analysis, or any other types of

analyses. Static analyses are used when inertia effects can be neglected.
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The analyses can be linear or nonlinear and assume that time-dependent

material effects, such as creep, are negligible. Linear static analysis involves

the specification of load cases and appropriate boundary conditions. If all or

part of a structure has linear response, substructuring is a powerful capability

for reducing the computational cost of large analyses. Static nonlinear ana-

lyses can also involve geometric nonlinearity and/or material nonlinearity

effects. If geometrically nonlinear behavior is expected in a step, the

large-displacement formulation should be used. Only one procedure is

allowed per step and any combination of available procedures can be used

from step to step. However, information from a previous step can be

imported to the current step by calling the results from the previous step.

The loads, boundary conditions, and output requests can be inserted in

any step.

Most available general-purpose finite element computer programs clas-

sify the steps into two main kinds of steps, which are commonly named as

general analysis steps and linear perturbation steps. General analysis steps can be

used to analyze linear or nonlinear response. On the other hand, linear per-

turbation steps can be used only to analyze linear problems. Linear analysis is

always considered to be linear perturbation analysis about the state at the

time when the linear analysis procedure is introduced. The linear perturba-

tion approach allows general application of linear analysis techniques in

cases where the linear response depends on preloading or on the non-

linear response history of the model. In general, analysis steps and linear
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Figure 5.29 Load-displacement history in a nonlinear analysis.
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perturbation steps, the solution for a single set of applied loads, can be pre-

dicted. However, for static analyses covered in this book, it is possible to find

solutions for multiple load cases. In this case, the overall analysis procedure

can be changed from step to step. This allows the state of the model (stresses,

strains, displacements, deformed shapes, etc.) to be updated throughout all

general analysis steps. The effects of previous history can be included in the

response in each new analysis step by calling the results of a previous history.

As an example, after conducting an initial condition analysis step to include

residual stresses in cross sections, the initial stresses in the whole cross section

will be updated from zero to new applied stresses that accounted for the

residual stress effect in metal structures.

It should be noted that linear perturbation steps have no effect on sub-

sequent general analysis steps and can be conducted separately as a whole

(overall) analysis procedure. In this case, the data obtained from the linear

perturbation steps can be saved in files that can be called into the subsequent

general analysis steps. For example, linear eigenvalue buckling analyses,

needed for modeling of initial overall and local geometric imperfections,

can be conducted initially as a separate overall analysis procedure, and buck-

ling modes can be extracted from the analyses and saved in files. The saved

files can be called into subsequent static general analyses and factored to

model initial geometric imperfections. The most obvious reason for using

several steps in an analysis is to change the analysis procedure type. However,

several steps can also be used to change output requests, such as the boundary

conditions or loading (any information specified as history or step-

dependent data). Sometimes, an analysis may be progressed to a point where

the present step definition needs to be modified. ABAQUS [1.29] provides

the ability to restart the analysis, whereby a step can be terminated prema-

turely and a new step can be defined for the problem continuation. History

data prescribing the loading, boundary conditions, output, etc., will remain

in effect for all subsequent general analysis steps until they are modified or

reset. ABAQUS [1.29] will compare all loads and boundary conditions spec-

ified in a step with the loads and boundary conditions in effect during the

previous step to ensure consistency and continuity. This comparison is

expensive if the number of individually specified loads and boundary con-

ditions is very large. Hence, the number of individually specified loads and

boundary conditions should be minimized, which can usually be done by

using element and node sets instead of individual elements and nodes.

Most current general-purpose finite element computer program divides

each step of analysis into multiple increments. In most cases, one can choose
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either automatic (direct) time incrementation or user-specified fixed time incrementa-

tion to control the solution. Automatic time incrementation is a built-in

incrementation scheme that allows the software to judge the increment

needed based on equilibrium requirements. On the other hand, user-

specified fixed time incrementation forces the software to use a specified

fixed increment, which in many cases may be large or small or need updating

during the step. This results in the analysis to be stopped and readjusted.

Therefore, automatic incrementation is recommended for most cases.

The methods for selecting automatic or direct incrementation are always

prescribed by all general-purpose software to help modelers. In nonlinear

analyses, most general-purpose computer programs will use increment

and iterate as necessary to analyze a step, depending on the severity of the

nonlinearity. Iterations conducted within an increment can be classified as

regular equilibrium iterations and severe discontinuity iterations. In regular equilib-

rium iterations, the solution varies smoothly, while in severe discontinuity

iterations, abrupt changes in stiffness occur. The analysis will continue to

iterate until the severe discontinuities are sufficiently small (or no severe dis-

continuities occur) and the equilibrium tolerances are satisfied.Modelers can

provide parameters to indicate a level of accuracy in the time integration,

and the software will choose the time increments to achieve this accuracy.

Direct user control is provided because it can sometimes save computational

cost in cases where modelers are familiar with the problem and know a suit-

able incrementation scheme. Modelers can define the upper limit to the

number of increments in an analysis. The analysis will stop if this maximum

is exceeded before the complete solution for the step has been obtained. To

reach a solution, it is often necessary to increase the number of increments

allowed by defining a new upper limit.

In nonlinear analyses, general-purpose software uses extrapolation to

speed up the solution. Extrapolation refers to the method used to determine

the first guess to the incremental solution. The guess is determined by the

size of the current time increment and by whether linear, parabolic, or no

extrapolation of the previously attained history of each solution variable is

chosen. Linear extrapolation is commonly used with 100% extrapolation

of the previous incremental solution being used at the start of each increment

to begin the nonlinear equation solution for the next increment. No extrap-

olation is used in the first increment of a step. Parabolic extrapolation uses

two previous incremental solutions to obtain the first guess to the current

incremental solution. This type of extrapolation is useful in situations when

the local variation of the solution with respect to the time scale of the

520 Ehab Ellobody



problem is expected to be quadratic, such as the large rotation of structures.

If parabolic extrapolation is used in a step, it begins after the second incre-

ment of the step, that is, the first increment employs no extrapolation, and

the second increment employs linear extrapolation. Consequently, slower

convergence rates may occur during the first two increments of the succeed-

ing steps in a multistep analysis. Nonlinear problems are commonly solved

using Newton’s method, and linear problems are commonly solved using

the stiffness method. Details of the aforementioned solution methods are

outside the scope of this book; however, the methods are presented in details

in [1.12–1.18].

Most general-purpose computer programs adopt a convergence criterion for

the solution of nonlinear problems automatically. Convergence criterion is

the method used by software to govern the balance equations during the iter-

ative solution. The iterative solution is commonly used to solve the equations

of nonlinear problems for unknowns, which are the degrees of freedom at the

nodes of the finite element model. Most general-purpose computer programs

have control parameters designed to provide reasonably optimal solution of

complex problems involving combinations of nonlinearities as well as efficient

solution of simpler nonlinear cases. However, the most important consider-

ation in the choice of the control parameters is that any solution accepted as

“converged” is a close approximation to the exact solution of the nonlinear

equations. Modelers can reset many solution control parameters related to the

tolerances used for equilibrium equations. If less strict convergence criterion is

used, results may be accepted as convergedwhen they are not sufficiently close

to the exact solution of the nonlinear equations. Caution should be considered

when resetting solution control parameters. The lack of convergence is often

due to modeling issues, which should be resolved before changing the accu-

racy controls. The solution can be terminated if the balance equations failed to

converge. It should be noted that linear cases do not require more than one

equilibrium iteration per increment, which is easy to converge. Each incre-

ment of a nonlinear solution will usually be solved by multiple equilibrium

iterations. The number of iterations may become excessive, in which case,

the increment size should be reduced and the increment will be attempted

again. On the other hand, if successive increments are solved with a minimum

number of iterations, the increment size may be increased.Modelers can spec-

ify a number of time incrementation control parameters. Most general-

purpose computer programs may have trouble with the element calculations

because of excessive distortion in large-displacement problems or because of

very large plastic-strain increments. If this occurs and automatic time
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incrementation has been chosen, the increment will be attempted again with

smaller time increments.

Steel and steel-concrete composite bridges may be checked for safety

against dynamic loads, as an example bridges constructed in regions that

are subjected to earthquakes. In this case, dynamic finite element analyses

should be performed. Although this book is not specifically written for

detailing dynamic analyses, brief highlights of the different dynamic analyses

are highlighted in this book. ABAQUS [1.29] offers several methods for per-

forming dynamic analysis of problems in which inertia effects are considered.

Direct integration of the system must be used when nonlinear dynamic

response is being studied. Implicit direct integration is provided in ABA-

QUS (Standard), while explicit direct integration is provided in ABAQUS

(Explicit). Modal methods are usually chosen for linear analyses because in

direct-integration dynamics, the global equations of motion of the system

must be integrated through time, which makes direct-integration methods

significantly more expensive than modal methods. Subspace-based methods

are provided in ABAQUS/Standard and offer cost-effective approaches to

the analysis of systems that are mildly nonlinear.

In ABAQUS (Standard) [1.29], dynamic studies of linear problems are

generally performed by using the eigenmodes of the system as a basis for cal-

culating the response. In such cases, the necessary modes and frequencies are

calculated first in a frequency extraction step. The mode-based procedures

are generally simple to use and the dynamic response analysis itself is usually

not expensive computationally, although the eigenmode extraction can

become computationally intensive if many modes are required for a large

model. The eigenvalues can be extracted in a prestressed system with the

“stress-stiffening” effect included (the initial stress matrix is included if

the base state step definition included nonlinear geometric effects), which

may be necessary in the dynamic study of preloaded systems. It is not possible

to prescribe nonzero displacements and rotations directly in mode-based

procedures. The method for prescribing motion in mode-based procedures

is included in transient modal dynamic analysis. Density must be defined for

all materials used in any dynamic analysis, and damping (both viscous and

structural) can be specified at the either material or step level.

5.5.2 Linear Eigenvalue Buckling Analysis
Eigenvalue buckling analysis provided by ABAQUS [1.29] is generally used

to estimate the critical buckling (bifurcation) load of structures. The analysis
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is a linear perturbation procedure. The analysis can be the first step in a global

analysis of an unloaded structure, or it can be performed after the structure

has been preloaded. It can be used to model measured initial overall and local

geometric imperfections or in the investigation of the imperfection sensitiv-

ity of a structure in case of lack of measurements. Eigenvalue buckling is

generally used to estimate the critical buckling loads of stiff structures (clas-

sical eigenvalue buckling). Stiff structures carry their design loads primarily

by axial or membrane action, rather than by bending action. Their response

usually involves very little deformation prior to buckling. However, even

when the response of a structure is nonlinear before collapse, a general

eigenvalue buckling analysis can provide useful estimates of collapse mode

shapes.

The buckling loads are calculated relative to the original state of the

structure. If the eigenvalue buckling procedure is the first step in an analysis,

the buckled (deformed) state of the model at the end of the eigenvalue buck-

ling analysis step will be the updated original state of the structure. The

eigenvalue buckling can include preloads such as dead load and other loads.

The preloads are often zero in classical eigenvalue buckling analyses. An

incremental loading pattern is defined in the eigenvalue buckling prediction

step. The magnitude of this loading is not important; it will be scaled by the

load multipliers that are predicted by the eigenvalue buckling analysis. The

buckling mode shapes (eigenvectors) are also predicted by the eigenvalue

buckling analysis. The critical buckling loads are then equal to the preloads

plus the scaled incremental load. Normally, the lowest load multiplier and

buckling mode is of interest. The buckling mode shapes are normalized vec-

tors and do not represent actual magnitudes of deformation at critical load.

They are normalized so that the maximum displacement component has a

magnitude of 1.0. If all displacement components are zero, the maximum

rotation component is normalized to 1.0. These buckling mode shapes

are often the most useful outcome of the eigenvalue buckling analysis, since

they predict the likely failure modes of the structure.

Some structures have many buckling modes with closely spaced eigen-

values, which can cause numerical problems. In these cases, it is recom-

mended to apply enough preload to load the structure to just below the

buckling load before performing the eigenvalue analysis. In many cases, a

series of closely spaced eigenvalues indicate that the structure is

imperfection-sensitive. An eigenvalue buckling analysis will not give accu-

rate predictions of the buckling load for imperfection-sensitive structures. In

this case, the static Riks procedure, used by ABAQUS [1.29], which will be
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highlighted in this chapter, should be used instead. Negative eigenvalues

may be predicted from an eigenvalue buckling analysis. The negative eigen-

values indicate that the structure would buckle if the loads were applied in

the opposite direction. Negative eigenvalues may correspond to buckling

modes that cannot be understood readily in terms of physical behavior, par-

ticularly if a preload is applied that causes significant geometric nonlinearity.

In this case, a geometrically nonlinear load-displacement analysis should be

performed. Because buckling analysis is usually done for stiff structures, it is

not usually necessary to include the effects of geometry change in establish-

ing equilibrium for the original state. However, if significant geometry

change is involved in the original state and this effect is considered to be

important, it can be included by specifying that geometric nonlinearity

should be considered for the original state step. In such cases, it is probably

more realistic to perform a geometrically nonlinear load-displacement

analysis (Riks analysis) to determine the collapse loads, especially for

imperfection-sensitive structures as mentioned previously. While large

deformation can be included in the preload, the eigenvalue buckling theory

relies on the fact that there is little geometry change due to the live (scaled

incremental load) buckling load. If the live load produces significant geom-

etry changes, a nonlinear collapse (Riks) analysis must be used (Figure 5.30).

The initial conditions such as residual stresses can be specified for an

eigenvalue buckling analysis. If the buckling step is the first step in the anal-

ysis, these initial conditions form the original state of the structure. Boundary
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Figure 5.30 Load-displacement behavior that could be predicted by the Riks method
available in ABAQUS [1.29].
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conditions can be applied to any of the displacement or rotation degrees of

freedom (6 degrees of freedom). Boundary conditions are treated as con-

straints during the eigenvalue buckling analysis. Therefore, the buckling

mode shapes are affected by these boundary conditions. The buckling

mode shapes of symmetric structures subjected to symmetric loadings

are either symmetric or antisymmetric. In such cases, it is more efficient

to use symmetry to reduce the finite element mesh of the model. Axisym-

metric structures subjected to compressive loading often collapse in non-

axisymmetric modes. Therefore, these structures must be modeled as a

whole. The loads prescribed in an eigenvalue buckling analysis can be con-

centrated nodal forces applied to the displacement degrees of freedom or

can be distributed loads applied to finite element faces. The load stiffness

can be of a significant effect on the critical buckling load. It is important

that the structure is not preloaded above the critical buckling load. During

an eigenvalue buckling analysis, the model’s response is defined by its lin-

ear elastic stiffness in the original state. All nonlinear or inelastic material

properties are ignored during an eigenvalue buckling analysis. Any struc-

tural finite elements can be used in an eigenvalue buckling analysis. The

values of the eigenvalue load multiplier (buckling loads) will be printed

in the data files after the eigenvalue buckling analysis. The buckling mode

shapes can be visualized using the software. Any other information such as

values of stresses, strains, or displacements can be saved in files at the end of

the analysis. Further details regarding the eigenvalue buckling analysis can

be found in [5.1].

5.5.3 Materially and Geometrically Nonlinear Analyses
Materially nonlinear analysis of a structure is a general nonlinear analysis

step. The analysis can be also called as load-displacement nonlinear material

analysis. All required information regarding the behavior of bridges is pre-

dicted from the materially nonlinear analysis. The information comprised

the ultimate loads, failure modes, and load-displacement relationships as

well as any other required data that can be obtained from materially

nonlinear analysis. The initial overall and local geometric imperfections,

residual stresses, prestressing, and nonlinear stress-strain curves of the con-

struction material are included in the load-displacement nonlinear material

analysis. Since most, if not all, bridge components have nonlinear stress-

strain curves or linear-nonlinear stress-strain curves, therefore, most of

the general nonlinear analysis steps associated with bridges are materially

nonlinear analyses.
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Materially nonlinear analysis (with or without consideration of geo-

metric nonlinearity) of metal structures is done to determine the overall

response of the bridges and bridge components. From a numerical view-

point, the implementation of a nonlinear stress-strain curve of a construc-

tion metal material involves the integration of the state of the material at an

integration point over a time increment during a materially nonlinear anal-

ysis. The implementation of a nonlinear stress-strain curve must provide an

accurate material stiffness matrix for use in forming the nonlinear equilib-

rium equations of the finite element formulation. The mechanical consti-

tutive models associated with bridge components consider elastic and

inelastic response of the material. In the inelastic response models that

are provided in ABAQUS [1.29], the elastic and inelastic responses are dis-

tinguished by separating the deformation into recoverable (elastic) and non-

recoverable (inelastic) parts. This separation is based on the assumption that

there is an additive relationship between strain rates of the elastic and

inelastic parts. The constitutive material models used in most available

general-purpose finite element computer programs are commonly

accessed by any of the solid or structural elements previously highlighted

in Section 5.2. This access is made independently at each constitutive cal-

culation point. These points are the numerical integration points in the

elements. The constitutive models obtain the state at the point under con-

sideration at the start of the increment from the material database specified

in the step. The state variables include the stresses and strains used in the

constitutive models. The constitutive models update the state of the mate-

rial response to the end of the increment.

Geometrically nonlinear analysis is a general nonlinear analysis step. The

analysis can be also called as load-displacement nonlinear geometry analysis. The

initial overall and local geometric imperfections, prestressing, and residual

stresses can be included in the load-displacement nonlinear geometry anal-

ysis. If the stress-strain curve of the construction metal material is nonlinear,

the analysis will be called as combined materially and geometrically nonlinear anal-

ysis or load-displacement nonlinear material and geometry analysis. All required

information regarding the behavior of metal structures is predicted from

the combined materially and geometrically nonlinear analysis. The informa-

tion comprised the ultimate loads, failure modes, and load-displacement

relationships as well as any other required data that can be obtained from

the combined materially and geometrically nonlinear analysis. Further

details regarding the materially and geometrically nonlinear analyses can

be found in [5.1].
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5.6 RIKS METHOD

TheRiks method provided by ABAQUS [1.29] is an efficient method that is

generally used to predict unstable, geometrically nonlinear collapse of a

structure. The method can include nonlinear materials and boundary con-

ditions. The method can provide complete information about a structure’s

collapse. The Riks method can be used to speed convergence of unstable

collapse of structures. Geometrically nonlinear analysis of bridges may

involve buckling or collapse behavior. Several approaches are possible for

modeling such behavior. One of the approaches is to treat the buckling

or collapse response dynamically, thus actually modeling the response with

inertia effects included as the structure snaps. This approach is easily accom-

plished by restarting the terminated static procedure and switching to a

dynamic procedure when the static solution becomes unstable. In some sim-

ple cases, displacement control can provide a solution, even when the con-

jugate load (the reaction force) is decreasing as the displacement increases.

Alternatively, static equilibrium states during the unstable phase of the

response can be found by using the modified Riks method supported by ABA-

QUS [1.29]. This method is used for cases where the loading is proportional,

where the load magnitudes are governed by a single scalar parameter. The

method can provide solutions even in cases of complex, unstable response of

bridges.

In complex structures involving material nonlinearity, geometric nonli-

nearity prior to buckling, or unstable postbuckling behavior, a load-

displacement (Riks) analysis must be performed to investigate the structures

accurately. The Riks method treats the load magnitude as an additional

unknown and solves loads and displacements simultaneously. Therefore,

another quantity must be used to measure the progress of the solution. ABA-

QUS [1.29] uses the arc length along the static equilibrium path in load-

displacement domain. This approach provides solutions regardless of

whether the response is stable or unstable. If the Riks step is a continuation

of a previous history, any loads that exist at the beginning of the step are

treated as dead loads with constant magnitude. A load whose magnitude

is defined in the Riks step is referred to as a reference load. All prescribed

loads are ramped from the initial (dead load) value to the reference values

specified. ABAQUS [1.29] uses Newton’s method to solve the nonlinear

equilibrium equations. The Riks procedure uses very small extrapolation

of the strain increment. Modelers can provide an initial increment in arc

length along the static equilibrium path when defining the step. After that,
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the software computes subsequent steps automatically. Since the loading

magnitude is part of the solution, modelers need a method to specify when

the step is completed. It is common that one can specify a maximum dis-

placement value at a specified degree of freedom. The step will terminate

once the maximum value is reached. Otherwise, the analysis will continue

until the maximum number of increments specified in the step definition is

reached.

The Riks method works well with structures having a smooth equi-

librium path in load-displacement domain. The Riks method can be used

to solve postbuckling problems, with both stable and unstable postbuck-

ling behaviors. In this way, the Riks method can be used to perform post-

buckling analyses of structures that show linear behavior prior to

(bifurcation) buckling. When performing a load-displacement analysis

using the Riks method, important nonlinear effects can be included.

Imperfections based on linear buckling modes can be also included in

the analysis of structures using the Riks method. It should be noted that

the Riks method cannot obtain a solution at a given load or displacement

value since these are treated as unknowns. Termination of the analysis

using the Riks method occurs at the first solution that satisfies the step

termination criterion. To obtain solutions at exact values of load or dis-

placement, the analysis must be restarted at the desired point in the step

and a new, non-Riks step must be defined. Since the subsequent step is

a continuation of the Riks analysis, the load magnitude in that step must

be given appropriately so that the step begins with the loading continuing

to increase or decrease according to its behavior at the point of restart.

Initial values of stresses such as residual stresses can be inserted in the anal-

ysis using the Riks method. Also, boundary conditions can be applied to

any of the displacement or rotation degrees of freedom (6 degrees of free-

dom). Concentrated nodal forces and moments applied to associated dis-

placement or rotation degrees of freedom (6 degrees of freedom) as well as

distributed loads at finite element faces can be inserted in the analysis using

the Riks method. Nonlinear material models that describe mechanical

behavior of the bridges and bridge components can be incorporated in

the analysis using the Riks method.

5.6.1 Dynamic Analyses
As mentioned previously, steel and steel-concrete composite bridges may

be analyzed for dynamic loads, particularly if the bridges are constructed
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in regions attacked by earthquakes. In this section, main dynamic analyses

supported by ABAQUS [1.29] are highlighted in order to help researchers,

designers, academics, and practitioners involved in the dynamic analyses of

steel and steel-concrete composite bridges. The dynamic analyses provided

in ABAQUS over most analyses that may be needed for the dynamic anal-

ysis of steel and steel-concrete composite bridges. The direct-integration

dynamic procedure provided in ABAQUS (Standard) offers a choice of

implicit operators for the integration of the equations of motion, while

ABAQUS (Explicit) uses the central-difference operator. In an implicit

dynamic analysis, the integration operator matrix must be inverted and a

set of nonlinear equilibrium equations must be solved at each time in-

crement. In an explicit dynamic analysis, displacements and velocities

are calculated in terms of quantities that are known at the beginning of

an increment; therefore, the global mass and stiffness matrices need not

be formed and inverted, which means that each increment is relatively

inexpensive compared to the increments in an implicit integration scheme.

The size of the time increment in an explicit dynamic analysis is limited,

however, because the central-difference operator is only conditionally

stable, whereas the implicit operator options available in ABAQUS

(Standard) are unconditionally stable and, thus, there is no such limit on

the size of the time increment that can be used for most analyses in

ABAQUS (Standard), that is, accuracy governs the time increment. The

stability limit for the central-difference method (the largest time increment

that can be taken without the method generating large, rapidly growing

errors) is closely related to the time required for a stress wave to cross

the smallest element dimension in the model; thus, the time increment

in an explicit dynamic analysis can be very short if the mesh contains

small elements or if the stress wave speed in the material is very high.

The method is, therefore, computationally attractive for problems in

which the total dynamic response time that must be modeled is only

a few orders of magnitude longer than this stability limit. Many of the

advantages of the explicit procedure also apply to slower (quasistatic)

processes for cases in which it is appropriate to use mass scaling to reduce

the wave speed.

ABAQUS (Explicit) [1.29] offers fewer element types than ABAQUS

(Standard) [1.29]. For example, only first-order, displacement method ele-

ments (four-node quadrilaterals, eight-node bricks, etc.) and modified

second-order elements are used, and each degree of freedom in the model

must have mass or rotary inertia associated with it. However, the method
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provided in ABAQUS (Explicit) has some important advantages including

the following:

(1) The analysis cost rises only linearly with problem size, whereas the cost

of solving the nonlinear equations associated with implicit integration

rises more rapidly than linearly with problem size. Therefore, ABAQUS

(Explicit) is attractive for very large problems.

(2) The explicit integration method is often more efficient than the implicit

integration method for solving extremely discontinuous short-term

events or processes.

(3) Problems involving stress wave propagation can be far more efficient

computationally in ABAQUS (Explicit) than in ABAQUS (Standard).

(4) In choosing an approach to a nonlinear dynamic problem, modelers

must consider the length of time for which the response is sought

compared to the stability limit of the explicit method; the size of the

problem; and the restriction of the explicit method to first-order,

pure displacement method or modified second-order elements.

In some cases, the choice is obvious, but in many problems of practical

interest, the choice depends on details of the specific case.

Direct-solution procedures must be used for dynamic analyses that

involve a nonlinear response. Modal superposition procedures are a cost-

effective option for performing linear or mildly nonlinear dynamic analyses.

The direct-solution dynamic analyses procedures available in ABAQUS

include the following:

(1) Implicit dynamic analysis, in which implicit direct-integration dynamic

analysis is used to study (strongly) nonlinear transient dynamic response

in ABAQUS (Standard).

(2) Subspace-based explicit dynamic analysis, in which the subspace projec-

tion method in ABAQUS (Standard) uses direct, explicit integration of

the dynamic equations of equilibrium written in terms of a vector space

spanned by a number of eigenvectors. The eigenmodes of the system

extracted in a frequency extraction step are used as the global basis vec-

tors. This method can be very effective for systems with mild nonline-

arities that do not substantially change the mode shapes. However, it

cannot be used in contact analyses.

(3) Explicit dynamic analysis, in which explicit direct-integration dynamic

analysis is performed in ABAQUS (Explicit).

(4) Direct-solution steady-state harmonic response analysis, in which

the steady-state harmonic response of a system can be calculated in

ABAQUS (Standard) directly in terms of the physical degrees of
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freedom of the model. The solution is given as in-phase (real) and out-

of-phase (imaginary) components of the solution variables (displace-

ment, stress, etc.) as functions of frequency. The main advantage of this

method is that frequency-dependent effects (such as frequency-

dependent damping) can be modeled. The direct method is not only

the most accurate but also the most expensive steady-state harmonic

response procedure. The direct method can also be used

if nonsymmetric terms in the stiffness are important or if model param-

eters depend on frequency. ABAQUS [1.29] includes a full range

of modal superposition procedures. Modal superposition procedures

can be run using a high-performance linear dynamics software

architecture called SIM. The SIM architecture offers advantages over

the traditional linear dynamics architecture for some large-scale ana-

lyses. Prior to any modal superposition procedure, the natural frequen-

cies of a system must be extracted using the eigenvalue analysis

procedure. Frequency extraction can be performed using the SIM

architecture.

ABAQUS [1.29] provides different modal superposition procedures

comprising the following:

(1) Mode-based steady-state harmonic response analysis, which is a steady-

state dynamic analysis based on the natural modes of the system, can be

used to calculate a system’s linearized response to harmonic excitation.

This mode-based method is typically less expensive than the direct

method. The solution is given as in-phase (real) and out-of-phase (imag-

inary) components of the solution variables (displacement, stress, etc.) as

functions of frequency. Mode-based steady-state harmonic analysis can

be performed using the SIM architecture.

(2) Subspace-based steady-state harmonic response analysis. In this analysis,

the steady-state dynamic equations are written in terms of a vector space

spanned by a number of eigenvectors. The eigenmodes of the system

extracted in a frequency extraction step are used as the global basis vec-

tors. The method is attractive because it allows frequency-dependent

effects to be modeled and is much cheaper than the direct analysis

method. Subspace-based steady-state harmonic response analysis can

be used if the stiffness is nonsymmetric and can be performed using

the SIM architecture.

(3) Mode-based transient response analysis, which provides transient

response for linear problems using modal superposition. Mode-based

transient analysis can be performed using the SIM architecture.
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(4) Response spectrum analysis, which is a linear response spectrum analysis

that is often used to obtain an approximate upper bound of the peak sig-

nificant response of a system to a user-supplied input spectrum (such as

earthquake data) as a function of frequency. The method has a very low

computational cost and provides useful information about the spectral

behavior of a system. Response spectrum analysis can be performed

using the SIM architecture.

(5) Random response analysis, in which the linearized response of a model

to random excitation can be calculated based on the natural modes of the

system. This procedure is used when the structure is excited continu-

ously and the loading can be expressed statistically in terms of a “power

spectral density” function. The response is calculated in terms of statis-

tical quantities such as the mean value and the standard deviation of

nodal and element variables. Random response analysis can be per-

formed using the SIM architecture. SIM is a high-performance

software architecture available in ABAQUS [1.29] that can be used

to perform modal superposition dynamic analyses. The SIM architec-

ture is much more efficient than the traditional architecture for large-

scale linear dynamic analyses (both model size and number of modes)

with minimal output requests. SIM-based analyses can be used to

efficiently handle nondiagonal damping generated from element or

material contributions. Therefore, SIM-based procedures are an

efficient alternative to subspace-based linear dynamic procedures for

models with element damping or frequency-independent materials.

ABAQUS [1.29] relies on user-supplied model data and assumes that

the material’s physical properties reflect experimental results. Examples of

meaningful material properties are a positive mass density per volume, a pos-

itive Young’s modulus, and a positive value for any available damping coef-

ficients. However, in special cases, modelers may want to “adjust” a value of

density, mass, stiffness, or damping in a region or a part of the model to bring

the overall mass, stiffness, or damping to the expected required levels. Cer-

tain material options in ABAQUS allow modelers to introduce nonphysical

material properties to achieve this adjustment. Every nonconservative sys-

tem exhibits some energy loss that is attributed to material nonlinearity,

internal material friction, or external (mostly joint) frictional behavior. Con-

ventional engineering materials like steel and high-strength aluminum alloys

provide small amounts of internal material damping, not enough to prevent

large amplification at near-resonant frequencies. Damping properties

increase in modern composite fiber-reinforced materials, where the energy
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loss occurs through plastic or viscoelastic phenomena as well as from friction

at the interfaces between the matrix and the reinforcement. Still, larger

material damping is exhibited by thermoplastics. Mechanical dampers

may be added to models to introduce damping forces to the system. In gen-

eral, it is difficult to quantify the source of a system’s damping. It usually

comes from several sources simultaneously, for example, from energy loss

during hysteretic loading, viscoelastic material properties, and external joint

friction.

Four categories of damping sources are available in ABAQUS [1.29]

comprisingmaterial and element damping, global damping, modal damping,

and damping associated with time integration. Material and element damp-

ing specifies damping as part of a material definition that is assigned to a

model. In addition, the software has elements such as dashpots, springs with

their complex stiffness matrix, and connectors that serve as dampers, all with

viscous and structural damping factors. Viscous damping can be included in

mass, beam, pipe, and shell elements with general section properties. Global

damping can be used in situations where material or element damping is not

appropriate or sufficient. Modelers can apply abstract damping factors to an

entire model using global damping. ABAQUS allows modelers to specify

global damping factors for both viscous damping (Rayleigh damping) and

structural damping (imaginary stiffness matrix). Modal damping applies only

to mode-based linear dynamic analyses. This technique allows modelers to

apply damping directly to the modes of the system. By definition, modal

damping contributes only diagonal entries to the modal system of equations.

Finally, damping associated with time integration, which results from

marching through a simulation with a finite time increment size. This type

of damping applies only to analyses using direct time integration. ABAQUS

also applies damping to a linear dynamic system in two forms, which are

velocity proportional viscous damping and displacement proportional

structural damping, which is for use in frequency domain dynamics. An

additional type of damping known as composite damping serves as a means

to calculate a model average critical damping with the material density as the

weight factor and is intended for use in mode-based dynamics.

5.6.2 Thermal (Heat Transfer) and Thermal-Stress Analyses
5.6.2.1 General
Steel and steel-concrete composite bridges may be analyzed to evaluate

temperature-induced thermal stresses. Due to variations of temperatures

throughout the year, especially in hot regions, thermal stresses are induced
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in steel and steel-concrete composite bridges resulting in additional mem-

brane and bending stresses in cross sections of the bridges as well as longi-

tudinal and lateral thermal expansions. ABAQUS [1.29] provides three

main analyses dealing with temperature effects in different cross sections,

which are uncoupled heat transfer analysis, sequentially coupled thermal-

stress analysis, and fully coupled thermal-stress analysis. Uncoupled heat

transfer analysis deals with heat transfer problems involving conduction,

forced convection, and boundary radiation analyzed in ABAQUS

(Standard). In these analyses, the temperature field is calculated without

the knowledge of the stress/deformation state in the structures being

studied. Pure heat transfer problems can be transient or steady state and linear

or nonlinear. Sequentially coupled thermal-stress analysis can be conducted

in ABAQUS (Standard) if the stress/displacement solution is dependent on a

temperature field, but there is no inverse dependency. Sequentially coupled

thermal-stress analysis is performed by first solving the pure heat transfer

problem and then reading the temperature solution into a stress analysis as

a predefined field. In the stress analysis, the temperature can vary with time

and position but is not changed by the stress analysis solution. ABAQUS

allows for dissimilar meshes between the heat transfer analysis model and

the thermal-stress analysis model. Temperature values will be interpolated

based on element interpolators evaluated at nodes of the thermal-stress

model. Finally, in fully coupled thermal-stress analysis, a coupled

temperature-displacement procedure is used to solve simultaneously for

the stress/displacement and the temperature fields. A coupled analysis is used

when the thermal and mechanical solutions affect each other strongly. Both

ABAQUS (Standard) and ABAQUS (Explicit) provide coupled

temperature-displacement analysis procedures, but the algorithms used by

each program differ considerably. In ABAQUS (Standard), the heat transfer

equations are integrated using a backward-difference scheme, and the

coupled system is solved using Newton’s method. These problems can be

transient or steady state and linear or nonlinear. In ABAQUS (Explicit),

the heat transfer equations are integrated using an explicit forward-

difference time integration rule, and the mechanical solution response is

obtained using an explicit central-difference integration rule. Fully coupled

thermal-stress analysis in ABAQUS (Explicit) is always transient.

5.6.2.2 Uncoupled Heat Transfer Analyses
Uncoupled heat transfer analyses are those in which the temperature field is

calculated without consideration of the stress/deformation or the electrical
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field in the structures being studied. The analysis can include conduction,

boundary convection, and boundary radiation. It can also include cavity

radiation effects. In addition, the analysis can include forced convection

through the mesh if forced convection/diffusion heat transfer elements

are used. Uncoupled heat transfer analyses can include thermal interactions

such as gap radiation, conductance, and heat generation between contact

surfaces. The analyses can be transient or steady state and can be linear or

nonlinear. The analyses require the use of heat transfer elements. Uncoupled

heat transfer analysis is used to model solid body heat conduction with gen-

eral, temperature-dependent conductivity; internal energy (including latent

heat effects); and quite general convection and radiation boundary condi-

tions, including cavity radiation. Forced convection of a fluid through

the mesh can be modeled by using forced convection/diffusion elements.

Heat transfer problems can be nonlinear because the material properties

are temperature-dependent or because the boundary conditions are non-

linear. Usually, the nonlinearity associated with temperature-dependent

material properties is mild because the properties do not change rapidly with

temperature. However, when latent heat effects are included, the analysis

may be severely nonlinear.

Boundary conditions are very often nonlinear; for example, film coeffi-

cients can be functions of surface temperature. Again, the nonlinearities are

often mild and cause little difficulty. A rapidly changing film condition

(within a step or from one step to another) can be modeled easily using

temperature-dependent and field-variable-dependent film coefficients.

Radiation effects always make heat transfer problems nonlinear. Nonlinear-

ities in radiation grow as temperatures increase. ABAQUS (Standard) uses an

iterative scheme to solve nonlinear heat transfer problems. The scheme uses

the Newton’s method with some modification to improve stability of the

iteration process in the presence of highly nonlinear latent heat effects.

Steady-state cases involving severe nonlinearities are sometimes more effec-

tively solved as transient cases because of the stabilizing influence of the heat

capacity terms. The required steady-state solution can be obtained as the

very long transient time response; the transient will simply stabilize the solu-

tion for that long time response.

Steady-state analysis means that the internal energy term (the specific

heat term) in the governing heat transfer equation is omitted. The problem

then has no intrinsic physically meaningful time scale. Nevertheless, you

can assign an initial time increment, a total time period, and maximum

and minimum allowed time increments to the analysis step, which is often
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convenient for output identification and for specifying prescribed temper-

atures and fluxes with varying magnitudes. Any fluxes or boundary condi-

tion changes to be applied during a steady-state heat transfer step should be

given within the step, using appropriate amplitude references to specify their

“time” variations. If fluxes and boundary conditions are specified for the step

without amplitude references, they are assumed to change linearly with

“time” during the step, from their magnitudes at the end of the previous step

(or zero, if this is the beginning of the analysis) to their newly specified mag-

nitudes at the end of the heat transfer step.

Time integration in transient problems is done with the backward Euler

method (sometimes also referred to as the modified Crank-Nicolson oper-

ator) in the pure conduction elements. This method is unconditionally stable

for linear problems. The forced convection/diffusion elements use the trap-

ezoidal rule for time integration. They include numerical diffusion control

and, optionally, numerical dispersion control. The elements with dispersion

control offer improved solution accuracy in cases where the transient

response of the fluid is important. The velocity of a fluid moving through

the mesh can be prescribed if forced convection/diffusion heat transfer

elements are used. Conduction between the fluid and the adjacent forced

convection/diffusion heat transfer elements will be affected by the mass flow

rate of the fluid. Natural convection occurs when differences in fluid density

created by thermal gradients cause motion of the fluid. The forced convec-

tion/diffusion elements are not designed to handle this phenomenon;

the flow must be prescribed. Modelers can specify the mass flow rates

per unit area (or through the entire section for 1D elements) at the nodes.

ABAQUS (Standard) interpolates the mass flow rates to the material points.

The numerical solution of the transient heat transfer equation including

convection becomes increasingly difficult as convection dominates diffu-

sion. Cavity radiation can be activated in a heat transfer step. This feature

involves interacting heat transfer between all of the facets of the cavity

surface, dependent on the facet temperatures, facet emissivities, and the

geometric view factors between each facet pair. When the thermal emissiv-

ity is a function of temperature or field variables, modelers can specify the

maximum allowable emissivity change during an increment in addition to

the maximum temperature change to control the time incrementation.

It should be noted that, by default, the initial temperature of all nodes is zero.

Modelers can specify nonzero initial temperatures.

Boundary conditions can be used to prescribe temperatures (degree of

freedom 11) at nodes in a heat transfer analysis. Shell elements have
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additional temperature degrees of freedom 12, 13, etc., through the thick-

ness. Boundary conditions can be specified as functions of time by referring

to amplitude curves. For purely diffusive heat transfer elements, a boundary

without any prescribed boundary conditions (natural boundary condition)

corresponds to an insulated surface. For forced convection/diffusion ele-

ments, only the flux associated with conduction is zero; energy is free to

convect across an unconstrained surface. This natural boundary condition

correctly models areas where fluid is crossing a surface (as, e.g., at the

upstream and downstream boundaries of the mesh) and prevents spurious

reflections of energy back into the mesh.

Thermal loading in a heat transfer analysis comprises concentrated heat

fluxes, body fluxes, and distributed surface fluxes; average-temperature

radiation conditions; convective film conditions; and radiation condi-

tions (film properties can be made a function of temperature) as well as

cavity radiation effects. Predefined temperature fields are not allowed

in heat transfer analyses. Boundary conditions should be used instead

to specify temperatures, as described earlier. The thermal conductivity

of the materials in a heat transfer analysis must be defined. The specific

heat and density of the materials must also be defined for transient heat

transfer problems. Latent heat can be defined for diffusive heat transfer

elements if changes in internal energy due to phase changes are important.

Thermal expansion coefficients are not meaningful in an uncoupled heat

transfer analysis problem since the deformation of the structure is not

considered.

The heat transfer element library in ABAQUS (Standard) includes (1)

diffusive heat transfer elements, which allow for heat storage (specific heat

and latent heat effects) and heat conduction; (2) forced convection/diffusion

heat transfer elements; (3) shell heat transfer elements; and (4) the first-order

heat transfer elements (such as the two-node link, four-node quadrilateral,

and eight-node brick), which use a numerical integration rule with the inte-

gration stations located at the corners of the element for the heat capacitance

terms and for the calculations of the distributed surface fluxes. First-order

diffusive elements are preferred in cases involving latent heat effects since

they use such a special integration technique to provide accurate solutions

with large latent heats. The second-order heat transfer elements use con-

ventional Gaussian integration. Thus, the second-order elements are to

be preferred for problems when the solution will be smooth (without latent

heat effects) and usually give more accurate results for the same number of

nodes in the mesh.
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5.6.2.3 Sequentially Coupled Thermal-Stress Analysis
A sequentially coupled heat transfer analysis available in ABAQUS [1.29] is

used when the stress/deformation field in a structure depends on the tem-

perature field in that structure, but the temperature field can be found

without knowledge of the stress/deformation response. The analysis is

usually performed by first conducting an uncoupled heat transfer analysis

and then a stress/deformation analysis. The analysis is a thermal-stress

analysis in which the temperature field does not depend on the stress field.

Nodal temperatures are stored in ABAQUS as a function of time in the

heat transfer results (.fil) file or output database (.odb) file. The tempera-

tures are read into the stress analysis as a predefined field; the temperature

varies with position and is usually time-dependent. It is predefined because

it is not changed by the stress analysis solution. Such predefined fields are

always read into ABAQUS (Standard) at the nodes. They are then in-

terpolated to the calculation points within elements as needed. The tem-

perature interpolation in the stress elements is usually approximate and one

order lower than the displacement interpolation to obtain a compatible

variation of thermal and mechanical strain. Any number of predefined

fields can be read in, and material properties can be defined to depend

on them.

Appropriate initial conditions for the thermal and stress analysis

problems are described in the heat transfer and stress analysis sections.

Appropriate boundary conditions for the thermal and stress analysis prob-

lems are described in the heat transfer and stress analysis sections. Also,

appropriate loading for the thermal and stress analysis problems is

described in the heat transfer and stress analysis sections. In addition to

the temperatures read in from the heat transfer analysis, user-defined field

variables can be specified; these values only affect field-variable-

dependent material properties. The materials in the thermal analysis must

have thermal properties such as conductivity defined. Any mechanical

properties such as elasticity will be ignored in the thermal analysis, but

they must be defined for the stress analysis procedure. Thermal strain will

arise in the stress analysis if thermal expansion is included in the material

property definition. Any of the heat transfer elements in ABAQUS

(Standard) can be used in the thermal analysis. In the stress analysis, the

corresponding continuum or structural elements must be chosen. For

continuum elements, heat transfer results from a mesh using first-order

elements can be transferred to a stress analysis with a mesh using

second-order elements.

538 Ehab Ellobody



5.6.2.4 Fully Coupled Thermal-Stress Analysis
A fully coupled thermal-stress analysis is performed when the mechanical

and thermal solutions affect each other strongly and, therefore, must be

obtained simultaneously. The analysis requires the existence of elements

with both temperature and displacement degrees of freedom in the model

and can be used to analyze time-dependent material response. The analysis

cannot include cavity radiation effects but may include average-temperature

radiation conditions and takes into account temperature dependence of

material properties only for the properties that are assigned to elements with

temperature degrees of freedom. In ABAQUS (Standard), a fully coupled

thermal-stress analysis neglects inertia effects and can be transient or steady

state. On the other hand, in ABAQUS (Explicit), a fully coupled thermal-

stress analysis includes inertia effects and models transient thermal response.

Fully coupled thermal-stress analysis is needed when the stress analysis is

dependent on the temperature distribution and the temperature distribution

depends on the stress solution. In ABAQUS (Standard), the temperatures are

integrated using a backward-difference scheme, and the nonlinear coupled

system is solved using Newton’s method. ABAQUS (Standard) offers an

exact as well as an approximate implementation of Newton’s method for

fully coupled temperature-displacement analysis.

A steady-state coupled temperature-displacement analysis can be per-

formed in ABAQUS (Standard). In steady-state cases, modelers should

assign an arbitrary “time” scale to the step. This time scale is convenient

for changing loads and boundary conditions through the step and for obtain-

ing solutions to highly nonlinear (but steady-state) cases; however, for the

latter purpose, transient analysis often provides a natural way of coping with

the nonlinearity. Alternatively, modelers can perform a transient coupled

temperature-displacement analysis. By default, the initial temperature of

all nodes is zero. Modelers can specify nonzero initial temperatures. Bound-

ary conditions can be used to prescribe both temperatures (degree of free-

dom 11) and displacements/rotations (degrees of freedom 1-6) at nodes in

fully coupled thermal-stress analysis. Shell elements in ABAQUS (Standard)

have additional temperature degrees of freedom 12, 13, etc., through the

thickness. Boundary conditions applied during a dynamic coupled

temperature-displacement response step should use appropriate amplitude

references. If boundary conditions are specified for the step without ampli-

tude references, they are applied instantaneously at the beginning of the step.

Thermal loads that can be prescribed in a fully coupled thermal-stress

analysis comprise concentrated heat fluxes, body fluxes, and distributed
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surface fluxes; node-based film and radiation conditions; average-

temperature radiation conditions; and element- and surface-based film

and radiation conditions. In addition, mechanical loads that can be pre-

scribed to the analysis comprise concentrated nodal forces, which can be

applied to the displacement degrees of freedom (1-6), as well as distributed

pressure forces or body forces. Predefined temperature fields are not allowed

in a fully coupled thermal-stress analysis. Boundary conditions should be

used instead to prescribe temperature degrees of freedom 11, 12, 13, etc.,

in ABAQUS (Standard) shell elements. Other predefined field variables

can be specified in a fully coupled thermal-stress analysis. These values will

affect only field-variable-dependent material properties. The materials in a

fully coupled thermal-stress analysis must have both thermal properties, such

as conductivity, and mechanical properties, such as elasticity, defined. Ther-

mal strain will arise if thermal expansion is included in the material property

definition.

Coupled temperature-displacement elements that have both displace-

ments and temperatures as nodal variables are available in both ABAQUS

(Standard) and ABAQUS (Explicit). In ABAQUS (Standard), simultaneous

temperature/displacement solution requires the use of such elements; pure

displacement elements can be used in part of the model in the fully coupled

thermal-stress procedure, but pure heat transfer elements cannot be used.

In ABAQUS (Explicit), any of the available elements, except Eulerian

elements, can be used in the fully coupled thermal-stress procedure;

however, the thermal solution will be obtained only at nodes where the

temperature degree of freedom has been activated. The first-order coupled

temperature-displacement elements in ABAQUS use a constant tempera-

ture over the element to calculate thermal expansion. The second-order

coupled temperature-displacement elements in ABAQUS (Standard) use

a lower-order interpolation for temperature than for displacement (parabolic

variation of displacements and linear variation of temperature) to obtain a

compatible variation of thermal and mechanical strain.

5.7 MODELING OF INITIAL IMPERFECTIONS AND RESIDUAL
STRESSES

Most structural steel members have initial geometric imperfections as a result

of the manufacturing, transporting, and handling processes. Initial geometric

imperfections can be classified into two main categories, which are local

and overall (bow, global, or out-of-straightness) imperfections. Initial local
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geometric imperfections can be found in any region of the outer or inner

surfaces of metal structural members and are in the perpendicular directions

to the structural member surfaces. On the other hand, initial overall geomet-

ric imperfections are global profiles for the whole structural member along

the member length in any direction. Initial local and overall geometric

imperfections can be predicted from finite element models by conducting

eigenvalue buckling analysis to obtain the worst cases of local and overall

buckling modes. These local and overall buckling modes can be then fac-

tored by measured magnitudes in the tests. Superposition can be used to pre-

dict final combined local and overall buckling modes. The resulting

combined buckling modes can be then added to the initial coordinates of

the structural member. The final coordinates can be used in any subsequent

nonlinear analysis. The details of the eigenvalue buckling analysis were

highlighted in Section 5.5.2. Accurate finite element models should incor-

porate initial local and overall geometric imperfections in the analysis; oth-

erwise, the results will not be accurate. Efficient test programs must include

the measurement of initial local and overall geometric imperfections.

Residual stresses are initial stresses existing in cross sections without the

application of an external load such as stresses resulting from manufacturing

processes of structural steel members. Residual stresses produce internal

membrane forces and bending moments, which are in equilibrium inside

the cross sections. The force and the moment resulting from residual stresses

in the cross sections must be zero. Residual stresses in structural cross sec-

tions are attributed to the uneven cooling of parts of cross sections after

hot rolling. Uneven cooling of cross-section parts subjects to internal stres-

ses. The parts that cool quicker have residual compressive stresses, while

parts that cool lower have residual tensile stresses. Residual stresses cannot

be avoided and in most cases are not desirable. The measurement of residual

stresses is therefore important for accurate understanding of the performance

of metal structural members.

Extensive experimental investigations were conducted in the literature

to determine the distribution and magnitude of residual stresses inside cross

sections. The experimental investigations can be classified into two main

categories, which are nondestructive and destructive methods. Examples

of nondestructive methods are X-ray diffraction and Neutron diffraction.

Nondestructive methods are suitable for measuring stresses close to the out-

side surface of cross sections. On the other hand, destructive methods

involve machining/cutting of the cross section to release internal stresses

and measure resulting change of strains. Destructive methods are based
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on the destruction of the state of equilibrium of the residual stresses in the

cross section. In this way, the residual stresses can be measured by relaxing

these stresses. However, it is only possible to measure the consequences of

the stress relaxation rather than the relaxation itself. One of the main

destructive methods is to cut the cross section into slices and measure the

change in strains before and after cutting. After measuring the strains, some

simple analytical approaches can be used to evaluate resultant membrane

forces and bending moments in the cross sections. Although the testing pro-

cedures to determine residual stresses are outside the scope of this book, it is

important to detail how to incorporate residual stresses in finite element

models. It should be noted that in some cases, incorporating residual stresses

can result in small effect on the structural performance of metals. However,

in some other cases, it may result in considerable effect. Since the main

objective of this book is to accurately model all parameters affecting the

behavior and design of metal structures, the way to model residual stresses

is highlighted in this book.

Residual stresses and their distribution are very important factors affect-

ing the strength of axially loaded structural steel members. These stresses are

of particular importance for slender columns, with slenderness ratio varying

from approximately 40 to 120. As a column load is increased, some parts of

the column will quickly reach the yield stress and go into the plastic range

because of the presence of residual compression stresses. The stiffness will

reduce and become a function of the part of the cross section that is still

inelastic. A column with residual stresses will behave as though it has a

reduced cross section. This reduced cross section or elastic portion of the

column will change as the applied load changes. The buckling analysis

and postbuckling calculation can be carried out theoretically or numerically

by using an effective moment of inertia of the elastic portion of the cross

section or by using the tangent modulus. ABAQUS [1.29] is a popular pack-

age that can be used for the postbuckling analysis, which gives the history of

deflection versus loading. The ultimate strength of the column could be then

obtained from this history.

To ensure accurate modeling of the behavior of metal structures, the

residual stresses should be included in the finite element models. Measured

residual stresses were implemented in the finite element model as initial

stresses using ABAQUS [1.29] software. It should be noted that the slices

cut from the cross section to measure the residual stresses can be used to form

tensile coupon test specimens. In this case, the effect of bending stresses on

the stress-strain curve of the metal material will be considered since the
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tensile coupon specimen will be tested in the actual bending condition.

Therefore, only the membrane residual stresses have to be incorporated

in the finite element model. Initial conditions can be specified for particular

nodes or elements, as appropriate. The data can be provided directly in an

external input file or in some cases by a user subroutine or by the results or

output database file from a previous analysis. If initial conditions are not

specified, all initial conditions are considered zero in the model. Various

types of initial conditions can be specified, depending on the analysis to

be performed; however, the type highlighted here is the initial conditions

(stresses). The option can be used to apply stresses in different directions.

When initial stresses are given, the initial stress state may not be an exact

equilibrium state for the finite element model. Therefore, an initial step

should be included to check for equilibrium and iterate, if necessary, to

achieve equilibrium. Further details regarding incorporating initial geomet-

ric imperfections and residual stresses in finite element modeling of steel

structural members are found in [5.1].

5.8 MODELING OF SHEAR CONNECTION FOR STEEL-
CONCRETE COMPOSITE BRIDGES

Previous investigations by the author have proposed detailed finite element

models simulating the behavior of shear connections with headed studs in

solid concrete slabs, precast hollow-core concrete slabs, and composite con-

crete slabs with profiled steel sheeting, as reported in [2.68–2.71]. The finite

element models simulated the behavior of headed studs in pushout tests and

resulted in extensive data regarding the shear resistance of the studs, failure

modes, and load-slip characteristic curves of the studs. The finite element

models can be used to represent shear connections in steel-concrete com-

posite bridges. This is attributed to the fact that the finite element models

were used to perform extensive parametric studies. The parametric studies

investigated shear connections having studs with different diameters, which

are used in bridges, as well as investigated shear connections having different

concrete strengths, which are also used in bridges.

As an example, the investigation reported in [2.71] investigated the per-

formance of headed stud shear connectors in composite concrete slabs with

profiled steel sheeting. A nonlinear 3D finite element model was developed

and validated against the pushout tests conducted by Lloyd andWright [2.57]

and Kim et al. [2.58, 2.59]. The pushout tests carried out by Kim et al.

[2.58, 2.59] provided the shear connection capacity of 13�65 mm headed
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stud welded through deck in composite slabs with profiled steel sheeting.

The pushout test specimen arrangement is shown in Figure 5.31. The steel

beam used was a 178�102�19 kg/m UB section having two

13�65 mm headed studs welded on each flange of the steel beam through

the profiled steel sheeting. The profiled steel sheeting had a depth (hp) of

40 mm, average width (bo) of 136.5 mm, and plate thickness (t) of

0.68 mm. The composite concrete slab had a depth (D) of 75 mm, width

(B) of 450 mm, and height (H) of 425 mm. Reinforcement bar mesh of

6 mm diameter and 200 mm spacing between two bars was placed on the

top of the profiled sheeting. The concrete slabs of the pushout tests conducted

by Kim et al. [2.58, 2.59] had the average measured concrete cube strengths of

34.5 MPa, average tensile strength of 2.42 MPa, and Young’s modulus of

21.7 GPa. The steel beam had the measured yield stress of 288 MPa and

Young’s modulus of 189 GPa. The profiled steel sheeting had the measured

yield stress of 308 MPa and Young’s modulus of 184 GPa. The headed shear

studs had the measured yield stress of 435 MPa. The load was applied on the

upper part of the steel beam. The movement of the composite concrete slabs

relative to the steel beam was measured using six dial gauges attached to either

the profiled steel sheeting near the studs or the concrete top surface. The test-

ing arrangements and procedures as well as the specimen dimensions are

detailed in Kim et al. [2.58, 2.59]. On the other hand, pushout tests conducted

by Lloyd and Wright [2.57] provided the shear connection capacity of a

19�100 mm headed stud welded through deck in a composite slab with pro-

filed steel sheeting. The profiled steel sheeting had a depth of 50 mm, average
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Figure 5.31 Arrangement of the pushout test conducted by Kim et al. [2.58, 2.59].
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width of 150 mm, and plate thickness of 1.2 mm. The pushout tests had the

general arrangement as shown in Figure 5.31. The widths of the composite

concrete slabs varied from675 to 1350 mm.The height of the composite con-

crete slab varied from 600 to 900 mm. The depth of the concrete slab was

115 mm for all pushout test specimens. Different reinforcement areas that

were used in the tests varied from A98 to A193. The spacing between two

headed studs was 300 mm. The load was applied on the upper part of the steel

beam, and the movement of the composite concrete slabs relative to the steel

beam was measured.

To show an example of how to simulate the behavior of shear connec-

tions using the finite element method, let us present how the pushout tests

[2.57–2.59] have been modeled. The finite element program ABAQUS

[1.29] was used to investigate the behavior of shear connection in composite

beams with profiled steel sheeting tested in [2.57–2.59]. In order to obtain

accurate results from the finite element analysis, all components associated

with the shear connection must be properly modeled. The main compo-

nents affecting the behavior of shear connection in composite beams with

profiled steel sheeting are concrete slab, steel beam, profiled steel sheeting,

reinforcement bars, and shear connector. Both geometric nonlinearity and

material nonlinearity were included in the finite element analysis. Combi-

nations of 3D eight-node (C3D8) and six-node (C3D6) solid elements are

used to model the pushout test specimens. Assuming that the load is trans-

ferred equally from the steel beam to each shear connector, it is decided to

model only a single stud welded to each flange of the composite beam as

highlighted in Figure 5.31. The predicted shear capacity would be indepen-

dent of the number of shear connectors used in the experimental investiga-

tion, and it can be obtained for different stud diameters by adjusting the finite

element mesh. Due to symmetry of the specimens, only a quarter of the

pushout test arrangement is modeled. Two finite element models (Model

(A) and Model (B)) were developed, as shown in Figures 5.32 and 5.33,

respectively. Model (A) presented the actual trapezoidal geometry of the

profiled steel sheeting. This model is suitable to investigate the behavior

of headed studs welded through profiled steel sheeting with mild side slopes.

In this case, the concrete within the ribs of the profiled steel sheeting can be

modeled properly.Model (B) simulated the trapezoidal shape of the rib by an

equivalent rectangular shape. This model can be used to investigate the

behavior of headed studs welded through profiled steel sheeting with stiff

side slopes. The two models can be used to study the shear connection in

composite beams with different types of profiled steel sheeting. The width
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of the head of the stud is taken 1.5� the stud diameter, and its thickness is

0.5� the diameter. The circular cross-sectional area of the reinforcement

bar was simulated by the equivalent rectangular cross-sectional area in the

finite element modeling. It is assumed that the effect of separation of the pro-

filed steel sheeting from the concrete slab at certain load level has little effect

on the concrete slab. Hence, the nodes of the concrete elements are attached

to the nodes of the profiled steel sheeting elements. Jayas and Hosain [2.47]

observed that the separation of the concrete behind the shear connector
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Figure 5.33 Finite element mesh of Model (B) as detailed by Ellobody and Young [2.71].
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Figure 5.32 Finite element mesh of Model (A) as detailed by Ellobody and Young [2.71].
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occurred even at a low load level. According to this observation, the nodes

behind the stud, in the direction of loading, are detached from the surround-

ing concrete nodes with the other nodes of the stud connected with the sur-

rounding concrete. All nodes of the concrete slab and profiled steel sheeting

in the opposite direction of loading (surface 1 in Figures 5.32 and 5.33) are

restricted from moving in the Z-direction to resist the applied compression

load. All nodes along the middle surface of the steel beam (surface 2) are

restricted from moving in the X-direction due to symmetry. All concrete

nodes, profiled steel sheeting nodes, reinforcement bar nodes, steel beam

flange nodes, steel beam web nodes, and headed stud nodes that lie on

the other symmetry surface (surface 3) are restricted from moving in the

Y-direction because of symmetry. Following the testing procedures con-

ducted in [2.57–2.59], the load was applied in increments as static uniform

load using the RIKS method available in the ABAQUS library. To model

the nonlinear behavior of the concrete slab, the yielding part of the concrete

stress-strain curve, which is the part after the proportional limit stress, is trea-

ted by the Drucker-Prager yield criterion model available in the ABAQUS

[1.29] material library. The measured stress-strain curve by Ellobody [2.68]

for the 19�100 mm headed stud, shown in Figure 5.34, was simulated to a

bilinear stress-strain model. The stud material behaved as linear elastic mate-

rial with Young’s modulus (Es) up to the yield stress of the stud (fys), and after

this stage, it becomes fully plastic. The Young’s modulus and yield stress of

the stud are taken as 200 GPa and 470.8 MPa. The steel beam and profiled

steel sheeting were modeled with yield stresses of 288 and 308 MPa and ini-

tial Young’s modulus of 189 and 184 GPa, respectively, as measured by Kim

et al. [2.58, 2.59] using the same bilinear curve as shown in Figure 5.34.

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1
Strain (%)

St
re

ss
 (
M

P
a)

Test

Bilinear

Figure 5.34 Measured and simulated stress-strain curves of stud presented by Ellobody
[2.68].
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The reinforcement bars were modeled with a yield stress of 460 MPa and

initial Young’s modulus of 200 GPa, as measured by Ellobody [2.68] using

the same bilinear curve as shown in Figure 5.34.

The developed finite element models [2.71] were verified against the

pushout tests [2.57–2.59]. The shear connection capacity per stud obtained

from the tests (PTest) and finite element analysis (PFE) and the load-slip

behavior of the headed shear stud and failure modes have been investigated.

It was shown that good agreement has been achieved between both results

for most of the pushout tests. A maximum difference of 7% was observed

between experimental and numerical results. The experimental load-slip

curve obtained for pushout test specimens [2.58, 2.59] was compared with

the numerical curve obtained from the finite element analysis, as shown in

Figure 5.35. Generally, good agreement has been achieved between exper-

imental and numerical load-slip curves. It is shown that the finite element

models successfully predicted the shear connection capacity and stiffness

as well as load-slip behavior of the headed shear stud. The maximum load

per stud recorded experimentally was 39.2 kN at a slip of 2.1 mm compared

with 40.9 kN and 1.3 mm, respectively, obtained from the finite element

analysis. The failure mode observed experimentally for pushout specimen

[2.58, 2.59] was compared with that predicted numerically. The failure

mode was a combination of concrete conical failure and stud shearing as

observed experimentally and confirmed numerically. Figure 5.36 showed

the stress contour at failure for pushout specimen tested in [2.58, 2.59]

and modeled in [2.71]. It should be noted that the maximum stresses in
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Figure 5.35 Load per stud versus slip for pushout specimen tested in [2.58, 2.59] and
modeled in [2.71].
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the concrete are in the regions around the stud forming a conical shape. This

conical failure mode of concrete was explained in detail both experimentally

and numerically by Ellobody [2.68–2.70] for the investigation of pushout

tests with solid slabs and precast hollow-core slabs. The conical concrete fail-

ure is also known as concrete pullout failure since the tensile force acting on

the stud forces the slab to move up and leave a cone of concrete around the

stud. The concrete conical failure (or concrete pullout) was also observed

experimentally and discussed theoretically in the previous studies on pushout

tests with profiled steel sheeting conducted in [2.57–2.59]. The concrete

conical failure occurred, and the stud reached its yield stress near the collar.

Figure 5.37 showed the deformed shape obtained from the finite element

analysis for the 13�65 mm headed stud shear connector tested in [2.58,

2.59] and modeled in [2.71]. The verified finite element models [2.71] were

used toperformextensiveparametric studies.The finite element strengthswere

compared with design strengths calculated using current codes of practice.

The aforementioned finite element modeling of shear connection can

provide a good insight into the local behavior of headed shear studs in the

connection. However, to model a full-scale composite girder having many

shear studs, we can benefit now from the special-purpose elements pro-

vided in ABAQUS [1.29] element library. The shear connectors can be

modeled using a nonlinear spring element (using SPRING option). The

spring element is of zero length that bears only shear force and obeys

the load-slip characteristic of the shear connector used. The positions of

Concrete

Steel beam Reinforcement bar

Headed stud
Profiled steel sheeting

Figure 5.36 Stress contours at failure for pushout specimen tested in [2.58, 2.59] and
modeled in [2.71].
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the spring elements coincide with the positions of the shear connectors

used in the composite beam. Because the load-slip characteristic of the

shear connector is nonlinear, the force is assumed to be a function of rel-

ative displacement in the spring and is defined by giving a table of force

values in ascending values of relative displacement. The load-slip charac-

teristic of the shear connector is obtained from the corresponding finite

element modeling of the local shear connection. It should be noted that,

for a given composite beam, loading, and design method, complete shear

interaction is defined as the least number of the connectors such that the

bending resistance of the beam would not be increased if more connectors

were provided. Partial shear interaction is assumed when the number of

connectors used in the composite beam is less than the number of shear

connectors that cause full shear interaction. In the design with complete

shear connection, it is normally assumed that the failure of shear con-

nectors does not occur and the influence of connector deformation on

the structural behavior was neglected. With partial shear connection,

the ultimate resistance of the beam depends on the ultimate resistance

of the shear connector and its ductility. In these cases, it is important

to use the correct load-slip behavior of the connector since it can cause

significant redistribution of stresses between the connectors in both

serviceability and ultimate limit states.

Concrete

Reinforcement bar

Steel beam

Headed stud

Profiled steel sheeting

Figure 5.37 Deformed shape at failure for pushout specimen tested in [2.58, 2.59]
and modeled in [2.71].
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5.9 APPLICATION OF LOADS AND BOUNDARY CONDITIONS
ON THE BRIDGES

Chapter 3 has previously detailed different loads applied on steel and steel-

concrete composite bridges as well as highlighted different supports of the

bridges. Different loads applied on the bridges must be simulated accurately

in finite element models. Any assumptions or simplifications in actual loads

could affect the accuracy of results. The loads detailed in Chapter 3 com-

prised dead, live, wind, static, dynamic, thermal loads, etc., in addition to

any loads that designers would like to check the safety of the bridges against

them. However, most of these loads applied to steel and steel-concrete com-

posite bridges are either concentrated loads or distributed loads. Concentrated

forces and moments can be applied to any node in the finite element model.

Concentrated forces and moments are incorporated in the finite element

model by specifying nodes, associated degrees of freedom, magnitude,

and direction of applied concentrated forces and moments. The concen-

trated forces and moments could be fixed in direction or alternatively can

rotate as the node rotates. On the other hand, distributed loads can be pre-

scribed on element faces to simulate surface distributed loads. The applica-

tion of distributed loads must be incorporated in the finite element model

very carefully using appropriate distributed load type that is suitable to each

element type. Most computer programs specify different distributed load

types associated with the different element types included in the software

element library. For example, solid brick elements C3D8 can accept distrib-

uted loads on eight surfaces, while shell elements are commonly loaded in

planes perpendicular to the shell element midsurface. Distributed loads can

be defined as element-based or surface-based. Element-based distributed loads

can be prescribed on element bodies, element surfaces, or element edges.

The surface-based distributed loads can be prescribed directly on geometric

surfaces or geometric edges.

Three types of distributed loads can be defined in ABAQUS [1.29],

which are body, surface, and edge loads. Distributed body loads are always

element-based. Distributed surface loads and distributed edge loads can be

element-based or surface-based. Body loads, such as gravity, are applied

as element-based loads. The unit of body forces is force per unit volume.

Body forces can be specified on any elements in the global X-, Y-, or Z-

direction. Also, body forces can be specified on axisymmetric elements in

the radial or axial direction. General or shear surface tractions and pressure

loads can be applied as element-based or surface-based distributed loads.
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The unit of these loads is force per unit area. Distributed edge tractions

(general, shear, normal, or transverse) and edge moments can be applied

to shell elements as element-based or surface-based distributed loads. The

unit of edge tractions is force per unit length. The unit of edge moments

is torque per unit length. Distributed line loads can be applied to beam ele-

ments as element-based distributed loads. The unit of line loads is force per

unit length. It should be noted that in some cases, distributed surface loads

can be transferred to equivalent concentrated nodal loads and can provide

reasonable accuracy provided that a fine mesh has been used.

The application of boundary conditions is very important in finite ele-

ment modeling. The application must be identical to the actual situation in

the investigated steel or steel-concrete composite bridges. Otherwise, the

finite element model will never produce accurate results. Boundary condi-

tions are used in finite element models to specify the values of all basic solu-

tion variables such as displacements and rotations at nodes. Boundary

conditions can be given as model input data to define zero-valued boundary

conditions and can be given as history input data to add, modify, or remove

zero-valued or nonzero boundary conditions. Boundary conditions can be

specified using either direct format or type format. The type format is a way of

conveniently specifying common types of boundary conditions in stress/dis-

placement analyses. Direct format must be used in all other analysis types.

For both direct format and type format, the region of the model to which

the boundary conditions apply and the degrees of freedom to be restrained

must be specified. Boundary conditions prescribed as model data can be

modified or removed during analysis steps. In the direct format, the degrees

of freedom can be constrained directly in the finite element model by spec-

ifying the node number or node set and the degree of freedom to be con-

strained. As an example in ABAQUS [1.29], when modelers specify that

(CORNER, 1), this means that the node set named (CORNER) is con-

strained to displace in direction 1 (ux). While specifying that (CORNER,

1, 4), this means that the node set CORNER is constrained to displace

in directions 1-4 (ux, uy, uz, and yx). The type of boundary condition can

be specified instead of degrees of freedom. As examples in ABAQUS

[1.29], specifying “XSYMM” means symmetry about a plane X¼constant,

which implies that the degrees of freedom 1, 5, and 6 equal to 0. Similarly,

specifying “YSYMM” means symmetry about a plane Y¼constant, which

implies that the degrees of freedom 2, 4, and 6 equal to 0, and specifying

“ZSYMM” means symmetry about a plane Z¼constant, which implies

that the degrees of freedom 3, 4, and 5 equal to 0. Also, specifying
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“ENCASTRE” means fully built-in (fixed case), which implies that the

degrees of freedom 1, 2, 3, 4, 5, and 6 equal to 0. Finally, specifying

“PINNED” means pin-ended case, which implies that the degrees of free-

dom 1, 2, and 3 equal to 0. It should be noted that once a degree of freedom

has been constrained using a type boundary condition as model data, the

constraint cannot be modified by using a boundary condition in direct for-

mat as model data. Also, a displacement-type boundary condition can be used

to apply a prescribed displacement magnitude to a degree of freedom.

All boundary conditions related to the bridge must be carefully applied

and checked that the model has not been overconstrained. Symmetry sur-

faces also require careful treatment to adjust the boundary conditions at the

surface. It should be also noted that applying a boundary condition at a node

to constrain this node from displacing or rotating will totally stop this node

to displace or rotate. When the displacement or rotation is not completely

constrained (partial constraint), springs must be used to apply the boundary

conditions with constraint values depending on the stiffness related to the

degrees of freedom. Different steel bearings briefed in Chapter 3 can be sim-

ulated by either roller or hinged boundary conditions, or they can be mod-

eled using solid elements depending on the loads applied. Further details

regarding the application of loads and boundary conditions in finite element

modeling are found in [5.1].
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CHAPTER66
Examples of Finite Element
Models of Steel Bridges
6.1 GENERAL REMARKS

Chapters 1–4 have provided the necessary background regarding the general

layout, loading, and design of steel and steel-concrete composite bridges. On

the other hand, Chapter 5 has provided the required background regarding

the issues related to finite element modeling of the bridges. Therefore, it is

now possible in this chapter to present examples of finite element models for

steel bridges based on the background of finite element analysis detailed in

Chapter 5. This chapter presents illustrative examples of finite element

models developed to understand the structural behavior of steel bridges.

The chapter starts by a brief introduction and a review of recent investiga-

tions reported in the literature concerning the modeling of steel bridges. The

chapter details how the finite element models were developed and the results

obtained. The presented examples show the effectiveness of finite element

models in providing detailed data that complement experimental data in the

field. The results are discussed to show the significance of the finite element

models in predicting the structural response of the different bridges investi-

gated. In overall, it is aimed to show that finite element analysis not only can

assess the accuracy of the design rules specified in current codes of practice

but also can improve and propose more accurate design rules. The author

hopes that the review of recent finite element models reported in the liter-

ature together with the illustrative finite element models developed by the

author in this chapter can provide readers with a complete piece of work

regarding the finite element analysis of steel bridges.

6.2 PREVIOUS WORK

Numerous numerical investigations were reported in the literature

highlighting the structural performance of different types of steel bridges

subjected to different loadings. The numerical investigations proposed finite

element models for the bridges and the bridge components. It should be

noted that detailed state-of-the-art review of these investigations is out of

the scope of this book. However, in this section, the author provides recent
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examples showing how other researchers modeled the steel bridges and the

bridge components. Earls and Shah [6.1] presented a combined experimen-

tal and numerical investigation on high-performance steel I-shaped bridge

girders. The investigations were assessed against the American bridge spec-

ification (AASHTO) provisions for cross-sectional compactness and ade-

quate bracing. The study showed that the specifications may be

inadequate owing to intense interactions between local and global buckling

modes in the high-performance steel I-shaped bridge girders. An alternate

bracing requirement was proposed by the authors for use with high-

performance steel bridge girders. The proposed bracing scenario did not

require any additional costs in fabrication or materials. The authors used

ABAQUS [1.29] in the numerical investigations, which considered both

geometric and material nonlinearities using the modified Riks method.

The authors performed an eigenvalue buckling to predict the first buckling

mode, which was factored by an assumed maximum initial displacement of

the girder (L/1000). The models of the bridge girders considered in this

study are constructed from a dense mesh of four-node nonlinear shell finite

elements (S4R). The loading in the finite element modeling was imposed as

a concentrated load at the midspan of a simply supported (SS) I-shaped girder

assembly. The concentrated force simulates the pier reaction of the investi-

gated bridge and the simple supports are placed at the approximate points of

inflection on either side of the pier. In the finite element models, an addi-

tional length of girder was present beyond the support locations to help sim-

ulate the torsional-warping restraint provided by the adjacent beam

segments in the actual bridge. The length of the additional beam segments

was chosen to be 7.625 m, which corresponds to the distance to the next

diaphragm member occurring after the point of inflection, as measured

along the longitudinal axis of the girder. The top compression flange had

a width of 406 mm and a thickness of 45 mm thickness. The bottom tension

flange had the same width but with a modified thickness of 84 mm. A uni-

axial representation of the A709 steel grade was used.

Shanmugam et al. [6.2] presented a combined experimental and numer-

ical study on the ultimate load behavior of plate girders curved in plan. The

investigated girders were medium-sized girders built using rolled steel plates

and were tested to failure. The girders were supported at the ends and sub-

jected to a concentrated load applied at the midspan. The behavior of web

panels was closely studied in order to investigate the tension-field action.

The numerical investigation employed the elastoplastic finite element

method and the results were compared with that measured experimentally.
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The study indicated that the load-carrying capacity decreases with the

increase in curvature. The authors developed a 3D finite element model

using ABAQUS [1.29]. Eight-node doubly curved thin shell element with

reduced integration points using 5 degrees of freedom per node (S8R5) was

used. Riks method in conjunction with the modified Newton-Raphson

method was employed. Residual stresses were not considered in the analysis.

The authors mentioned that although it is understood [6.3, 6.4] that the shell

elements provided by ABAQUS at the plate midthickness could not pick up

Saint Venant torsional stresses, this effect was not of main concern in the

study since the focus was only on ultimate load-carrying capacity. The sec-

ondary girders are represented in terms of appropriate boundary conditions

at the support. In the same way, the effect of tie rods used in the experiments

to prevent the lateral buckling of the girder at the midspan was taken into

account by adopting relevant boundary conditions at the midspan. Geomet-

ric imperfections were imposed in terms of the buckled shape of the web

plates at the elastic stage. The buckled shape was obtained from ABAQUS

analyses in which the girder was loaded without any imperfection. The lat-

eral displacements and the buckling mode thus obtained at the elastic stage

were imposed in the final analyses of the girder. Convergence studies were

performed to determine the suitable finite element model for the analysis.

Three different meshes with 552, 1152, and 1506 elements were considered

in the studies. The difference between the ultimate strengths corresponding

to models with 552 elements and 1152 elements was about 9% and that

between the values corresponding to the models with 1152 and 1506 ele-

ments was around 1.8%. Therefore, finite element analysis based on 1152

elements was adopted in the finite element modeling for all the girders

curved in plan.

Floor beams of orthotropic plated bridge decks were investigated by

Corte and Bogaert [6.5]. The beams have generally elements with a low

slenderness, especially in the case of railway bridges. This is attributed to

combined flexural and shear deformations. The shear deformations can be

considerably large to be neglected. The authors discussed that in a design

according to the Pelikan-Esslinger method [6.6, 6.7], this deformation is

taken into account in the second stage of the calculation of the orthotropic

deck. At this stage, the additional bending moments, shear forces, and floor

beam reactions due to the floor beam flexibility are evaluated. The deflec-

tion of a directly loaded floor beam creates a distribution of the load to adja-

cent nonloaded floor beams. In addition, the deflection will affect the

longitudinal ribs, increasing the sagging moments at midspan and decreasing
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the bendingmoments at the supports of the ribs provided by the floor beams.

In the study [6.5], the authors proposed a method accounting for the shear

deformation in the floor beam. The validity of the proposed method was

checked by full finite element calculation using shell elements that inher-

ently comprise shear deformation. The authors developed a finite element

model using four-node Mindlin shell elements. The floor beam model was

subjected to a 100 kN concentrated load at midspan. Felkel et al. [6.8] eval-

uated the behavior of bridge girders made of high-performance steel (HPS

70W). The basis for the study was a three-span replacement bridge utilizing

HPS 70W girders within all negative moment regions. The study consisted

of in situ measurements, experimental tests, and analytic investigations.

Three half-scale specimens were tested under monotonic and cyclic loading

conditions. The study [6.8] presented results from analytic and experimental

investigations highlighting the strength performance of the girders. Data

obtained from laboratory tests were used to validate computer models for

design evaluations. Parametric studies were performed using the models.

The findings of the study indicated that improved structural performance

may be obtained when location of bracing was optimized and fabrication

imperfection tolerances were minimized. The measured nonlinear material

model was adopted in the finite element analysis. Small fabrication and geo-

metric imperfections within tolerances observed in the tests were not ini-

tially simulated. Subsequently, imperfections were simulated by applying

a small lateral pressure along the entire length of the compression flange.

Galvin and Dominguez [6.9] presented a theoretical and experimental

research work on a cable-stayed bridge. Full-scale tests were carried out

to measure the bridge dynamic response. The experimental program

included the dynamic study for two different live load conditions: the bridge

with one-half of its lanes loaded with cars and the bridge unoccupied.Modal

parameter estimations were made based on the acquired data. Ten vibration

modes were identified in the frequency range of 0-6 Hz by different tech-

niques, two of these modes being very close to each other. The traffic-

structure interaction was also studied. Experimental results were compared

with those obtained from a 3D finite element model developed in this work.

The authors applied a damage identification technique to determine the

integrity of the structure. The developed finite element model was a 3D

model developed for the numerical analysis of the structure using as-built

drawings of the bridge and some double-check in situ measurements. Modal

analysis was carried out using ANSYS [6.10]. The arch, supports, and the

internal stiffener were represented as two-node beam elements (BEAM44)
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with 6 degrees of freedom per node. The element permitted the end nodes

to be offset from the centroidal axis of the beam. The hangers were modeled

as truss elements (LINK10) with 3 degrees of freedom per node. The deck

slab was modeled using eight-node shell elements with 6 degrees of freedom

per node (SHELL93). The two extreme beams and the vertical supports

were connected by spring elements (COMBINE14). A detailed model of

all the bridge elements was intended, which resulted in higher number of

degrees of freedom. The full model consisted of 10328 beam elements,

17 truss elements, 15672 shell elements, and 8 spring elements, resulting

in 26025 elements and 47024 nodes.

Romeijn and Bouras [6.11] developed a finite element model of a

tension-tie arch bridge to investigate the in-plane buckling length factor

of the arches. The finite element results were compared with the corre-

sponding values given by Eurocode 3. The modeling of the tension-tie arch

bridge, the bridges’ properties, and the solution procedure were described.

Parametric analyses were performed by the authors. The case of one cable

missing (broken cable) was also investigated. The finite element software

Nastran was used to develop the model. Three different bridge geometries

are modeled comprising a bridge with a length of 300 m and a height of

45 m, a bridge with a length of 300 m and a height of 30 m, and a bridge

with a length of 300 m and a height of 60 m. For each of the geometries,

five different cable configurations were modeled with the number of cables

in each arch being m¼1, 2, 3, 5, and 11. The center-to-center distance of

the crossbeams in the deck was 25 m, while the width of the deck is 30 m.

Two different arch inclinations were used comprising the case where the

inclination of the arches is 12.5� with the vertical direction and a vertical

arch configuration. The different cross sections used were cross section

(a), which was the cross section of the main girder having a rectangular

box section with a height of 2300 mm, a width of 3000 mm, and a thickness

of 25 mm; cross section (b), which was a double-symmetrical I-beam with a

height of 2300 mm, flanges 625 mm wide and 25 mm thick, and a web

thickness of 20 mm and was used for the crossbeams in the deck; cross sec-

tion (c), the cross section of the arch, which was a rectangular box section

with a height of 4000 mm, a width of 3000 mm, and a thickness of 60 mm;

and finally, cross section (d), which was a circular hollow section with a

radius of 1000 mm and a thickness of 25 mm. All the cross sections were

modeled using beam elements. The cables of the bridge are modeled using

rod elements. The rods being used had a circular cross section with a diam-

eter of 120 mm. The concrete deck of the bridge was modeled using plate
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elements with a thickness of 400 mm. Three different materials have been

defined for steel, cables, and concrete. The connections between the deck

crossbeams and the main girder, the arch crossbeams and the arch, and the

arch and the main girder were assumed rigid. The four corner nodes of the

deck were the nodes where the constraints are applied. On one side, only the

in-plane rotation is permitted, while on the other side, both the in-plane

rotation and the longitudinal translation were allowed.

Eldib [6.12] presented the shear buckling strength and design of curved

corrugated steel webs for bridges considering material inelasticity. A finite

element analysis was performed to study the geometric parameters affecting

the shear buckling strength of curved corrugated steel webs for bridges.

Based on the numerical results, a shear buckling parameter formula was pro-

posed. The author presented another formula presented to maximize the

shear buckling capacity of curved corrugated web. The proposed formulas

agreed well with the published experimental data. It was shown that the

curved corrugated webs produced a tremendous increase in the shear buck-

ling strength and considerable weight saving in regard to the corresponding

trapezoidal corrugated webs. The corrugation angle had a considerable effect

on the behavior of curved corrugated webs, where higher corrugation angles

produced a tremendous increase in the shear buckling strength of curved

corrugated webs. It was found that the proposed approach provided a good

prediction for the shear buckling strength of curved corrugated steel webs of

bridges. The general purpose software ANSYS was used in the analysis. The

shell element (Shell 63) was used to model the steel web. The finite element

has both bending and membrane capabilities. Both in-plane and normal

loads were permitted. The element has 6 degrees of freedom at each node.

Stress stiffening and large deflection capabilities were included in the ele-

ment. A mesh sensitivity analysis was performed and six elements per panel

were used. A linear elastic buckling analysis was carried out using the

models.

Zhang et al. [6.13] investigated a new type of streamlined girder bridge

with a thin-walled steel box girder. This bridge had a large width-to-span

ratio, which resulted in significant shear lag effects and causes nonuniform

stress distribution in the three-cell thin-walled box girder, especially along

the flanges of the girder. The authors investigated the effect of shear lag in

thin-walled box girder bridges with large width-to-span ratios through both

experimental and numerical investigations. A large-scale model was tested

under different loading cases. The material parameters were obtained from

physical characteristics tests and tensile tests. In addition, a computational
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model was presented for a comprehensive simulation of a girder bridge

including the orthotropic top/bottom/web plates and their ribs. The

authors concluded that the finite element analysis can be an effective method

to predict properties of this class of bridges. In order to reflect the actual

behaviors of the bridge decks accurately, an advanced parametric design lan-

guage (APDL), in the commercially available software ANSYS [6.10], was

used to perform a 3D analysis of the orthotropic steel box girder. The FE

model for the steel box girder was built using shell elements (Shell 63). In

the 3D bridge model, the total number of shells is 22,496 with a total of

22,574 joints. The authors mentioned that if modeling a larger and more

complex bridge is required, it would be difficult to set up and compute

an entire shell model; the recommended method would be a combination

of a simple entire model with high-fidelity finite elements in the specific

local section. Different mesh densities resulted in different computational

accuracies to some extent.

Graciano et al. [6.14] studied the influence of initial geometric imperfec-

tions on the postbuckling behavior of longitudinally stiffened plate girder

webs subjected to patch loading. The authors mentioned that upon recog-

nizing the significance of geometric imperfections, a large amount of

research has been conducted to develop models of characteristic imperfec-

tions for specific structures and then using these models to gain a better esti-

mate of the ultimate load [6.15, 6.16]. Graciano et al. [6.14] performed a

sensitivity analysis using two approaches (deterministic and probabilistic)

in order to investigate the effect of varying imperfections in shape and ampli-

tude on both, the postbuckling response, and ultimate strength of plate

girders under patch loading. The sensitivity analysis was performed bymeans

of nonlinear finite element analysis. At first, the initial shape imperfections

are modeled using the buckling mode shapes resulting from an eigenvalue

buckling analysis. Following the eigenvalue buckling analysis, the amplitude

of the buckling shapes for the various modes was factored and then intro-

duced in the nonlinear analysis. The results showed the influence of these

modes and amplitudes on the resistance to patch loading. The finite element

software ANSYS [6.10] was used. Shell elements (Shell 181) having 4 nodes

and 6 degrees of freedom at each node were used to model the web, flanges

(top and bottom), and the longitudinal stiffener. Due to symmetry in geom-

etry, loads, and boundary conditions, only one-half of the plate girder was

modeled. Transverse stiffeners at the end of the plate girder were taken

into account by means of a rigid body kinematical constraint of the degrees

of freedom located in the corresponding side. The material herein was

561Examples of Finite Element Models of Steel Bridges



considered to have a perfect elastoplastic behavior. Displacement constraints

were applied to these loaded nodes in the out-of-plane direction and all

rotations were restrained. The finite element analysis was performed using

the modified Riks method to properly trace the nonlinear path of the load-

displacement response of the girder. In order to model the initial geometric

imperfections, the authors performed a linear eigenvalue buckling analysis.

Dynamic and seismic assessment of a double-track railway bridge with

four discrete spans located in an earthquake-prone region was presented

by Caglayan et al. [6.17]. A 3D computer model of the bridge was generated

using a commercial general finite element analysis software COSMOS/M

[6.18]. Field measurements such as static and dynamic tests and material tests

were conducted on the bridge. The developed 3D finite element model of

the bridge structure was used for necessary calculations regarding structural

assessment and evaluation according to train loads and seismic loads. Addi-

tional members were proposed to transmit seismic loads to supports. The

fourth span, which had a permanent imperfection due to truck collision,

was studied in detail. The authors considered significant structural irregular-

ities and stiffness changes that existed on the bridge in the finite element. A

single span was modeled with beam and spring elements using COSMOS/

M [6.18]. Two riveted plate girders functioning as the main girder of each

span were simulated with beam elements located on the centroid line and

having the same torsional and flexural rigidities of actual main girder. Floor

beams were modeled by using beam elements in the transverse direction and

rigid bars were used to simulate center of gravity for floor beams and main

girders. Since the connections between the rigid bars and crossbeams were

semirigid rather than fixed, springs were used to simulate joint rotational

rigidities. Connections between the rigid bars and all of the line elements

were free to rotate in the longitudinal vertical plane. Also, the connections

between the stringers and crossbeams behave semirigidly; therefore, rota-

tional spring elements are used to simulate the rotational rigidities. Vertical,

transverse, and longitudinal spring elements for each main girder support

were included in the model to simulate the effective stiffness of the com-

bined bearing and pier or abutment structure and the longitudinal restraints

at the sliding bearings in each direction.

Altunişik et al. [6.19] presented finite element modeling and operational

modal analysis of a full-scale arch-type steel highway bridges. The numerical

investigation was performed on a highway bridge, which has arch-type

structural system with a total length of 336 m. The 3D finite element model

was constructed using project drawings and an analytic modal analysis.
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The model was used to generate natural frequencies and mode shapes in the

three-orthogonal directions. Ambient vibration tests on the bridge deck

under natural excitation such as traffic, human walking, and wind loads were

conducted using operational modal analysis. Sensitive seismic accelerome-

ters are used to collect signals obtained from the experimental tests. To

obtain experimental dynamic characteristics, two output-only system iden-

tification methods were employed, which were enhanced frequency

domain decomposition method in the frequency domain and stochastic sub-

space identification method in time domain. The authors found good agree-

ment between dynamic characteristics in all measurement test setups

performed on the bridge deck. It was demonstrated that the ambient vibra-

tion measurements using enhanced frequency domain decomposition and

stochastic subspace identification methods were enough to identify the most

significant modes of steel highway bridges. It was also shown that there were

some differences between analytic and experimental natural frequencies,

with experimental natural frequencies generally bigger than the analytic fre-

quencies. A 3D finite element model of the bridge was constructed using the

SAP2000 software [6.20]. The program can be used for linear and nonlinear,

static, and dynamic analyses of 3Dmodels of structures. The program is used

to determine the analytic dynamic characteristics based on its physical and

mechanical properties. The selected highway bridge was modeled as a space

frame structure with 3D prismatic beam elements, which have two end

nodes with each end node having 6 degrees of freedom (three translations

along the global axes and three rotations about its axes). The key modeling

assumptions were as follows:

(1) In the finite element model of the bridge, the fictitious elements were

used to determine the torsional andmoment effects that are composed of

asymmetrical load cases. These elements were massless defined on the

axis through the gravity center of uniform and linear loads.

(2) In the finite element model of the bridge deck, diagonal fictitious ele-

ments were used to reflect the rigid diaphragm effect of the concrete.

(3) Fictitious elements were modeled as two ends hinged and one end axial

sliding.

(4) Rigid link elements were modeled as two higher bending rigidity ends

to ensure the torsional moments in the carrier system elements. To

determine the length of the rigid element, it was assumed that fictitious

elements were located near the gravity center of the loads. For the

deck-type arch bridge, the boundary conditions of the side columns

connected between the arch and the main girder were fixed in order
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to transmit the longitudinal load on the deck. A total of six natural

analytic frequencies of the highway bridge were obtained.

Kaliyaperumal et al. [6.21] presented finite element analyses for dynamic

analysis of steel railway bridges. The analyses of a skew bridge were per-

formed and the results were compared with available field measurements.

Initially, eigenvalue analyses of different models were performed in order

to obtain the fundamental mode shapes and bridge frequencies and to assess

the capability of each model to capture the dynamic behavior of the bridge.

Single-span, three-span, and full bridge models were investigated with dif-

ferent elements such as shell, beam, and combinations of these elements. The

authors found good agreement between the fundamental dynamic proper-

ties of the bridge and empirical results. Following the eigenvalue analyses,

time history dynamic analyses were carried out using the full bridge model.

The analyses were performed for different train speeds. It was shown that

modeling the full bridge using a combination of beam and shell elements

was reasonable and computationally efficient in capturing the dynamic

behavior of a bridge and estimating the mean stress range for fatigue damage

calculations. The finite element models of the bridge were developed using

ABAQUS [1.29]. Models with different degrees of complexity, using shell

and/or beam elements, were developed in order to investigate the effect of

different modeling techniques and computational time on the dynamic

behavior of the bridge. Eight-node reduced integration shell elements

(S8R) and three-node quadratic beam elements (B32) were used in the

FE models. Single-span, three-span, and six-span (full) bridge FE models

were developed and analyzed. Both SS and fixed support conditions were

assumed in the single-span and three-span models at the two ends of the

bridge in order to investigate the effect of boundary conditions. All members

were tied to each other, which is equivalent to assuming rigid connections

between them. The effect of bracings was included via the single-span FE

model by developing a shell model with and a model without bracings.

In all the shell element models, the stiffeners in the main girders were also

modeled. The intermediate supports were modeled as SS. Eigenvalue ana-

lyses were performed for all finite element models of the bridge and the

results, in the form of bridge periods (frequencies). The bridge frequencies

obtained from the finite element analysis were compared with available

empirical formulas suggested by Fryba [6.22] and the International Union

of Railways [6.23]. Following the eigenvalue analysis, static and dynamic

finite element analyses were carried out to investigate the overall dynamic

behavior of the bridge. Two different types of dynamic analyses, that is,
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modal dynamic and implicit dynamic, were undertaken to investigate the

suitability of each to capture the dynamic behavior of the bridge. Explicit

dynamic analysis was computationally much more demanding than implicit

analyses, and due to the large nature of the finite element model, this type of

analysis was excluded from this investigation. A range of different train

velocities were employed in the analyses and the results were compared with

the available field measurements. The bridge was loaded with the test loco-

motive and the axle loads of the train (195 kN) were applied directly to the

top flange of the stringers ignoring any load distribution due to the effect of

rails and sleepers.

Caglayan et al. [6.24] carried out a series of dynamic tests, acceleration

measurements, evaluation, finite element model simulations, and safety

index calculations on existing steel railway bridges. Dynamic tests were ful-

filled by using a special test train on these bridges to obtain the dynamic

parameters, and these parameters were then used to refine the finite element

models of the bridges. The updated models were used to represent the actual

condition, and safety indexes were calculated for structural components of

the bridges for each loading condition. The safety indexes were used to cal-

culate failure probabilities of structural members. In addition, the authors

performed system reliability of the bridges based on proposed system models

of the bridges. It was shown that the study can provide a reliable background

for proposed heavier axle loads resulting from new freight trains by realizing

the current condition of bridge structures. In employing modal identifica-

tion procedures, the authors identified first vibrational mode. Also, in order

to define modal parameters, after having preprocessed the collected acceler-

ation data using the fast Fourier transform technique, acceleration spectra

were obtained for the bridge. The results of the fast Fourier transform anal-

ysis and modal identification were used to calibrate the computer models of

the bridge. A bridge was modeled with beam elements using the general

purpose finite element analysis program COSMOS/M [6.18]. The connec-

tions between members were defined by using rotational spring elements to

simulate the rotational rigidities. Additionally, the supports were modeled

using spring elements and gusset plates were simulated using 1D rigid bar

elements. Thai and Choi [6.25] presented a numerical investigation consid-

ering both geometric and material nonlinearities for predicting the ultimate

strength and behavior of multispan suspension bridges. The geometric non-

linearities of the cable members due to sag effects were considered using the

catenary element, while the geometric nonlinearities of the beam-column

members due to second-order effects were considered using the stability
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functions. The material nonlinearities of the cable and beam-column mem-

bers were simulated using elastoplastic hinge and refined plastic hinge

models, respectively. A simple initial shape analysis method was presented

to determine the deformed shape and initial cable tension of the bridge

under dead loads. In addition, the authors presented numerical examples

to verify the accuracy and efficiency of the proposed method. Furthermore,

a case study on a four-span suspension bridge was carried out to show the

capability of the proposed method in estimating the strength and behavior

of very large-scale structures.

Recently, Lin et al. [6.26] showed that, due to the increasing aging prob-

lems of old railway bridges, structural repair or maintenance technique has

been the subject of recent investigations. Rubber-latex mortar, glass fiber-

reinforced polymer plates, and rapid hardening concrete can be integrated

with the old steel railway bridge to increase its rigidity and reduce both stress

levels and structure-borne sound levels of the old steel bridge. The study

[6.26] investigated the mechanical performance of the renovated hybrid rail-

way bridge. Material tests on aged structural steel, static loading test on the

strengthened bridge, and impact hammer test on the old bridge before and

after strengthening were conducted to confirm the effects of present

strengthening method. In addition, 3D finite element models were devel-

oped to compare between the strengthened and the original steel bridge.

It was shown that both experimental and numerical results indicated that

the renovation method can greatly enhance the stiffness and reduce the stress

levels of steel members, resulting in the extension of the service life of the old

steel railway bridge. Furthermore, noise reduction effects by using concrete

and rubber-latex mortar were confirmed in the impact test. The finite ele-

ment modeling of test specimen was carried out in 3D. Three models were

developed, solid elements (eight nodes, with 3� at each node) were used to

simulate the concrete slab, and shell elements (four nodes, with 5� at each
node) were employed to model the steel girder and GFRP plates. Rebar ele-

ments (two nodes, with 1� at each node) were used for modeling the rein-

forcing bars in the concrete slab. Also, in order to account for the slip

between concrete slab and longitudinal steel beam, interface elements (eight

nodes, with 3� at each node) were employed. The thickness of the interface

element was assumed as zero in the numerical analysis. Numerical model of

the old steel bridge was built and named as model 1. Cementing agent was

not only used between glass fiber-reinforced polymer plate and longitudinal

steel girder but also applied between neighboring GFRP plates. In the

numerical analysis, perfect bond was assumed between steel girder and
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GFRP plate. However, as bond failure between glass fiber-reinforced polymer

plates was observed in the experiment but appropriate data about the failure

bond stress of the cementing agent were not available, so two numerical models

were built on the basis of different assumptions between GFRP plates. Perfect

bond between GFRP plates was assumed for model 2 and perfect separation

was assumed for model 3. In addition, the authors applied a phase study, in

which the first phase was about the dead load and second phase was about

the applied load in the experiment. Glass fiber-reinforced polymer was simu-

lated as linear elastic until failure. The elastic module was taken as constant of

18.3 GPa according to material test. In order to account for the effect of

rubber-latex and the composite action between steel and concrete, interface

element was used in the numerical analysis. The shear force-slip response of

interface depended on the slab-steel surface treatment.

6.3 FINITE ELEMENT MODELING AND RESULTS
OF EXAMPLE 1

The first example presented in this chapter is for a small-scale built-up

I-section plate girder steel bridge tested under bending by Nakamura and

Narita [6.27]. The plate girder was a part of an experimental program inves-

tigating bending and shear strength of steel and partially encased steel-

concrete composite plate I-girders. The plate girder is denoted in this study

as (T1). The small-scale plate girder was SS and had a length between sup-

ports of 3.6 m as shown in Figure 6.1. The web of plate girder T1 was

900 mm high and 6 mm thick, while the flange of the plate girder was

200 mm wide and 12 mm thick. The web was stiffened by steel plates at

the end supports and the loading positions and also stiffened by intermediate

stiffeners at intervals of 375 mm. The plate girder was restrained laterally at

the end supports to resist lateral-torsional buckling. Tensile coupon tests

were conducted to determine the yield and ultimate tensile strength of

the steel used, which were 372.3 and 511.4 MPa, respectively. The plate

girders were loaded at two points as shown in Figure 6.1 subjecting the plate

girder to a pure bending moment zone at midspan with a length of 600 mm.

Strain gauges were used to measure the strains in the plate girder section, and

displacement transducers were used to measure the midspan deflections dur-

ing loading. The strain measurements showed that the upper flange was in

compression, the lower flange was in tension, and the strain at theweb center

was nearly zero, indicating that the neutral axis was at the web center. When

the strain of the upper flange reached 1000 microstrain, the upper flange
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started to buckle. The yield stress estimated from the test T1was 1809micro-

strain, which corresponded to a yield load of 1474 kN. The maximum

applied load in the bending test was nearly equal to this yield load. Thismeans

that the bending strength of T1 model was almost the same as the yield

moment. The load-midspan deflection relationship, load-strain relation-

ships, and the deformed shape at failure were observed in the test. The upper

flange buckled between the two loading points. The web was also deformed

outward so that the web and the flange remained perpendicular. This defor-

mation shows a typical torsional buckling shape of the plate girders.

To model the small-scale plate girder (T1) tested by Nakamura and

Narita [6.27], the finite element program ABAQUS [1.29] was used. The

model has accounted for the measured geometry, initial geometric imper-

fections, and measured material properties of the plate girder. Finite element

analysis for bucking requires two types of analyses. The first is known as

eigenvalue analysis that estimates the buckling modes and loads. Such anal-

ysis is linear elastic analysis performed with the load applied within the step.

P/2 P/2

1500 mm 1500600

200 mm

900

6  

Elevation (a)

(b) Cross-section A-A 

A

A

Figure 6.1 General layout of a small-scale plate girder in bending (T1).
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The buckling analysis provides the factor by which the load must be mul-

tiplied to reach the buckling load. For practical purposes, only the lowest

buckling mode predicted from the eigenvalue analysis is used. The second

is called load-displacement nonlinear analysis and follows the eigenvalue

prediction. It is necessary to consider whether the postbuckling response

is stable or unstable. The nonlinear material properties and loading condi-

tions are incorporated in the load-displacement nonlinear analysis.

A four-node doubly curved shell element with reduced integration

(S4R) was used to model the flanges and web of the small-scale plate girder

bridge, as shown in Figure 6.2. The elements are suitable for complex buck-

ling behavior (please refer to Section 5.2 of Chapter 5). The S4R element

has 6 degrees of freedom per node and provides accurate solutions to most

applications, allows for transverse shear deformation that is important in sim-

ulating thick shell elements (thickness is more than about 1/15 of the char-

acteristic length of the shell), allows for the freedom in dealing with further

parametric studies on slender and compact sections, and also accounts for

finite strain and suitable for large strain analysis as recommended by ABA-

QUS [1.29]. Since lateral buckling of thin-walled plate girders is very

sensitive to large strains, the S4R element was used in this study to ensure

the accuracy of the results. In order to choose the finite element mesh that

provides accurate results with minimum computational time, convergence

studies were conducted. It is found that approximately 75�76 mm

Figure 6.2 Finite element mesh of the small-scale built-up I-section plate girder T1.
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(length by width of S4R element) ratio provides adequate accuracy in

modeling the web, while a finer mesh of approximately 25�75 mm was

used in the flange (see Figure 6.2).

The hinged support of T1, shown in Figure 6.2, was prevented from dis-

placement in the horizontal direction (direction 1-1 in Figure 6.2) and the

vertical direction (direction 3-3 in Figure 6.2). On the other hand, the roller

support of T1, shown in Figure 6.2, was prevented from displacement in the

vertical direction only (direction 3-3 in Figure 6.2). To account for the lat-

eral restraints of the compression flange, the top compression flange was pre-

vented from lateral displacements, in direction 2-2 of Figure 6.2, at the end

supports, which is identical to the test T1. The load was applied in incre-

ments as concentrated static load, which is also identical to the experimental

investigation. The nonlinear geometry was included to deal with the large

displacement analysis.

The stress-strain curve for the structural steel given in the EC3 [2.11] was

adopted in this study with measured values of the yield stress (fys) and ulti-

mate stress (fus) used in the tests [6.27]. The material behavior provided by

ABAQUS [1.29] (using the PLASTIC option) allows a nonlinear stress-

strain curve to be used (see Section 5.4.2 of Chapter 5). The first part of

the nonlinear curve represents the elastic part up to the proportional limit

stress with Young’s modulus of (E) 200 GPa and Poisson’s ratio of 0.3 used

in the finite element model. Since the buckling analysis involves large inelas-

tic strains, the nominal (engineering) static stress-strain curves were con-

verted to true stress and logarithmic plastic true strain curves as detailed

in Section 5.4.2.

Previous investigations by the author have successfully modeled the ini-

tial geometric imperfections in steel beams [6.28, 6.29]. Buckling of steel

beams depends on the lateral restraint conditions to compression flange

and geometry of the beams. Mainly two buckling modes detailed in [6.30,

6.31] could be identified as unrestrained and restrained lateral-distortional

buckling modes. The lateral-distortional buckling modes were successfully

predicted by the author [6.28, 6.29] by performing eigenvalue buckling anal-

ysis (see Section 5.5.2 of Chapter 5) for the investigated steel beams with

actual geometry and actual lateral restraint conditions to the compression

flange. The same approach [6.28, 6.29] was followed in this book to model

initial geometric imperfections of the plate girder investigated T1. Figure 6.3

shows the buckling mode predicted from the eigenvalue buckling analysis

detailed in ABAQUS [1.29]. Only the first buckling mode (eigenmode 1)

is used in the eigenvalue analysis. Since buckling modes predicted by
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ABAQUS eigenvalue analysis [1.29] are generalized to 1.0, the buckling

modes are factored by a magnitude of Lu/1000, where Lu is the length

between points of effective bracing. The magnitude of Lu/1000 is the aver-

age measured values in the tests [6.31] and commended in [6.32]. The fac-

tored buckling mode is inserted into the load-displacement nonlinear

analysis of the plate girder T1 following the eigenvalue prediction. It should

be noted that the investigation of plate girders with different slenderness

ratios could result in lateral-torsional buckling mode with or without web

distortional bucklingmode.Hence, to ensure that the correct bucklingmode

is incorporated in the nonlinear displacement analysis, the eigenvalue buck-

ling analysis must be performed for each plate girder with actual geometry.

The developed finite element model for the plate girder T1 (see

Figure 6.2) was verified against the test results detailed in [6.27]. The failure

loads, failure modes, and load-midspan deflection curves obtained experi-

mentally and numerically using the finite element model were compared.

The deformed shapes of plate girder T1 at failure observed experimentally

and numerically were compared as shown in Figure 6.4. It can be seen that

the experimental and numerical deformed shapes are in good agreement.

The failure mode observed experimentally and confirmed numerically

was steel yielding. The data obtained fromABAQUS [1.29] have shown that

Figure 6.3 Elastic lateral buckling mode (eigenmode 1) for the small-scale built-up
I-section plate girder T1.
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Figure 6.4 Comparison of experimental and numerical deformed shapes at failure of
the small-scale built-up I-section plate girder T1.

572 Ehab Ellobody

Figure 6.4


the von Mises stresses at the maximum stressed fibers at the top and bottom

flanges at midspan exceeded the measured yield stresses. In Figure 6.5, the

stress (principal stresses in direction 1-1) contours at failure of the small-scale

built-up I-section plate girder T1 are plotted. It can be seen that the yield

stresses were reached at midspan in the upper (compressive stresses with neg-

ative sign) and lower flanges (tensile stresses with positive sign). In addition,

in Figure 6.6, the plastic strain (principal strains in direction 1-1) contours at

failure of the small-scale built-up I-section plate girder T1 are plotted. It can

Figure 6.5 Stress (principal in direction 1-1) contours at failure of the small-scale built-
up I-section plate girder T1 (enlarged 5�).

Figure 6.6 Plastic strain (principal in direction 1-1) contours at failure of the small-scale
built-up I-section plate girder T1 (enlarged 5�).
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be seen that the plastic strains were concentrated at midspan in the upper

(compressive strains with negative sign) and lower flange (tensile strains with

positive sign). Furthermore, in Figure 6.7, the von Mises yield stress con-

tours at failure of the small-scale built-up I-section plate girder T1 are plot-

ted. It can be seen that the yield stresses were reached at midspan in the upper

and lower flanges. The load-midspan deflection curves predicted experi-

mentally and numerically were also compared as shown in Figure 6.8. It can

Figure 6.7 Stress (von Mises) contours at failure of the small-scale built-up I-section
plate girder T1 (enlarged 5�).
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Figure 6.8 Comparison of load-midspan deflection relationships obtained experimentally
and numerically for the small-scale plate girder T1.
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be shown that generally good agreement was achieved between experimen-

tal and numerical relationships. The ultimate failure load observed in the test

[6.27] was 1474 kN at a deflection of 15 mm, while the ultimate failure load

predicted from the finite element analysis was 1503 kN at a deflection of

14.7 mm. The finite element failure load was 2% higher than that observed

in the test.

6.4 FINITE ELEMENT MODELING AND RESULTS
OF EXAMPLE 2

The second example presented in this chapter is for a small-scale built-up I-

section plate girder steel bridge tested under shear by Nakamura and Narita

[6.27]. The plate girder was a part of an experimental program investigating

bending and shear strength of steel and partially encased steel-concrete com-

posite plate I-girders. The plate girder is denoted in this study as (T2). The

small-scale plate girder was SS with an overhanging cantilever from one end.

The plate girder had a length between supports of 2.45 m and the overhang-

ing length from the support to loading was 0.9 m as shown in Figure 6.9.

Similar to plate girder T1, the web of plate girder T2 was 900 mm high

and 6 mm thick. While the flange of the plate girder T2 was 200 mm wide

and 12 mm thick. The web was stiffened by steel plates at the end supports

and the loading positions and also stiffened by intermediate stiffeners as

shown in Figure 6.9. The plate girder was restrained laterally at the end sup-

ports to resist lateral-torsional buckling. Tensile coupon tests were con-

ducted to determine the yield and ultimate tensile strength of the steel

used, which were 372.3 and 511.4 MPa, respectively, similar to plate girder

T1. The plate girders were loaded at two points, as shown in Figure 6.9, with

the loading between supports equals to 0.7 the applied load and loading near

the edge of the overhanging cantilever equals to 0.3 the applied load, which

subjected the plate girder to high shear forces. Strain gauges were used to

measure the strains in the plate girder section, and displacement transducers

were used to measure the span deflections at the higher load location

between supports during loading. The strain at the web center was greater

than other parts and, after the tension field appeared, the stress concentrated

around the web center. The diagonal tension-field action was clearly

observed in the test T2. No damage was found in the flanges. The main fail-

uremode was buckling owing to shear stresses. The load-deflection relation-

ship, load-strain relationships, and the deformed shape at failure were

observed in the test.
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To model the small-scale built-up I-section plate girder (T2) tested by

Nakamura and Narita [6.27], the finite element program ABAQUS

[1.29] was used. Similar to the modeling of T1, the model has accounted

for the measured geometry, initial geometric imperfections, and measured

material properties of the plate girder. A four-node doubly curved shell ele-

ment with reduced integration (S4R) was used to model the flanges and web

of the small-scale plate girder bridge, as shown in Figure 6.10. In order to

choose the finite element mesh that provides accurate results with minimum

computational time, convergence studies were conducted. It is found that

approximately 75�76 mm (length by width of S4R element) ratio provides

adequate accuracy in modeling the web while a finer mesh of approximately

25�75 mm was used in the flange (see Figure 6.10).
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Figure 6.9 General layout of a small-scale plate girder in bending (T2).
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The hinged support of T2, shown in Figure 6.9, was prevented from dis-

placement in the horizontal direction (direction 1-1 in Figure 6.10) and the

vertical direction (direction 3-3 in Figure 6.10). On the other hand, the

roller support of T2, shown in Figure 6.9, was prevented from displacement

in the vertical direction only (direction 3-3 in Figure 6.10). To account for

the lateral restraints of the compression flange, the top compression flange

was prevented from lateral displacements, in direction 2-2 of Figure 6.10,

at the end supports, which is identical to the test T2. The load was applied

in increments as concentrated static load, which is also identical to the exper-

imental investigation. The nonlinear geometry was included to deal with the

large displacement analysis.

The stress-strain curve for the structural steel given in the EC3 [2.11] was

adopted in this study with measured values of the yield stress (fys) and ulti-

mate stress (fus) used in the tests [6.27]. The material behavior provided by

ABAQUS [1.29] (using the PLASTIC option) allows a nonlinear stress-

strain curve to be used (see Section 5.4.2 of Chapter 5). The first part of

the nonlinear curve represents the elastic part up to the proportional limit

stress with Young’s modulus of (E) 200 GPa and Poisson’s ratio of 0.3 used

in the finite element model. Since the buckling analysis involves large inelas-

tic strains, the nominal (engineering) static stress-strain curves were con-

verted to true stress and logarithmic plastic true strain curves as detailed

in Section 5.4.2.

Figure 6.10 Finite element mesh of the small-scale built-up I-section plate girder T2.
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The same modeling approach [6.28, 6.29] was followed in this book to

model initial geometric imperfections of the plate girder investigated T2.

Figure 6.11 shows the buckling mode predicted from the eigenvalue buck-

ling analysis detailed in ABAQUS [1.29]. Only the first buckling mode

(eigenmode 1) is used in the eigenvalue analysis. Since buckling modes pre-

dicted by ABAQUS eigenvalue analysis [1.29] are generalized to 1.0, the

buckling modes are factored by a magnitude of Lu/1000, where Lu is the

length between points of effective bracing. The magnitude of Lu/1000 is

the average measured values in the tests [6.31] and commended in [6.32].

The factored buckling mode is inserted into the load-displacement non-

linear analysis of the plate girder T2 following the eigenvalue prediction.

It should be noted that the investigation of plate girders with different slen-

derness ratios could result in different buckling modes. Hence, to ensure that

the correct buckling mode is incorporated in the nonlinear displacement

analysis, the eigenvalue buckling analysis must be performed for each plate

girder with actual geometry.

The developed finite element model for the plate girder T2 (see

Figure 6.10) was verified against the test results detailed in [6.27]. The failure

loads, failure modes, and load-deflection curves obtained experimentally

Figure 6.11 Elastic lateral buckling mode (eigenmode 1) for the small-scale built-up
I-section plate girder T2.
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and numerically using the finite element model were compared. The

deformed shapes of plate girder T2 at failure observed experimentally and

numerically were compared as shown in Figure 6.12. It can be seen that

the experimental and numerical deformed shapes are in good agreement.

The failure mode observed experimentally and confirmed numerically

Figure 6.12 Comparison of experimental and numerical deformed shapes at failure of
the small-scale built-up I-section plate girder T2.
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was buckling owing to shear stresses, which occurred in the wider web

panel. The data obtained from ABAQUS [1.29] have shown that the von

Mises stresses at the maximum stressed fibers in the web exceeded the mea-

sured yield stresses. Figure 6.13 plotted the stress (principal stresses in direc-

tion 1-1) contours at failure of the small-scale built-up I-section plate girder

T2. It can be seen that the yield stresses were reached at the maximum stres-

ses portions of the web. In addition, in Figure 6.14, the plastic strain

Figure 6.13 Stress (principal in direction 1-1) contours at failure of the small-scale built-
up I-section plate girder T2 (enlarged 5�).

Figure 6.14 Plastic strain (principal in direction 1-1) contours at failure of the small-scale
built-up I-section plate girder T2 (enlarged 5�).
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(principal strains in direction 1-1) contours at failure of the small-scale built-

up I-section plate girder T2 are plotted. It can be seen that the plastic strains

were concentrated at the maximum stresses portions of the web. Further-

more, in Figure 6.15, the von Mises yield stress contours at failure of the

small-scale built-up I-section plate girder T2 are plotted. It can be seen that

the yield stresses were reached at midspan in the upper and lower flanges.

The load-midspan deflection curves predicted experimentally and numeri-

cally were also compared as shown in Figure 6.16. It can be shown that

Figure 6.15 Stress (von Mises) contours at failure of the small-scale built-up I-section
plate girder T2 (enlarged 5�).
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Figure 6.16 Comparison of load-deflection relationships obtained experimentally and
numerically for the small-scale built-up I-section plate girder T2.
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generally good agreement was achieved between experimental and

numerical relationships. The ultimate failure load observed in the test

[6.27] was 1752 kN at a deflection of 5 mm, while the ultimate failure load

predicted from the finite element analysis was 1742 kN at a deflection of

5.3 mm. The finite element failure load was 1% lower than that observed

in the test.

6.5 FINITE ELEMENT MODELING AND RESULTS
OF EXAMPLE 3

The third example presented in this chapter is for a full-scale built-up

I-section plate girder steel bridge tested under bending by Felkel et al.

[6.8]. The plate girder was a part of an experimental program investigating

the effect of lateral bracing on the strength and behavior of the bridges. The

plate girder is denoted in this study as (T3). The small-scale plate girder was

SS and had an overall length of 13.411 m as shown in Figure 6.17. The web

of plate girder T3 was 914 mm high and 8 mm thick, while the flange of the

plate girder was 229 mmwide and 11-25 mm thick, as shown in Figure 6.17.

The web was stiffened by steel plates at the end supports and the loading

positions and also stiffened by intermediate stiffeners as shown in

Figure 6.17. The plate girder was restrained laterally at the end supports

and loading position to resist lateral-torsional buckling. Tensile coupon tests

were conducted to determine the yield and ultimate tensile strength of the

steel used, which were 558 and 621 MPa, respectively. The plate girders

were loaded at midspan using a spreader plate (343�229) as shown in

Figure 6.17. Strain gauges were used to measure the strains in the plate

girder section, and displacement transducers were used to measure the mid-

span deflections during loading. The strain measurements showed that no

yielding took place and the neutral axis remained stationary until buckling

occurred. The failure mode of the specimen was elastic lateral-torsional

buckling. The ultimate load resisted by the plate girder was 489.3 kN at

a maximum midspan deflection of 40.6 mm. The load-midspan deflection

relationship, load-strain relationships, and the deformed shape at failure

were observed in the test.

To model the full-scale plate girder (T3) tested by Felkel et al. [6.8], the

finite element program ABAQUS [1.29] was used. The model has

accounted for the measured geometry, initial geometric imperfections,

and measured material properties of the plate girder. A four-node doubly

curved shell element with reduced integration (S4R) was used to model
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the flanges and web of the small-scale plate girder bridge, as shown in

Figure 6.18. In order to choose the finite element mesh that provides accu-

rate results with minimum computational time, convergence studies were

conducted. It is found that approximately 114�149 mm (length by width

of S4R element) ratio provides adequate accuracy in modeling the web,

while a finer mesh of approximately 29�149 mm was used in the flange

(see Figure 6.18). The hinged support of T3, shown in Figure 6.18, was

prevented from displacement in the horizontal direction (direction 1-1 in

Figure 6.18) and the vertical direction (direction 3-3 in Figure 6.18). On

the other hand, the roller support of T3, shown in Figure 6.18, was pre-

vented from displacement in the vertical direction only (direction 3-3 in

Figure 6.18). To account for the lateral restraints of the compression flange,

the top compression flange was prevented from lateral displacements, in

direction 2-2 of Figure 6.18, at the end supports and the loading position
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Figure 6.17 General layout of a full-scale plate girder in bending.
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at midspan, which is identical to the test T3. The load was applied in incre-

ments as concentrated static load using the RIKSmethod (see Section 5.5.4 of

Chapter 5) that is also identical to the experimental investigation. The non-

linear geometry was included to deal with the large displacement analysis.

The stress-strain curve for the structural steel given in the EC3 [2.11] was

adopted in this study with measured values of the yield stress (fys) and ulti-

mate stress (fus) used in the tests [6.8]. The material behavior provided by

ABAQUS [1.29] (using the PLASTIC option) allows a nonlinear stress-

strain curve to be used (see Section 5.4.2 of Chapter 5). The first part of

the nonlinear curve represents the elastic part up to the proportional limit

stress with Young’s modulus of (E) 200 GPa and Poisson’s ratio of 0.3 used

in the finite element model. Since the buckling analysis involves large inelas-

tic strains, the nominal (engineering) static stress-strain curves were con-

verted to true stress and logarithmic plastic true strain curves as detailed

in Section 5.4.2.

The same modeling approach [6.28, 6.29] was followed in this book

to model initial geometric imperfections of the plate girder investigated

T3. In Figure 6.19, the buckling mode predicted from the eigenvalue buck-

ling analysis detailed in ABAQUS [1.29] is shown. Only the first buckling

mode (eigenmode 1) is used in the eigenvalue analysis. Since buckling

modes predicted by ABAQUS eigenvalue analysis [1.29] are generalized

to 1.0, the buckling modes are factored by a magnitude of Lu/1000, where

Lu is the length between points of effective bracing. The magnitude of

Figure 6.18 Finite element mesh of the full-scale built-up I-section plate girder T3.
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Lu/1000 is the average measured values in the tests [6.8] and commended in

[6.32]. The factored buckling mode is inserted into the load-displacement

nonlinear analysis of the plate girder T3 following the eigenvalue

prediction.

The developed finite element model for the plate girder T3 (see

Figure 6.18) was verified against the test results detailed in [6.8]. The failure

loads, failure modes, and load-midspan deflection curves obtained experi-

mentally and numerically using the finite element model were compared.

The deformed shapes of plate girder T3 at failure observed experimentally

and numerically were compared as shown in Figure 6.20. It can be seen that

the experimental and numerical deformed shapes are in good agreement.

The failure mode observed experimentally and confirmed numerically

was lateral-torsional buckling. The data obtained from ABAQUS [1.29]

have shown that the von Mises stresses at the maximum stressed fibers at

the top and bottom flanges at midspan were not exceeded. In Figure 6.21,

the stress (principal stresses in direction 1-1) contours at failure of the full-

scale built-up I-section plate girder T3 are plotted. It can be seen that the

yield stresses were not reached. In addition, in Figure 6.22, the plastic strain

(principal strains in direction 1-1) contours at failure of the small-scale built-

up I-section plate girder T3 are plotted. Once again, it can be seen that the

plastic strains were not reached. Furthermore, in Figure 6.23, the von Mises

yield stress contours at failure of the small-scale built-up I-section plate

Figure 6.19 Elastic lateral buckling mode (eigenmode 1) for the full-scale built-up
I-section plate girder T3.
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girder T3 are plotted. It can be seen that the yield stresses were not reached.

The load-midspan deflection curves predicted experimentally and numeri-

cally were also compared as shown in Figure 6.24. It can be shown that gen-

erally good agreement was achieved between experimental and numerical

relationships. The ultimate failure load observed in the test [6.8] was

Figure 6.20 Comparison of experimental and numerical deformed shapes at failure of
the full-scale built-up I-section plate girder T3.
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489.3 kN at a deflection of 40.6 mm, while the ultimate failure load pre-

dicted from the finite element analysis was 490.3 kN at a deflection of

44 mm. The finite element failure load was 0.2% higher than that observed

in the test.

6.6 FINITE ELEMENT MODELING AND RESULTS
OF EXAMPLE 4

In this example, we can use the finite element modeling approach adopted

for the simulation of plate girders T1, T2, and T3 to model a full-scale

Figure 6.21 Stress (principal in direction 1-1) contours at failure of the full-scale built-up
I-section plate girder T3.

Figure 6.22 Plastic strain (principal in direction 1-1) contours at failure of the full-scale
built-up I-section plate girder T3.
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double-track open-timber floor plate girder railway steel bridge. The SS

double-track bridge is similar to that presented in Chapter 1 (see

Figure 1.20) having a length of 30 m between supports and an overall length

of 31 m. The bridge was designed by the author in Chapter 4 (see

Section 4.2) adopting the design rules specified in EC3 [1.27]. In Figure 6.25,

the general layout of the bridge and the bridge components comprising

main plate girders, cross girders, stringers, bracing members, stiffeners,

Figure 6.23 Stress (vonMises) contours at failure of the full-scale built-up I-section plate
girder T3.
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Figure 6.24 Comparison of load-midspan deflection relationships obtained
experimentally and numerically for the full-scale plate girder T3.
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etc., is shown. The dimensions and details of the main plate girder are shown

in Figure 6.26. The main plate girder web was 3000 mm high and 16 mm

width. The flange plate of the main plate girder was 600 mm wide and

30 mm thick, with another plate being added in the middle 14 m region

to resist the maximum bending moment at midspan. The stringers were

universal beams (UB 457�191�98), the cross girders were universal

beams (UB 914�305�253), and the bracing members were two equal

angles back-to-back (150�150�15). The web of the main plate girder

was stiffened at supports by load-bearing stiffeners (steel plates of

3000�250�25 mm) and by intermediate stability stiffeners (steel plates

of 3000�250�20) (see Figures 6.25 and 6.26). The bridge was made of

steel having yield and ultimate tensile strengths of 275 and 430 MPa, respec-

tively. The dead loads on each main girder were estimated by 27.6 kN/m,

L = 6×5000= 30000 mm
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Figure 6.25 General layout of a double-track open-timber floor plate girder railway
steel bridge.
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while the live loads were LoadModel 71, which represents the static effect of

vertical loading due to normal rail traffic as specified in EC1 [3.1]. The worst

case of loading for bending moment, adopting Load Model 71, is shown in

Figure 6.26. Further details regarding the design of the bridge and its com-

ponents are presented in Section 4.2.

To model the full-scale double-track open-timber floor plate girder rail-

way steel bridge shown in Figures 6.25 and 6.26, the finite element program

ABAQUS [1.29] was used. The model has accounted for the bridge
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Figure 6.26 General layout of the full-scale plate girder of a double-track open-timber
railway steel bridge.
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geometry, initial geometric imperfections, and nonlinear material properties

of the steel used. A four-node doubly curved shell element with reduced

integration (S4R) was used to model the flanges and webs of the stringers,

cross girders, and main plate girders. The element was also used to model the

stiffeners of the web of the main plate girders. The bracing members were

modeled using structural 2D truss elements (T2D2) available in the ABA-

QUS [1.29] element library. The bolts connecting the cross girders to the

main girders and the bolts connecting the stringers to the cross girders were

modeled using JOINTC joint elements, available in the ABAQUS [1.29]

element library, having stiffnesses in two directions, which simulated the

SS end boundary conditions. In order to choose the finite element mesh that

provides accurate results with minimum computational time, convergence

studies were conducted. It is found that approximately 153�260 mm

(length by width of S4R element) ratio provides adequate accuracy in

modeling the webs of the main plate girders, while a finer mesh of approx-

imately 75�260 mm was used in the flanges of the main plate girders (see

Figure 6.27). Also, it is found that approximately 153�251 mm ratio pro-

vides adequate accuracy in modeling the webs of the cross girders, while a

finer mesh of approximately 76�251 mm was used in the flanges of the

Figure 6.27 Finite element mesh of the double-track open-timber floor plate girder
railway steel bridge.
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cross girders (see Figure 6.27). Finally, it is found that approximately

153�260 mm ratio provides adequate accuracy in modeling the webs of

the stringers, while a finer mesh of approximately 96�260 mm was used

in the flanges of the stringers (see Figure 6.27). The hinged supports of

the bridge attached to the main plate girders, shown in Figures 6.25 and

6.26, were prevented from displacement in the horizontal direction (direc-

tion 1-1) and the vertical direction (direction 3-3). On the other hand, the

roller support of the bridge, shown in Figures 6.25 and 6.26, was prevented

from displacement in the vertical direction only (direction 3-3).

The developed finite element model shown in Figure 6.27 can be now

used to analyze the bridge for any analysis, boundary conditions, geome-

tries, and loadings. As an example in this book, the bridge was analyzed for

the unfactored live load case shown in Figure 6.26 and analyzed to predict

the ultimate load that can be carried by the bridge up to complete failure.

The live load case was applied in increments as concentrated and distrib-

uted static loads, which is identical to the Load Model 71 adopted. On the

other hand, the ultimate load that can be carried by the bridge was pre-

dicted using the RIKS method to cause maximum deflection at midspan.

The nonlinear geometry was included to deal with the large displacement

analysis.

The stress-strain curve for the structural steel given in the EC3 [2.11]

was adopted in this study with the yield and tensile stresses of 275 and

430 MPa, respectively. The material behavior provided by ABAQUS

[1.29] (using the PLASTIC option) allows a nonlinear stress-strain curve

to be used (see Section 5.4.2 of Chapter 5). The first part of the nonlinear

curve represents the elastic part up to the proportional limit stress with

Young’s modulus of (E) 200 GPa and Poisson’s ratio of 0.3 used in the

finite element model. Since the buckling analysis involves large inelastic

strains, the nominal (engineering) static stress-strain curves were converted

to true stress and logarithmic plastic true strain curves as detailed in

Section 5.4.2.

An eigenvalue buckling analysis was performed for the whole bridge to

model initial geometric imperfections of the bridge. In Figure 6.28, the

buckling mode predicted from the eigenvalue buckling analysis detailed

in ABAQUS [1.29] is shown. It can be seen from Figure 6.28 that a clear

web buckling mode due to bending was predicted at midspan panel for

the unfactored live load case shown in Figure 6.26. Only the first buckling

mode (eigenmode 1) is used in the eigenvalue analysis. Since buckling

modes predicted by ABAQUS eigenvalue analysis [1.29] are generalized
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to 1.0, the buckling modes are factored by a magnitude of Lu/1000, where

Lu is the distance between web stiffeners. The factored buckling mode is

inserted into the load-displacement nonlinear analysis of the whole bridge

following the eigenvalue prediction. The developed finite element model

for the whole bridge (see Figure 6.27) was used to perform two analyses as

examples in this book. In the first analysis, the unfactored live load case

was applied, and the deformed shape after load application, load-displacement

relationship, and stress contours were evaluated using the finite element

model as shown in Figures 6.29–6.32. On the other hand, in the second

analysis, the bridge was taken to overall collapse, and the deformed shape

at failure, load-displacement relationship, and stress contours at failure were

evaluated using the finite element model as shown in Figures 6.33–6.36.

In Figure 6.29, the deformed shape of the whole bridge after the appli-

cation of the unfactored live load case is shown. It can be seen that the defor-

mations were in the elastic range. The data obtained from ABAQUS [1.29]

have shown that the von Mises stresses at the maximum stressed fibers at the

top and bottom flanges at midspan were well below the yield stresses. In

Figure 6.30, the stress (principal stresses in direction 1-1) contours after

the live load application are plotted. It can be seen that the yield stresses were

Figure 6.28 Elastic lateral buckling mode (eigenmode 1) for the double-track open-
timber floor plate girder railway steel bridge.
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not reached at midspan in the upper (compressive stresses with negative sign)

and lower flanges (tensile stresses with positive sign). In addition, in

Figure 6.31, the von Mises yield stress contours after the application of

the live load case are plotted. It can be seen that the yield stresses were

not reached at midspan in the upper and lower flanges. The load-midspan

Figure 6.29 Deformed shapes under loading of the double-track open-timber floor
plate girder railway steel bridge (enlarged 10�).

Figure 6.30 Stress (principal in direction 1-1) contours under loading of the double-
track open-timber floor plate girder railway steel bridge (enlarged 10�).
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deflection curve predicted numerically was plotted in Figure 6.32. It can be

shown that the relationship is linear, which confirms that the deformations

were in the elastic range. The maximum deflection predicted after the appli-

cation of the live load case was 34.3 mm.

Let us now look at the deformed shape of the whole bridge analyzed to

failure and predicted using the RIKSmethod as shown in Figure 6.33. It can

be seen that a clear combined lateral-torsional buckling mode of the upper

main plate girder flange and web buckling mode was predicted at midspan

Figure 6.31 Stress (von Mises) contours under loading of the double-track open-timber
floor plate girder railway steel bridge (enlarged 10�).
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Figure 6.32 Load per one main girder-midspan deflection relationship obtained
numerically for the double-track open-timber floor plate girder railway steel bridge
under the live loading case.
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owing to bending stresses as shown in Figure 6.33. The data obtained from

ABAQUS [1.29] also showed that the von Mises stresses at the maximum

stressed fibers at the top and bottom flanges and web of the main plate girder

at midspan exceeded the yield stresses. In Figure 6.34, the stress (principal

stresses in direction 1-1) contours at failure are plotted. It can be seen that

Figure 6.33 Deformed shape of the double-track open-timber floor plate girder railway
steel bridge at failure.

Figure 6.34 Stress (principal in direction 1-1) contours of the double-track open-timber
floor plate girder railway steel bridge at failure.
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the yield stresses were reached at midspan in the upper (compressive stresses

with negative sign) and lower flanges (tensile stresses with positive sign) of

the main plate girder. In addition, in Figure 6.35, the von Mises yield stress

contours at failure are plotted. It can be seen that the yield stresses were

reached at midspan in the upper and lower flanges of the main plate girder.

The load-midspan deflection curve predicted numerically was plotted in

Figure 6.36. It can be shown that the relationship is nonlinear, which con-

firms that the deformations exceeded the elastic range. The ultimate load

Figure 6.35 Stress (von Mises) contours of the double-track open-timber floor plate
girder railway steel bridge at failure.
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Figure 6.36 Load per one main girder-midspan deflection relationships for the double-
track open-timber floor plate girder railway steel bridge at ultimate limit state.
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that can be resisted by each main plate girder was 6683.7 kN at a deflection

of 318.8 mm. The design load predicted using EC3 [1.27] for each main

plate girder was also plotted in Figure 6.36, which was 5763.3 kN. The finite

element failure load was 16% higher than the design load, which shows that

the design rules specified in the EC3 [1.27] are conservative and accurate.
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CHAPTER77
Examples of Finite Element
Models of Steel-Concrete
Composite Bridges
7.1 GENERAL REMARKS

Similar to Chapter 6, this chapter presents illustrative examples of finite ele-

ment models developed to understand the structural behavior of steel-

concrete composite bridges. The examples are based on the layout, loading,

and design background presented in Chapters 1–4 as well as based on the

finite element modeling background highlighted in Chapter 5. This chapter

is initiated by a brief introduction followed by a review of recent investiga-

tions reported in the literature concerning the modeling of steel-concrete

bridges. This chapter details how the finite element models were developed

and the results obtained. The presented examples show the effectiveness of

finite element models in providing detailed data that complement scarce

experimental data in the field. The results are discussed to show the signif-

icance of the finite element models in predicting the structural response of

the different steel-concrete composite bridges investigated. In overall, it is

aimed to show that finite element analysis not only can assess the accuracy

of the design rules specified in current codes of practice but also can improve

and propose more accurate design rules. It should be noted that the main

issues that differentiate between the finite element models presented in

Chapter 6 and those presented in this chapter are the presence of reinforced

concrete slabs and shear connections. The finite element models addressed in

this chapter will detail how the aforementioned issues are dealt with in the

models based on the material properties highlighted in Chapter 2, the design

rules highlighted in Chapter 3, and the finite element modeling variables

presented in Chapter 5. The author hopes that the review of recent finite

element models reported in the literature together with the illustrative finite

element models developed by the author in this chapter can provide readers

with a complete piece of work regarding the finite element analysis of steel-

concrete composite bridges.
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7.2 PREVIOUS WORK

Extensive numerical investigations were reported in the literature highlight-

ing the structural performance of different types of steel-concrete composite

bridges subjected to different loadings. The numerical investigations pro-

posed finite element models for the composite bridges and the composite

bridge components. It should be noted that detailed state-of-the-art review

of these investigations is out of the scope of this book. However, in this

section, the author provides recent examples showing how other

researchers modeled the steel-concrete composite bridges and the composite

bridge components. Ålenius [7.1] investigated the stability of a thin-walled

box girder steel-concrete composite bridge. The study was proposed a

finite element model for the analysis of the bridges. Three different finite

element models were analyzed, which were a simply supported rectangular

plate uniformly compressed in one direction, a profiled sheeting subjected

to shear forces, and finite element model discussing the lateral torsional

stability of the bridge. The first analysis provided a simple model for which

analytic results were available for comparison with finite element modeling

results. It was shown that the finite element analysis provided results well

in accordance with the analytic results for the critical buckling load. The

analysis of the profiled sheeting in shear studied the attachment techniques

of the profiled sheeting. The analysis showed that a substantial reduction

of the stresses in the profiled sheeting was obtained with an all-around

attachment between the profiled sheeting and box girder, compared to a

two-sided attachment. In addition, the analysis showed that the large axial

forces that arose at the free edge of the profiled sheeting, when it was

attached along two sides, were considerably diminished when an all-around

attachment was used. Finally, the third model investigated the lateral

torsional stability of the bridge. The analysis studied the overall behavior

of the bridge and how it was influenced by initial imperfections and different

attachments of the profiled sheeting. The profiled sheeting created a closed

cross section, providing a structure that was more rigid than an open cross

section. It was concluded that, in order to obtain a closed cross section,

the profiled sheeting should be given an all-around attachment and also

be strong enough to withstand arisen stresses, mainly at the connections

between the profiled sheeting and the box girder. Otherwise, the cross

section of the bridge will behave like an open, thin-walled cross section.

Shell elements (S4R) available in ABAQUS [1.29] were used in most

of the analyses. The analyses comprised linear eigenvalue buckling analysis

and nonlinear load-displacement analyses.
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Barth and Wu [7.2] performed 3-D nonlinear finite element analyses to

predict ultimate load behavior of slab on steel stringer bridge superstructures.

The study was accomplished using the general-purpose finite element soft-

ware ABAQUS [1.29]. Two composite steel girders fabricated from high-

performance steel and one four-span continuous composite steel bridge

tested to failure have been used to validate the proposed finite element

models. In the study, four-node general-purpose shell element with reduced

integration (S4R) was used for the steel girders, concrete slab, and stiffeners.

The steel reinforcement in the concrete was provided by means of rebar ele-

ments. A 3-D two-node beam element (B31) was used to represent cross

frames. Full composite action between the RC deck and the steel girder

is developed using a beam-type multipoint constraint (MPC beam) between

the girder top flange and the deck, which assures nodal compatibility at these

locations. The authors mentioned that, to obtain accurate results from the

nonlinear finite element analysis, considerationmust be given to the element

size and mesh density selection. Selection of relatively small elements will

eliminate unrealistically low predicted strengths due to the effects of stress

concentrations, while incorporating relatively large elements will reduce

the need to modify the constitutive model to prevent an overestimation

of the energy dissipation capacity [7.3]. The analyses incorporated nonlinear

material behavior including a trilinear stress-strain response for structural

steel and a complete nonlinear stress-strain curve for steel reinforcement.

Concrete was modeled using two concrete models: the smeared crack con-

crete and concrete damaged plasticity models. The modified Riks method

was used in the finite element analyses.

Chung and Sotelino [7.4] investigated finite element modeling of com-

posite steel girder bridges, with the overall flexural behavior of the bridges

being the main concern. Four 3-D finite element bridge models were inves-

tigated. The finite element models were validated against the results of full-

scale tests and a field test conducted by other researchers. In addition, the

finite element results were compared with the results of a detailed finite ele-

ment model that uses solid elements. The numerical simulations were per-

formed using the general-purpose finite element software ABAQUS [1.29].

The authors mentioned that the bridge deck can be modeled either by solid

or shell elements. Several shell elements were tested to evaluate their appli-

cability for bridge deck modeling. It was found that a quadrilateral nine-

node or eight-node shell element with reduced integration (S9R5/S8R5)

and a quadrilateral eight-node thick shell element with reduced integration

(S8R) predicted the same response. It was also recommended that the
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transverse shear deformation may be neglected in typical bridge analyses. In

this study, the shear flexible shell element (S8R) was selected to model the

concrete bridge deck. The authors also discussed that somemodels proposed

in the literature utilized solid elements to model a concrete bridge deck. The

main drawback of solid deck models is the computational cost to predict the

correct flexural behavior of the bridge. Multiple layers are required through

the thickness direction in order to model the deck with linear solid elements

(e.g., eight-node brick elements), since the strain variation of these elements

is constant through the thickness. An alternative option is the use of higher-

order solid elements, but this may entail an even higher computational cost.

In the study [7.4], four different modeling techniques for steel girders,

named G1, G2, G3, and G4, respectively, are investigated. The G1 model

is a detailed model of a steel girder. The flanges and the web are modeled by

shell elements. The next model, G2, was similar to G1model except that the

flange was modeled by beam elements instead of shell elements, which

resulted in less computing resources to represent the 3-D nature of the girder

structures. G3 model can be used to investigate the possible incompatibil-

ity at the element connection between web and flanges found in the pre-

vious two models. A typical flat shell element was formulated by

superimposing plate bending and membrane action. It was found that

the G1 and G2 models shared the drilling rotation of the shell element

in the web with the in-plane bending rotation of the shell or beam element

in the flanges. Thus, displacement was not compatible along the element

boundary of these models. The G3 model placed shell elements at the cen-

troid of girder flanges. Beam elements were placed at the centroid of the

girder web. Rigid links, through the constraints of degrees of freedom,

were applied to ensure composite action. Finally, G4 model was the sim-

plest model and utilized beam elements with the geometric properties of

girder sections. It should be noted that G4 model was not able to represent

different material properties of web and flanges. The full composite action

between a concrete deck and steel girders was modeled by rigid links

through multipoint constraints (MPCs), which are available in ABAQUS

[1.29] element library. The authors mentioned that, for bridge models that

utilized solid elements in the modeling of the bridge deck with the girder

models discussed earlier, care must be taken at the interface between the

two different element types, since structural elements and solid elements

are incompatible. Unlike structural elements, most solid elements do

not have rotational degrees of freedom (DOFs). MPCs must therefore

be assigned to relate the shell element rotations to the solid element
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translations. Sharing nodes with two different types of finite elements may

lead to perturbation of element stress and strain at the interface boundary.

Rigid links throughMPCs connect different elements within the structural

model and enforce the kinematics relationships between the degrees of

freedom at each node.

The study [7.4] outlined that in the case where shell elements were used

to model the bridge deck, the nodes of the girder did not coincide with the

nodes of the shell elements in the deck. The shell elements in the bridge

deck were connected with the prescribed girder models through an MPC.

Typical bending elements, such as the shell element (for the deck and for

girder models G1 and G3) and the beam element (for the girder model G2

and G4), should be avoided for the modeling of the composite girder

bridge since displacement incompatibility occurs at the interface of two

bending elements [7.5]. This incompatibility was noticeable since the axial

displacements of the deck and the girder. The incompatibility error disap-

peared as the mesh was refined and many methods were proposed to elim-

inate this nonconforming error [7.6–7.8]. In ABAQUS [1.29], the use of

S8R elements for the concrete deck and B32 elements for the girder pro-

vided full compatibility between the boundaries of two different elements.

The applied loading on a bridge deck consisted of pressure loads applied

through a tire patch. In the finite element modeling, this requirement

imposed the need for a fine mesh in the deck, so that the element is fitted

with the patch size. As a part of the research [7.4], the equivalent nodal load

algorithm was employed in order to uncouple the patch load from

the mesh size. Also, bearings were modeled by assigning boundary condi-

tions to the zero-dimensional elements at their real location. For simply

supported beams, rotations in all directions were allowed in order to sim-

ulate the simply supported structure. Minimum restraints were assigned for

longitudinal and transverse movement, while vertical restraint was placed

at the supports. Kinematic constraints were also supplied to nodes between

the girders and the deck. Since the main purpose of the study [7.4] was

to analyze bridge superstructures, it was assumed that substructures,

such as piers and abutments, did not influence the behavior of the

superstructure.

The use of ductile end cross frames to reduce the transverse seismic

demand in composite steel plate girder bridge superstructures was investi-

gated by Carden et al. [7.9]. The authors showed that the effectiveness of

these cross frames was strongly influenced by the transverse flexibility of

the superstructure and its capacity for potentially large relative transverse
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displacements between the deck slab and bearing supports. The study pro-

posed a simplified method for the calculation of these displacements based

on the elastic girder stresses and transverse girder stiffnesses, which were

shown to compare well with results given by the finite element method.

In addition, the proposed method was shown to give results that compared

well with experimental data from a 0.4-scale model subject to shake table

excitation. Furthermore, parametric studies were described and showed that

typical I-girder superstructures were able to accommodate large transverse

drifts (up to 17% of the girder height) while remaining in the elastic range.

These large drifts were possible without distress to the slab-to-girder con-

nection, by omitting shear studs over a short length of the girder at the sup-

port cross-frame locations. Based on the preceding text, a step-by-step

procedure was proposed for evaluating the transverse displacement, stiffness,

and capacity of the steel girder superstructures in the region of the end and

intermediate supports. The developed finite element model was developed

for a 9.14 m length of the bridge girder, equal to half of the actual bridge

model girder length, with symmetrical boundary conditions at midspan,

using elastic shell elements for the flanges and web. The finite element model

was generated using SAP2000 [6.20]. Rows of shear studs were placed every

460 mm for the partially composite bridge model except the ends of the

bridge. Elements and restraints were used in the finite element model to

allow for each shear stud to connect the girder to an assumed transversely

rigid deck slab resulting in a constant transverse displacement in the top

flange. Contact between the deck slab and top flange was modeled using

rigid pin-ended links between the deck slab and edge of the flange. Web

stiffeners were modeled using elastic shell elements at the cross-frame loca-

tions, with intermediate stiffeners between the cross frames generally

neglected except in specific cases where the effect of these was investigated.

A rotational spring at the base of the girder was used to model the rotational

bearing stiffness.

Bapat [7.10] presented a study to create a database of quantitative infor-

mation of the long-term performance of selected pilot bridges and to

develop a methodology to assess bridge performance. The author discussed

that finite element modeling of the pilot bridges was intended not only to

assist with instrumentation decisions but also to provide further insight into

the behavior of these bridges, which cannot be achieved solely from field

testing of the bridges. Finite element models were developed to study the

effect of the inclusion of various bridge parameters in the model, such as

bridge skew, degree of composite action, thermal gradient, and level of
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support restraint, on the response of bridges. Initially, the suitability of dif-

ferent modeling techniques and of elements used to model the primary

bridge components was assessed using simple models for which analytic

solutions are readily available. Based on the studies, it was concluded that

shell elements were adequate to model the bridge deck, and beam and shell

elements are both satisfactory to model the bridge girders. From the dynamic

analyses of two bridges, flexural modes of vibration were found to be highly

sensitive to support restraints and to know how the guardrails were modeled

and less sensitive to the inclusion of bracing and thermal gradients in the

model. The finite element models using extreme boundary conditions were

successful in bracketing the field response. The factors identified from these

analyses were considered in the analysis of the pilot bridge. Different support

restraints and the inclusion of skew and level of composite action in the

model had noticeable impact on both the static and dynamic responses of

the bridge. The results from these analyses were used to assist with instru-

mentation decisions prior to field testing. The general-purpose software

ABAQUS [1.29] was used to perform the finite element analyses. Two dif-

ferent methods were considered to model the bracing members. In the first

method, each part of the bracing assembly was modeled using single linear

beam element (B31), available in ABAQUS element library. The author

suggested that since no member loads were applied to the bracing, the max-

imum order of the deflected shape would be cubic and the shape functions

assumed in case of linear beam element are cubic. Therefore, it should be

able to represent the deflected shape correctly. In the second method, entire

bracing assembly was represented by a single beam element modeled at the

girder centroid. The effective cross-sectional area was calculated by impos-

ing unit displacement in the horizontal direction to the bracing assemblage.

Rigid links were used to connect the bracing with the girder.

Liu and Roe [7.11] discussed the use of headed studs in steel-concrete

composite bridges to resist longitudinal shear forces at the interface of steel

girder and concrete slab. It was shown that since these studs were subjected

to high-cycle fatigue loading due to the growth of traffic and increase in train

speed, the study highlighted the dynamic structural behavior of the shear

studs during train passages. Different fatigue endurance models were

employed for fatigue life estimation. In addition, a parametric study was per-

formed to investigate the effects of different parameters that influence the

fatigue life of shear studs. Finally, a fatigue life-cycle design procedure based

on the train-bridge interaction analysis and the fatigue endurance model was

proposed. A numerical model for a composite bridge with a span of 36 m
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was developed using ANSYS [6.10]. The concrete slab was connected to the

steel girder by headed studs with a diameter of 22 mm. The stud spacing was

initially set to 200 mm. The steel girder was represented by shell elements

(SHELL63) available in ANSYS element library, the concrete slab was mod-

eled with solid element (SOLID45), and spring elements (COMBIN14)

were chosen to represent the headed shear studs. In the study, the corre-

sponding nodes of the concrete slab and steel girder were connected by

spring elements in the longitudinal direction and coupled in the other direc-

tions. The characteristic of the spring element was derived from load-slip

curves obtained by stud push-out tests [7.12]. The change of the stud stiffness

during the design life was not taken into account. The train type considered

in the study [7.11] was a high-speed train. It was composed of a locomotive

followed by eight-passenger cars and another locomotive. The length of the

locomotive was 19.7 m, while the length of the passenger car was 26.1 m.

The average static axle loads for the locomotives and passenger cars were

176.4 and 112.9 kN, respectively. The train speed was set to 300 km/h.

The dynamic response of the bridge was predicted through a moving load

model and, alternatively, through a train-bridge interaction model. In the

moving load model, the train was simplified as a series of moving loads,

while the train-bridge interaction model incorporated subsystems for the

train and the bridge. Each vehicle is considered as an independent entity

with one car body, two bogies, and four wheel sets. The bogies and the

wheel sets were linked by horizontal and vertical springs and dampers.

The train subsystem and the bridge subsystem were coupled by the interac-

tion forces and the compatibility of the displacements at the contact points

[6.13]. It was shown that during the train passage, variable amplitudes of

fatigue loading were generated. Since the train-bridge interaction model

predicted the most realistic behavior of the bridge subjected to moving

trains, it was recommended for further studies.

Brackus [7.13] discussed that full-depth, precast panel deck systems were

becoming common in bridge installation and repair. Therefore, the struc-

tural behavior of these systems was the subject of the analyses performed

in the study. A steel I-girder bridge containing a precast panel deck system

was demolished and provided two full-scale specimens for this project.

Destructive testing was performed on the specimens to investigate three fail-

ure modes comprising flexural, beam shear, and punching shear. Finite ele-

ment models were developed using ANSYS [6.10] software to replicate

experimental behavior. It was found that the elastic, postelastic, and ultimate

behavior of the full-scale bridge sections containing precast panel deck
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systems can be predicted by the analytic models. The study also investigated

changes in dynamic behavior as the system was subjected to flexural yield

and failure. Point loads were applied and removed in increments, and

dynamic testing was conducted at each load level. It was found that signif-

icant damage is somewhat noticeable by monitoring the changes in natural

frequencies. The finite element modeling of the bridge specimens was con-

structed and analyzed using ANSYS. To obtain a comprehensive represen-

tation of the bridge specimens and their multiple failure modes, four finite

element models were constructed. Each model contained various elements

to accurately simulate experimental behavior. The mathematical represen-

tation of physical elements was prescribed by four criteria comprising ele-

ment type, real constants, material association, and key options. The

element type designated the element shape, degrees of freedom, and model-

ing capabilities. The primary elements used in the study were shell elements

(SHELL181) and solid elements (SOLID65). In all cases, the girder webs and

flanges were modeled with shell elements and the concrete deck was mod-

eled with solid elements. Three connecting elements were used in the study

comprising (TARGE170), (CONTA173), and (LINK8) elements available

in ANSYS [6.10]. The contact and target elements were used to model the

bond at the concrete/steel and concrete/grout interfaces. The SHELL181

element was a quadrilateral planar element with six degrees of freedom at

each node (three translational and three rotational). The SOLID65 element

was an eight-node solid element with three translational degrees of freedom

at each node. Special features of this element include rebar reinforcement

and support of a brittle concrete material model, which is capable of com-

pression crushing and tension cracking. Real constants for SOLID65 specify

the reinforcement properties by designating a reinforcement material, vol-

umetric ratio of reinforcement to base material, and two angles that describe

the orientation of reinforcement. A nonlinear steel material was defined

with a multilinear isotropic hardening plasticity model using experimental

results. Concrete was modeled using a bilinear stress-strain curve.

Vayas et al. [7.14] presented a modeling technique for simulating steel-

concrete composite straight bridges, which was previously detailed in Refs.

[7.15,7.16]. The proposed model was based on the representation of steel

I-girders through the use of equivalent trusses. The concrete slab was repre-

sented by a set of bar elements. Diaphragms and stiffeners could be also taken

into account. In contrast to the grillage model, which was used for the anal-

ysis of bridges, the recommended 3-D model allowed for a more reliable

prediction of deformations and internal forces. The study [7.14] discussed
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the extension of the model to skewed composite bridges. The presence of

skew made the analysis complicated, and for this reason, the grillage analysis

was not recommended. The authors showed that phenomenons like differ-

ential deflections of the main girders during concreting and lateral displace-

ments of the flanges could be adequately predicted using the proposed

model. The proposed models of composite bridges, using a spatial system

of beam-like structural elements, could be also used for stability analysis

of skewed bridges. Worked examples were provided to illustrate the setup

procedure of the proposed modeling and to compare the different ways of

analysis. To overcome the difficulties of the grillage and finite element

models, a 3-D truss model was proposed where the steel I-girders were

modeled by equivalent trusses [7.15,7.16] while the deck slab by a grillage

of concrete beams. The main intention was the set up of a global model,

which can be used during the erection stages and deck concreting and for

the serviceability and ultimate limit states. In the modeling of a composite

girder through the use of an equivalent truss, the flanges of the truss were

modeled as beam elements with cross section composed of the flange

and part (1/3) of the web of the steel girder. The flanges were connected

by a hybrid combination of truss and beam elements that represented the

web of the steel girder. The concrete section was represented by another

beam element connected with the upper flange of the truss through the

appropriate offset. In order to verify the validity of the proposed model,

numerical investigations for deformations, stresses, buckling, and dynam-

ical modes were performed for a simply supported beam with either steel

or composite cross sections. In the grillage analysis of the concrete slab of a

composite bridge, concrete slab can be represented by a grillage of in-

terconnected beams. The longitudinal stiffness of the slab was concentrated

in the longitudinal beams and the transverse stiffness in the transverse

beams. In order to show the differential deflections that occur on a skewed

bridge during concreting and to make a first comparison between the two

models, a skewed bridge was investigated using a 3-D finite element

analysis. The deck of a skewed bridge may be represented through a gril-

lage of beam-like elements. The bridge was simply supported at one edge

(hinged supports), while on the other edge, there was free translation along

the longitudinal axis.

Adamakos et al. [7.17] presented a modeling technique for steel compos-

ite bridges, which was previously detailed in Refs. [7.15,7.16]. The pro-

posed modeling technique was based on the representation of steel

I-girders by equivalent trusses. The concrete slab was represented by a set
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of bar elements and the bearings by appropriate springs. Diaphragms and

stiffeners may also be taken into account. It was shown that, in comparison

to the grillage model, which was usually used for the analysis of bridges, the

proposed 3-D model allowed a reliable prediction of deformations, internal

forces, and stresses. In addition, it was shown that curved bridges displayed

unique behavior characteristics, and for this reason, a grillage analysis was not

always suitable. Therefore, the authors concluded that the proposed model-

ing of composite bridges, using a spatial system of beam-like structural ele-

ments, was applied in the study for the modeling of curved composite

bridges. Worked examples were provided to illustrate the setup procedure

of the proposed modeling and to compare its results with those of the cor-

responding finite element models. The authors mentioned that a bridge

analysis model should be based on the following: (1) The model should

reflect the structural response in terms of deformation, strength, and local

and global stability; (2) the model should include as many structural elements

and parts (cross frames, stiffeners, bearings, etc.) as possible and their possible

eccentric connections; (3) the model should cover all construction stages and

loading cases; (4) loads should be easily introduced; (5) the model should

allow the performance of dynamic analysis and include the most important

modes; and finally (6) the model should run with a common analysis and

design software. The authors also mentioned that the structural system must

reproduce the 3-D behavior of a bridge as accurately as possible. This was

achieved through the representation of the steel I-girders by equivalent

trusses. The deck slab was idealized by a grillage of concrete beams. The

main concept was based on the setup of a global model, which will be easy

to modify during the different construction stages, including stages of erec-

tion or deck concreting. The study showed that curved composite bridges

displayed unique behavior characteristics. The presence of curvature

affected the geometry and, as a consequence, the behavior of the structure.

Curved bridges were subjected to coupled torsion and bending because of

the curvature, and their analysis was more complex than that of straight

bridges.

Gara et al. [7.18] proposed a simplified method of analysis for the design

of twin girder and single-box steel-concrete composite bridge decks. The

method relied on the use of the real width of the slab for the whole bridge

length when performing the global analysis, that is, without modifying the

deck geometry based on the effective width method, and the ability to eval-

uate the normal longitudinal stress distribution on the slab by means of a

cross-sectional analysis considering the internal actions obtained from the
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global analysis. The authors considered that in the latter cross-sectional anal-

ysis, the properties of the concrete component were based on an effective

width calculated using proposed analytic expressions presented in the study.

It was shown that the proposed approach was capable of handling different

loading conditions, such as constant uniformly distributed loads, envelopes

of transverse actions due to traffic loads, support settlements, and concrete

shrinkage. These analytic expressions were obtained based on the results

of a parametric study performed by means of the finite element formulation

described in the first part of the study. The accuracy of the proposed

approach was validated for a typical four-span bridge with constant cross sec-

tion throughout its length against the results obtained based on the finite ele-

ment method. In addition, a case study of a bridge with varying cross section

was considered to show the effectiveness of the proposed methodology.

A new type of beam-to-beam joint used to connect continuously com-

posite beams in small- and medium-span bridges was proposed by Somja

et al. [7.19]. The proposed joint was realized by encasing totally the two

composite beam ends into a massive composite reinforced concrete block.

A direct contact between the ends of the bottom flanges of the steel girders

over the support ensured the transfer of the compression forces. The authors

designed and fabricated a half-scale joint specimen. The specimen was tested

under fatigue loading and monotonically increased loading up to the spec-

imen failure. A numerical finite element model was developed. And the

numerical results were compared against the experimental results. In addi-

tion, a parametric study was performed to investigate the influence of key

parameters governing the joint behavior. The influence of the behavior

of this type of joint on the global analysis of a continuous composite beam

was studied. Furthermore, a worked example of a two-span continuous rail-

way bridge was presented and effects of intermediate beam-to-beam joint

characteristics on the bridge behavior were discussed. The authors devel-

oped a 2-D finite element model involving beams and springs. The model

reproduced the moment-rotation curve and the slip distribution along the

beam. The 2-D model was developed with FineLg software [7.20]. The

software is a general nonlinear finite element program first written by Frey

[7.21] and mainly developed by de Ville de Goyet [7.22]. Specific concrete

beam elements were developed by Boeraeve [7.23]. The beam elements

were able to simulate structures undergoing large displacements but small

deformations and they were developed using a corotational total description.

A 2-D Bernoulli fiber beam element with three nodes and seven degrees

of freedom was considered. The total number of degrees of freedom
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corresponded to one rotational and two translational degrees of freedom for

each two nodes located at beam element ends and one relative translational

degree of freedom for the node situated at midlength of the beam element.

The introduction of the relative translational degrees of freedom for the

node at midlength of the beam element was necessary to account for the

strong variation of the centroid position when the behavior of the section

was not symmetrical. Such situation occurred for concrete sections when

cracking propagated. The authors showed that, as usual for fiber element,

the section forces at the element nodes were computed using both a longi-

tudinal and transversal integration scheme. The integration along the beam

length was performed using four integration points. For each longitudinal

integration point, a transversal integration was performed using a

multilayer-type scheme. The section was divided into a certain number

of layers, each of which was assumed to be in uniaxial stress state. At each

transversal integration point, the state of deformation and stress was com-

puted. The connection between the concrete beam element and the steel

beam element was introduced by means of specific connection elements

comprising two transversal springs and two rotational springs to avoid uplift.

Longitudinal springs were uniformly distributed along the element. The res-

olution of the nonlinear problem was performed using classical algorithms,

Newton-Raphson scheme with arc length method.

Zaforteza and Garlock [1.47] investigated numerically the fire response

of steel girder bridges by developing a 3-D numerical model for a typical

bridge of 12.20 m span length. A parametric study was performed consider-

ing different axial restraints of the bridge deck, different types of structural

steel for the girders, different constitutive models for carbon steel, different

live loads, and different fire loads. The numerical study showed that restraint

to deck expansion coming from an adjacent span or abutment should be

considered in numerical models. Also, times to collapse were very small

when the bridge girders are built with carbon steel (between 8.5 and

18 min), but they can almost double if stainless steel is used for the girders.

The authors recommended that stainless steel can be used as a construction

material for girder bridges in a high-fire-risk situation. It was also concluded

that the methodology developed in the study and the results obtained can be

useful for researchers and practitioners interested in developing and applying

a performance-based approach for the design of bridges against fire. The

numerical study was performed using ABAQUS [1.29]. Due to the symme-

try, only half of the bridge was modeled. An uncoupled thermomechanical

analysis was used, where in the first phase, a thermal heat transfer analysis
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provided transient nodal temperatures with respect to time. In the second

phase, a structural analysis was performed, and the nodal temperatures were

read from the thermal analysis. For the thermal analysis, DC3D8 was

employed, which is a 3-D eight-noded linear heat transfer brick element

with one degree of freedom per node. For the structural analysis, element

C3D8 was used, which is a 3-D eight-noded solid continuum element with

three degrees of freedom per node that is compatible with DC3D8 element.

Finite element analyses included geometric and material nonlinearities.

Since there is no structural connection between the concrete slab and the

girder (the bridge was not a composite bridge), the slab was included in

the thermal phase of the analysis, but then was deactivated in the structural

analysis. In this manner, only the thermal impact of the slab was considered.

A finer mesh was used near the supports and the stiffeners because these are

areas of high stress andmore susceptible to local buckling. The finite element

model had 533 nodes and 6560 solid elements. The efficiency of the mesh

and finite element model was tested by checking that the difference between

the stresses and deflections due to dead loads at ambient temperature given

by the beam theory and the FEmodel was negligible and by checking that an

increase of the number of elements in the areas where the mesh was coarser

did not have any significant influence in the thermal and structural results.

Appropriate boundary conditions were used at the midspan section of the

bridge to consider that only half of its structure was modeled. Specifically,

midspan section had free vertical displacement, but it was restrained from

rotating and from translating on the longitudinal axis. In addition, a vertical

support was provided along the surface of the bottom flange beneath the

stiffener. Finally, and only for the “fix” analyses, a rigid solid block was cre-

ated at a distance from the outer cross section of the bridge equal to the width

of the expansion joint. This rigid solid block simulated the existence of an

adjacent span or abutment, and its goal was to ensure that axial expansion of

the nodes of the outer cross section of the bridge was restrained once their

horizontal displacement equaled the width of the expansion joint.

Shifferaw and Fanous [1.51] investigated fatigue crack formation in the

web gap region of multigirder steel bridges. The authors have shown that the

region has been a common occurrence of fatigue crack formation due to

differential deflections between girders resulting in diaphragm forces that

subject the web gap to out-of-plane distortion. The study investigated

the behavior of web gap distortion of a skewed multigirder steel bridge

through field testing and finite element analyses. The study also investigated

different retrofit methods that include the provision of a connection plate
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between the stiffener and the girder top flange, loosening of the bolts con-

necting the cross bracing to the stiffener, and supplementing a stiffener plate

opposite to the original stiffener side. The study has shown that the connec-

tion plate addition and loosening of bolts alternatives were effective in

reducing induced strains and stresses in the web gap region. An inverse rela-

tionship between web gap height and induced strains and stresses with the

shortest web gap height resulting in the highest strains due to increased

bending by diaphragm forces in the web was also shown. The authors

concluded that expressions developed to relate vertical stresses and relative

out-of-plane displacements combined with measurements of out-of-plane

displacements by transducers can be utilized for the prediction of induced

stresses at other critical web gap regions of the bridge and at critical locations

in the web gaps of similar bridges. The authors used the solid modeling

option available in ANSYS [6.10] for node and element generation due

to the complexity in geometry and details of the structural members of

the bridge. The ANSYS shell element (SHELL63) was adopted for model-

ing. SHELL63 has four nodes, each with six degrees of freedom, and is capa-

ble of modeling bending and membrane behavior. The bridge investigated

consisted of four spans with the web gap located near the central pier. Traffic

loads acting on the two outer spans, that is, remote from the web gap, had

less critical effects on the differential deflection between the exterior and

adjacent girders and hence on the out-of-plane distortion of the web gap

near the middle pier. Therefore, only the middle two spans were included

in the coarse finite element model. The weld connecting the girder flanges

to the web was modeled with shell elements that have variable thickness. To

connect the nodes corresponding to the plate elements of the bridge deck

and girders, rigid link elements were used. This was defined in ANSYS using

constraint equations with the nodes along the flange and the deck labeled as

master and slave nodes. The ends of the two spans representing the cut sec-

tions near piers opposite to the central pier were modeled by imposing fixed

boundary conditions at these locations. The support provided by the central

pier was modeled as a roller support that restrained the displacement in the

direction perpendicular to the plane of the deck. The web gap under inves-

tigation was located near the central pier. The size of the elements in the web

gap region of the coarse model did not coincide with the spacing of the strain

gages that was utilized in the field test and would not allow direct compar-

ison between the analytic and field test strain results. Hence, a submodel near

the vicinity of the web gap region was built to ensure better accuracy in cap-

turing the local distortion behavior. The submodel of the web gap region
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included portions of the bridge deck, bridge girder, stiffener plate, and cross

bracing. The effect of the location of the cutoff boundaries on the stress and

strain results was also investigated. This was accomplished by comparing the

results obtained from the submodel near the cut boundaries with those

obtained from the coarse model. The sensitivity study showed that including

a portion that is 25 in. (635 mm) long on each side of the stiffener would be

sufficient to accurately analyze the web gap region. The common size of the

elements used to idealize the components included in the submodel was

0.25 in. (6.35 mm) by 0.25 in. (6.35 mm). The total number of elements

in the submodel was about 50,000. Mesh sensitivity by considering smaller

element sizes was also examined; however, the differences in the results were

negligible.

Zhou et al. [7.24,7.25] investigated steel bridges for high-speed trains,

which may be vulnerable to excessive fatigue damage owing to stronger

dynamic effects induced by the increased train speed. In part I [7.24], the

authors conducted dynamic tests on a composite railway bridge for high-

speed trains. In addition, a detailed finite element model of the bridge

was developed and validated against the dynamic test results. Six types of

structural details in the bridge were considered for fatigue evaluation.

The stress history of each concerned detail during a single train passage

was generated by the validated finite element model. The stress spectrum

was used to calculate the fatigue damage of each detail. Among various struc-

tural details, the load carrying fillet weld around the gusset plate of the diag-

onal bracing at the bridge bearing was predicted to be the most fatigue

critical detail. In the study, a general methodology for determination of

fatigue critical details was presented. In part II [7.25], the authors investi-

gated fatigue assessment based on the dynamic stresses predicted by different

approaches, that is, static analysis considering dynamic amplification factor,

direct dynamic analysis with a moving load model, or a train-bridge inter-

actionmodel. Due to the large size of the investigated bridge including seven

simply supported spans, the finite element model of the overall bridge would

result in a large computational cost. Therefore, a simplified model of a single

span was developed with appropriate boundary conditions on the rails and

the ballast to simulate the weak coupling between adjacent spans. The sec-

ond span from the bridge was modeled after the design drawings, by using

the general-purpose finite element software ABAQUS [1.29]. Due to sym-

metry, the span was divided into three types of segments, that is, segment A

at the bridge bearing, segment B1 in the external portion near the bearing,

and segment B2 in the internal portion close to the midspan. The segments
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B1 and B2 are identical in profile except for the plate thickness in webs and

bottom flanges. The diagonal and horizontal bracings were modeled by a

combination of beam elements in the central part and shell elements at

the ends. Couplings of six degrees of freedom were used to join the beam

element with the shell elements at a distance of roughly 0.8 m from the bolt

connection. The preloaded high-strength bolt connections were assumed to

be rigid, realized by TIE constraint between bolt holes and gusset plate. TIE

option in ABAQUS is a surface-based constraint used to make all the trans-

lational and rotational degrees of freedom equal for a pair of surfaces. Three

types of segments were assembled one by one to build up the global finite

element model of the second span. The steel box girder was simulated by

shell element S4, and the bracings were modeled by beam element B31

in combinationwith shell element S4. The ballast was assumed as continuum

with material properties as found in literature [7.26]. The concrete deck and

the safety barrier were modeled by brick element C3D8. The shear studs

were not explicitly modeled and TIE constraints were applied to connect

the concrete deck to the top flanges of the steel box girder. The FE model

contained about 84,000 shell elements, 6400 solid elements, and 1800 beam

elements, resulting in more than 85,500 nodes. The symmetrical vibration

modes of the span were predominantly excited by the train passages. There-

fore, symmetrical boundary conditions were adopted at the ends of the span.

The longitudinal translations and rotations of the rails and the ballast

were restricted. The bridge bearing system included two fixed bearings,

three bidirectional sliding bearings, and one unidirectional sliding bearing.

The bearing system allowed relative movements due to thermal expansion

and accommodated the bridge to movements due to live loads. The train

was composed of a locomotive followed by eight-passenger cars and another

locomotive. In the static and dynamic finite element analyses, the moving

load model, in which the train axles were represented by a series of moving

constant forces, was adopted to simulate the train passage. An ABAQUS user

subroutine DLOAD coded by FORTRAN was used to realize the loading

scheme of the train.

Finally, Liu et al. [7.27] investigated the performance of composite joints

in a truss bridge with double decks. Fatigue tests of three composite joints

with different connectors such as headed studs, concrete dowels, and perfo-

rated plates under constant repeated loading were carried out. The responses

of displacement, strain distribution, crack development, relative slip

between concrete, and steel were observed after different loading cycles.

The experimental results showed that the deflection increased almost
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linearly with applied load even after certain repeated loading cycles, but the

stiffness reduced gradually with the repeated loading cycles. No serious dam-

age occurred except tiny cracks at the steel-concrete interface caused by slip

after 2 million repeated loading cycles, which meant that all three composite

joints have good fatigue performance. Based on experimental works, 3-D

finite element models of composite joints were developed. The results from

finite element analysis were consistent with those from tests in terms of

strength and stiffness. In addition, the fatigue details involving reinforcing

bars, welding seams, and shear connectors were evaluated according to

related specifications. It was concluded that the presented overall investiga-

tion may provide reference for design and construction of composite joints

in composite truss bridges. The modeling of each composite joint was car-

ried out by using finite element method and software ANSYS [6.10]. The

solid elements (SOLID45) were used to simulate both concrete chord and

steel structures. As for composite action between concrete and steel trusses,

contact elements (TARGE170 and CONTA173) considering the adhesion

effects of steel-concrete interface were employed in numerical models.

When the surfaces are in contact, normal forces develop between two mate-

rials. On the contrary, if the contact element is in tension, the contact sur-

faces separate from each other resulting in no bonding development. In

terms of connectors, three spring elements (COMBIN14) for each stud were

applied to simulate shear and axial forces in three directions; gusset plate with

concrete dowels and perforated plate connectors were modeled by solid ele-

ments (SOLID45) and contact elements, reinforcing bars through the holes,

were not included for the reasons of simplification and safety. The free ends

of truss members were restrained as hinges like the same condition in the

test, and one end of concrete chord was subjected to uniformly distributed

load. Because the structure was almost in elastic state under design load that

was confirmed in static test, linear elastic analysis was used to investigate the

response at different load steps until to design load. More information

regarding recent investigations on steel-concrete composite bridges can

be found in the state-of-the-art review presented by Ranzi et al. [7.28].

7.3 FINITE ELEMENT MODELING AND RESULTS
OF EXAMPLE 1

The first example presented in this chapter is for a simply supported com-

posite steel plate girder tested by Mans [7.29], which is denoted in this study

as G1 as shown in Figure 7.1. The main objective of the test was to
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investigate the ultimate moment resistance and ductility of the composite

girder. The structural steel used in the test was a high-strength steel

HPS70Whaving a nominal yield stress of 482 MPa (70 ksi). The general lay-

out and dimensions of composite plate girder G1 are shown in Figure 7.1.

The composite plate girder had an overall length of 12,801 mm and a length

between supports equal to 12,192 mm. The steel plate girder had a web of

758.8�8.5 mm, an upper flange of 84.2�19.6 mm, and a lower flange of

362�19.7 mm. The flange and web portions of the steel plate girder of G1

had yield and ultimate tensile stresses of 556, 700 MPa and 583, 656 MPa,

respectively. The composite plate girder had an overall height of 979 mm.

The web of the steel plate girders was strengthened by stiffeners as shown in

Figure 7.1 to prevent shear failure. The concrete slab had a width of

1524 mm and a depth of 181 mm. The measured concrete cylinder strength

of G2 was 30.5 MPa. The concrete slab had reinforcement steel bars, as

6400.8 mm
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Figure 7.1 General layout and dimensions of composite girder G1.
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shown in Figure 7.1, of Grade 60 having a yield stress of 413 MPa (60 ksi).

The reinforcement bars were spaced at 203 mm longitudinally and trans-

versely. The top and bottom reinforcement bars had a cover of 44 mm.

The shear connectors were headed studs having a diameter of 19 mm and

a height of 114 mm. Eighty pairs of headed studs were used in the composite

plate girder G1 as shown in Figure 7.1. The composite plate girders were

subjected to a single concentrated load applied at midspan via a spreader

beam. The loading was applied in increments using displacement control.

The composite plate girder tested by Mans [7.29] was modeled in this

book using ABAQUS [1.29]. In order to obtain accurate results from the

finite element analysis, all the composite plate girder components must

be properly modeled. The composite plate girder components comprise

the steel plate girder, concrete slab, headed stud, and reinforcement bars.

The finite element analysis has accounted for the nonlinear material pro-

perties and geometry of the components as well as the interfaces between

the components that allowed the contact and bond behavior to be modeled

and the different components to retain its profile during the deformation of

the composite plate girder. The steel-concrete composite plate girder com-

ponents were modeled using 3-D solid elements (C3D8) available in the

ABAQUS [1.29] element library. The elements have three degrees of free-

dom per node and suit all the strengthened composite girders since lateral

torsional buckling of the steel beam compression flange is limited by the sur-

rounding concrete slab properly connected to the top flange via headed stud

shear connectors. Only half of the composite plate girder was modeled due

to symmetry as shown in Figure 7.2. The total number of elements used in

the model was 7958 elements. Different mesh sizes were tried to choose the

reasonable mesh that provides both reliable results and less computational

time. All the nodes in the middle symmetry surface were prevented to dis-

place in direction 2-2. The roller support nodes were prevented to displace

in direction 3-3 only. The load was applied in increments as concentrated

static loads at midspan, which is identical to the experimental investigation

[7.29]. The nonlinear geometry was included to deal with the large displace-

ment analysis.

The shear forces across the steel plate girder-concrete slab interface of G1

test [7.29] are transferred by the mechanical action of headed stud shear con-

nectors. The load-slip characteristic of headed stud is of great importance in

modeling the shear interaction between steel plate girder and concrete slab.

The region around the stud is a region of severe and complex stresses. The

load-slip characteristic of headed stud depends on many factors including
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type of concrete slab, diameter of stud, height of stud, strength of stud, and

concrete strength (see Section 5.6 of Chapter 5 in this book). Earlier exper-

imental and numerical investigations reported by the author [2.68,2.69] pro-

vided detailed information regarding the capacity and load-slip behavior of

headed stud shear connectors in composite girders with solid slabs. In this

study, the load-slip characteristic of the studs used in the test [7.29] was pre-

dicted based on the detailed experimental and numerical investigations

[2.68,2.69]. Following the same approach [2.68,2.69], the load-slip charac-

teristic of the stud was inserted in the finite element model (Figure 7.2) using

nonlinear springs in direction 2-2 at the location of the headed studs. On the

other hand, the vertical pressure between the concrete slab and the steel

beam was simulated by vertical rigid springs with high stiffness in direction

3-3 at the locations of the headed studs.

The steel plate girder-concrete slab interface was modeled by interface

elements available within the ABAQUS [1.29] element library. The method

requires defining two surfaces that are the master and slave surfaces. In

modeling the steel beam-concrete slab interface, the master surface within

the model was the top flange of the steel beam upper surface and the slave

surface was the bottom surface of the concrete slab. The interface elements

are formed between the master and slave surfaces and monitor the displace-

ment of the slave surface in relation to the master surface. When the two

surfaces remain in contact, the slave surface can displace relative to the

RC concrete slab

Bearing location

Steel girder

Vertical stiffener

2

1

3

Stud
connector
locations

Figure 7.2 Finite element mesh of composite beam G1.
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master surface based on the coefficient of friction between the two surfaces.

When the two surfaces are in contact, the forces normal to the master surface

can be transmitted between the two surfaces. When the two surfaces sepa-

rate, the relative displacement between the two surfaces can still be moni-

tored but the forces normal to the master surface cannot be transmitted.

However, the two surfaces cannot penetrate each other.

Concrete was modeled using the damaged plasticity model implemented

in the ABAQUS [1.29] material library. The model provides a general capa-

bility for modeling plain and reinforced concrete in all types of structures.

The concrete damaged plasticity model uses the concept of isotropic dam-

aged elasticity, in combination with isotropic tensile and compressive plas-

ticity, to represent the inelastic behavior of concrete. The model assumes

that the uniaxial tensile and compressive responses of concrete are charac-

terized by damaged plasticity. Under uniaxial compression, the response

is linear until the value of proportional limit stress is reached, which is

assumed to equal 0.33 times the design compressive strength. Under uniaxial

tension, the stress-strain response follows a linear elastic relationship until the

value of the failure stress. The tensile failure stress was assumed to be 0.1

times the compressive strength of concrete that is assumed to be equal to

0.67 times the measured concrete cube strength. The concrete cube strength

is assumed to be equal to 1.25 the concrete cylinder strength. The softening

stress-strain response, past the maximum tensile stress, was represented by a

linear line defined by the fracture energy and crack band width. The fracture

energy Gf (energy required to open a unit area of crack) was taken as

0.12 N/mm as recommended by the CEB [7.30] and ABAQUS manual

[1.29]. The fracture energy divided by the crack band width was used to

define the area under the softening branch of the tension part of the

stress-strain curve. The crack band width was assumed as the cubic root

of the volume between integration points for a solid element, as recom-

mended by CEB [7.30]. The reinforcement bars used in the concrete slab

of the composite plate girder test [7.29] were modeled using the (REBAR

option) available in the ABAQUS [1.29] element library. Further details

regarding the damaged plasticity model and the modeling of reinforcement

bars can be found in Section 5.4.3.2 of Chapter 5 in this book.

The stress-strain curves for the structural steel and reinforcement bars

given in the EC3 [2.11] and EC2 [2.27], respectively, were adopted for

the finite element model of the composite plate girder G1 with measured

values of the yield stress and ultimate stresses reported in Ref. [7.29]. The

material behavior provided by ABAQUS [1.29] (using the PLASTIC
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option) allows a nonlinear stress-strain curve to be used (see Section 5.4.2 of

Chapter 5 in this book). The first part of the nonlinear curve represents the

elastic part up to the proportional limit stress with Young’s modulus of (E)

200 GPa and Poisson’s ratio of 0.3 that were used in the finite element

model.

The developed finite element model for the composite plate girder G1

(see Figure 7.2) was verified against the test results detailed in Ref. [7.29].

The failure loads, failure modes, and load-midspan deflection curves

obtained experimentally and numerically using the finite element model

were compared. The deformed shapes of composite plate girder G1 at failure

observed numerically are shown in Figure 7.3, which is in good agreement

with the experimental observations reported in Ref. [7.29]. The failure

mode observed experimentally and confirmed numerically was combined

steel yielding (SY) in the bottom flange of the steel plate girder and concrete

crushing (CC). The data obtained from ABAQUS [1.29] have shown that

the von Mises stresses at the maximum stressed fibers at the bottom flanges

at midspan exceeded the measured yield stress as well as the stresses in

the concrete slab at midspan reached the concrete compressive strength.

In Figure 7.4, the stress (principal stresses in direction 2-2) contours at failure

of the composite plate girder G1 are plotted. It can be seen that the yield

stresses were reached at midspan in the concrete (compressive stresses with

negative sign) and lower steel plate girder flanges (tensile stresses with pos-

itive sign). In addition, in Figure 7.5, the plastic strain (principal strains in

direction 2-2) contours at failure of the composite plate girder G1 are

Figure 7.3 Deformed shape at failure of composite beam G1 (enlarged 10 times).
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plotted. It can be seen that the plastic strains were concentrated at midspan in

the concrete (compressive strains with negative sign) and lower steel plate

girder flange (tensile strains with positive sign). Furthermore, in Figure 7.6,

the vonMises yield stress contours at failure of the composite plate girder G1

are plotted. It can be seen that the yield stresses were reached at midspan in

the lower flange of the steel plate girder. The load-midspan deflection curves

predicted experimentally and numerically were compared as shown in

Figure 7.4 Stress (principal in direction 2-2) contours at failure of composite beam G1
(enlarged 10 times).

Figure 7.5 Plastic strain (principal in direction 2-2) contours at failure of composite
girder G1 (enlarged 10 times).
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Figure 7.7. It can be shown that generally good agreement was achieved

between experimental and numerical relationships. The ultimate failure load

observed in the test [7.29] was 1743.7 kN at a deflection of 95.6 mm, while

the ultimate failure load predicted from the finite element analysis was

1765.5 kN at a deflection of 97.7 mm. The finite element failure load

was 1.3% higher than that observed in the test.

Figure 7.6 Stress (von Mises) contours at failure of composite girder G1 (enlarged 10
times).
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Figure 7.7 Load-midspan deflection of composite girder G1 obtained experimentally
and numerically.
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7.4 FINITE ELEMENT MODELING AND RESULTS
OF EXAMPLE 2

The second example presented in this chapter is for another simply sup-

ported composite steel plate girder tested by Mans [7.29], which is denoted

in this study as G2 as shown in Figure 7.8. Once again, the main objective of

the test was to investigate the ultimate moment resistance and ductility of the

composite girder. The structural steel used in the test was a high-strength

steel HPS70W having a nominal yield stress of 482 MPa (70 ksi). The gen-

eral layout and dimensions of composite plate girder G2 are shown in Fig-

ure 7.8. Similar to G1, the composite plate girder G2 had an overall length of

12,801 mm and a length between supports equal to 12,192 mm. The steel

plate girder had a web of 760.4�8.9 mm and upper and lower flanges of

182.6�19.6 mm. The measured flange and web portions of the steel plate

girder of G2 had yield and ultimate tensile stresses of 556, 700 MPa and 583,

6400.8 mm

1168.4 1854.2 1133.5 85.7304.8

2184.4 mm

181

182.6×19.6

760.4×8.9

182.6×19.6

1854.2

Elevation (a)

(b)

B

B

Cross section A-A 

P

980.6

Figure 7.8 Elevation and cross section of composite girder G2.
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656 MPa, respectively. The web of the steel plate girders was strengthened

by stiffeners as shown in Figure 7.8 to prevent shear failure. The concrete

slab had a width of 2184 mm and a depth of 181 mm. The composite plate

girder had an overall height of 980 mm. The measured concrete cylinder

strength of G2 was 52.5 MPa. The concrete slab had reinforcement steel

bars, as shown in Figure 7.8, of Grade 60 having a yield stress of

413 MPa (60 ksi). The reinforcement bars were spaced at 209 mm longitu-

dinally and 356 mm transversely. The top and bottom reinforcement bars

had a cover of 44 mm. The shear connectors were headed studs having a

diameter of 19 mm and a height of 114 mm. Sixty pairs of headed studs were

used in the composite plate girder G2 as shown in Figure 7.8. The composite

plate girders were subjected to a single concentrated load applied at midspan

via a spreader beam. The loading was applied in increments using displace-

ment control.

The composite plate girder G2 tested byMans [7.29] was modeled in this

book using ABAQUS [1.29]. The finite element analysis has accounted for

the nonlinear material properties and geometry of the components as well as

the interfaces between the components. The steel-concrete composite plate

girder components were modeled using 3-D solid elements (C3D8) avail-

able in the ABAQUS [1.29] element library. Only half of the composite

plate girder was modeled due to symmetry as shown in Figure 7.9. The total

number of elements used in the model shown in Figure 7.9 was 7266. Dif-

ferent mesh sizes were tried to choose the reasonable mesh that provides

Figure 7.9 Finite element mesh of composite girder G2.
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both reliable results and less computational time. All the nodes in the middle

symmetry surface were prevented to displace in direction 2-2. The roller

support nodes were prevented to displace in direction 3-3 only. The load

was applied in increments as concentrated static loads at midspan, which

is identical to the experimental investigation [7.29]. The nonlinear geometry

was included to deal with the large displacement analysis.

The shear forces across the steel plate girder-concrete slab interface of

G2 test [7.29] are transferred by the mechanical action of headed stud

shear connectors. Similar to G1, in this study, the load-slip characteristic

of the studs used in the test [7.29] was predicted based on the detailed exper-

imental and numerical investigations [2.68,2.69].

Under uniaxial compression, the response is linear until the value of pro-

portional limit stress is reached which is assumed to equal 0.33 times the

design compressive strength. Under uniaxial tension, the stress-strain

response follows a linear elastic relationship until the value of the failure

stress. The tensile failure stress was assumed to be 0.1 times the compressive

strength of concrete which is assumed to be equal to 0.67 times the measured

concrete cube strength. The concrete cube strength is assumed to be equal to

1.25 the concrete cylinder strength. The softening stress-strain response, past

the maximum tensile stress, was represented by a linear line defined by the

fracture energy and crack band width. The fracture energy Gf (energy

required to open a unit area of crack) was taken as 0.12 N/mm as recom-

mended by the CEB [7.30] and ABAQUS manual [1.29]. The fracture

energy divided by the crack band width was used to define the area under

the softening branch of the tension part of the stress-strain curve. The crack

band width was assumed as the cubic root of the volume between integra-

tion points for a solid element, as recommended by CEB [7.30]. The rein-

forcement bars used in the concrete slab of the composite plate girder test

[7.29] were modeled using the (REBAR option) available in the ABAQUS

[1.29] element library. Further details regarding the damaged plasticity

model and the modeling of reinforcement bars can be found in Sections

5.4.3.2 of Chapter 5 in this book.

The stress-strain curves for the structural steel and reinforcement bars

given in the EC3 [2.11] and EC2 [2.27], respectively, were adopted for

the finite element model of the composite plate girder G1 with measured

values of the yield stress and ultimate stresses reported in Ref. [7.29]. The

material behavior provided by ABAQUS [1.29] (using the PLASTIC

option) allows a nonlinear stress-strain curve to be used (see Section 5.4.2

of Chapter 5 in this book). The first part of the nonlinear curve represents
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the elastic part up to the proportional limit stress with Young’s modulus of

(E) 200 GPa and Poisson’s ratio of 0.3 that were used in the finite element

model. Similar to the composite plate girder G1, the steel plate girder-

concrete slab interface was modeled by interface elements available within

the ABAQUS [1.29] element library.

The developed finite element model for the composite plate girder G2

(see Fig. 7.9) was verified against the test results detailed in Ref. [7.29].

The failure loads, failure modes, and load-midspan deflection curves obtained

experimentally and numerically using the finite element model were com-

pared. The deformed shapes of composite plate girder G2 at failure observed

numerically are shown in Figure 7.10, which is in good agreement with the

experimental observations reported in Ref [7.29]. The failure mode observed

experimentally and confirmed numerically was combined steel yielding (SY)

in the bottom flange of the steel plate girder and concrete crushing (CC). The

data obtained fromABAQUS [1.29] have shown that the vonMises stresses at

the maximum stressed fibers at the bottom flanges at midspan exceeded

the measured yield stress as well as the stresses in the concrete slab at

midspan reached the concrete compressive strength. In Figure 7.11, the stress

(principal stresses in direction 2-2) contours at failure of the composite plate

girder G2 are plotted. It can be seen that the yield stresses were reached at

midspan in the concrete (compressive stresses with negative sign) and lower

steel plate girder flanges (tensile stresses with positive sign). In addition, in

Figure 7.12, the plastic strain (principal strains in direction 2-2) contours at

failure of the composite plate girder G2 are plotted. It can be seen that the

Figure 7.10 Deformed shape at failure of composite girder G2 (enlarged 10 times).
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plastic strains were concentrated at midspan in the concrete (compressive

strains with negative sign) and lower steel plate girder flange (tensile strains

with positive sign). Furthermore, in Figure 7.13, the von Mises yield stress

contours at failure of the composite plate girder G2 are plotted. It can be seen

that the yield stresses were reached at midspan in the lower flange of the steel

plate girder. The load-midspan deflection curves predicted experimentally

and numerically were compared as shown in Figure 7.14. It can be shown that

generally good agreement was achieved between experimental and numerical

Figure 7.11 Stress (principal in direction 2-2) contours at failure of composite girder G2
(enlarged 10 times).

Figure 7.12 Plastic strain (principal in direction 2-2) contours at failure of composite
girder G2 (enlarged 10 times).
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relationships. The ultimate failure load observed in the test [7.29] was

1432.3 kN at a deflection of 177.8 mm, while the ultimate failure load pre-

dicted from the finite element analysis was 1424.9 kN at a deflection of

177.1 mm. The finite element failure load was 0.6% lower than that observed

in the test.

Figure 7.13 Stress (von Mises) contours at failure of composite girder G2 (enlarged 10
times).
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Figure 7.14 Load-midspan deflection of composite girder G2 obtained experimentally
and numerically.
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7.5 FINITE ELEMENT MODELING AND RESULTS
OF EXAMPLE 3

After modeling separate composite plate girders used in bridges, it is now

possible to model a full-scale four-span continuous steel-concrete composite

bridge, which is detailed in this example 3. The composite bridge was field

tested by Burdette and Goodpasture [7.31] to determine ultimate load

capacity and mode of failure of the composite bridge. The overall width

of the composite bridge width was 10,515.5 mm and the four spans were

of 21,336, 27,432, 27,432, and 21,336 mm, with a total length of

97.536 m as shown in Figures 7.15 and 7.15. As shown in Figure 7.15,

the bridge had a haunched concrete slab with a constant thickness between

haunches of 177.8 mm. The concrete slab rested on four W36�170 steel

beams spaced at 2540 mm. The measured flange and web portions of the

steel beams had yield and ultimate tensile stresses of 275 and 450 MPa,

respectively. The concrete slab had a cylinder strength of 47.4 MPa. The

composite bridge was loaded at eight locations as shown in Figure 7.16

2606

2606

1829

1646

10,363 12,8024267

21,336 mm 27,432 27,432 21,336

C

C

Bearing
location 

1829

Figure 7.16 Loading configuration of a four-span continuous steel-concrete composite
bridge.

10,515.5 mm

3×2540 mm

177.8

1447.8 1447.8 

W36×170 

Figure 7.15 Cross section C-C of a four-span continuous steel-concrete composite
bridge.
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simulating the wheel loads of one HS truck in each lane. The point load

locations were chosen to produce the maximum positive moment near mid-

span of the second span. The loads were applied at each of the eight load

points through a using 900 kN capacity center hold jack. Since the slab rein-

forcement and cross-frame details were not reported [7.31], it was calculated

according EC2 [2.27] to be T16 spaced at 150 mm transversely and longi-

tudinally. The reinforcement steel bars were Grade 40 having a yield stress of

275 MPa (40 ksi). The top and bottom reinforcement bars had a cover of

40 mm. Cross-frame members were also calculated according to EC3

[2.11] to be two angles back to back of 120�120�12 spaced at average

distances of 7 m.

The full-scale steel-concrete composite plate girder tested by Burdette

and Goodpasture [7.31] was modeled in this book using ABAQUS

[1.29]. In order to obtain accurate results from the finite element analysis,

all the bridge components must be properly modeled. The composite bridge

components comprise the steel beams, concrete slab decks, headed stud,

reinforcement bars, and support locations. The finite element analysis has

accounted for the nonlinear material properties and geometry of the com-

ponents as well as the interfaces between the components that allowed the

contact and bond behavior to be modeled and the different components to

retain its profile during the deformation of the composite bridge. The steel-

concrete composite bridge were modeled using a combination of 3-D solid

elements (C3D8 and C3D6) available in the ABAQUS [1.29] element

library. Only half of the composite bridge was modeled due to symmetry

as shown in Figure 7.17. The total number of elements used in the model

was 9312 elements. Different mesh sizes were tried to choose the reasonable

mesh that provides both reliable results and less computational time. All the

nodes in the middle symmetry surface were prevented to displace in dir-

ection 1-1. The roller support nodes were prevented to displace in direction

3-3 only, while hinged supports were prevented to displace in directions

2-2 and 3-3 only. The load was applied in increments as concentrated static

loads at midspan using the Riks method, which is identical to the experi-

mental investigation [7.31]. The steel beams were prevented to displace lat-

erally in direction 2-2 at the locations of the lateral restraints. The nonlinear

geometry was included to deal with the large displacement analysis.

The shear forces across the steel beam-concrete slab interface of the

bridge test [7.31] were modeled following the same approach [2.68,2.69],

and the load-slip characteristic of the stud was inserted in the finite element

model (Figure 7.17) using nonlinear springs in direction 2-2 at the location
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of the headed studs. On the other hand, the vertical pressure between the

concrete slab and the steel beam was simulated by vertical rigid springs with

high stiffness in direction 3-3 at the locations of the headed studs. The steel

beam-concrete slab interface was modeled by interface elements available

within the ABAQUS [1.29] element library. The stress-strain curves for

the structural steel and reinforcement bars given in the EC3 [2.11] and

EC2 [2.27], respectively, were adopted for the finite element model of

the composite bridge with measured values of the yield stress and ultimate

stresses reported in [7.31]. The material behavior provided by ABAQUS

[1.29] (using the PLASTIC option) allows a nonlinear stress-strain curve

to be used (see Section 5.4.2 of Chapter 5 in this book). The first part of

the nonlinear curve represents the elastic part up to the proportional limit

stress with Young’s modulus of (E) 200 GPa and Poisson’s ratio of 0.3 that

were used in the finite element model.

Concrete was modeled using the damaged plasticity model implemented

in the ABAQUS [1.29] material library. Under uniaxial compression, the

response is linear until the value of proportional limit stress is reached which

is assumed to equal 0.33 times the design compressive strength. Under uni-

axial tension, the stress-strain response follows a linear elastic relationship

until the value of the failure stress. The tensile failure stress was assumed

to be 0.1 times the compressive strength of concrete which is assumed to

be equal to 0.67 times the measured concrete cube strength. The concrete

cube strength is assumed to be equal to 1.25 the concrete cylinder strength.

Figure 7.17 Finite element mesh of half of the composite bridge.

634 Ehab Ellobody

Figure 7.17


The softening stress-strain response, past the maximum tensile stress, was

represented by a linear line defined by the fracture energy and crack band

width. The fracture energyGf (energy required to open a unit area of crack)

was taken as 0.12 N/mm as recommended by the CEB [7.30] and ABA-

QUS manual [1.29]. The fracture energy divided by the crack band width

was used to define the area under the softening branch of the tension part of

the stress-strain curve. The crack band width was assumed as the cubic root

of the volume between integration points for a solid element, as recom-

mended by CEB [7.30]. The reinforcement bars used in the concrete slab

of the composite plate girder test [7.29] were modeled using the (REBAR

option) available in the ABAQUS [1.29] element library. Further details

regarding the damaged plasticity model and the modeling of reinforcement

bars can be found in Sections 5.4.3.2 of Chapter 5 in this book.

The developed finite element model for the composite bridge (see Fig-

ure 7.17) was verified against the test results detailed in Ref. [7.31]. The fail-

ure loads, failure modes, and load-midspan deflection curves obtained

experimentally and numerically using the finite element model were com-

pared. The deformed shapes of the composite bridge at failure predicted

numerically are shown in Figure 7.18, which is in good agreement with

the experimental observations reported in Ref. [7.31]. The failure mode

observed experimentally and confirmed numerically was steel yielding

(SY) in the bottom flange of the steel beam. The data obtained from ABA-

QUS [1.29] have shown that the vonMises stresses at the maximum stressed

fibers at the bottom flanges of the steel beam at midspan exceeded the mea-

sured yield stress. On the other hand, the stresses in the concrete slab at

Figure 7.18 Deformed shape at failure of the composite bridge (enlarged 10 times).
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midspan did not reach the concrete compressive strength. In Figure 7.19, the

stress (principal stresses in direction 2-2) contours at failure of the composite

bridge are plotted. It can be seen that the yield stresses were not reached at

midspan in the concrete (compressive stresses with negative sign) and the

yield stresses were reached in the lower steel beam flanges (tensile stresses

with positive sign). In addition, in Figure 7.20, the plastic strain (principal

strains in direction 2-2) contours at failure of the composite bridge are plot-

ted. It can be seen that the plastic strains were concentrated at midspan the

lower steel beam flange (tensile strains with positive sign). Furthermore, in

Figure 7.21, the von Mises yield stress contours at failure of the composite

bridge are plotted. It can be seen that the yield stresses were reached at

Figure 7.19 Stress (principal in direction 2-2) contours at failure of the composite
bridge (enlarged 10 times).

Figure 7.20 Plastic strain (principal in direction 2-2) contours at failure of the composite
bridge (enlarged 10 times).

636 Ehab Ellobody

Figure 7.19
Figure 7.20


midspan in the lower flange of the steel beam. The load-midspan deflection

curves predicted experimentally and numerically were compared as shown

in Figure 7.22. It can be shown that generally good agreement was achieved

between experimental and numerical relationships. The ultimate failure load

observed in the test [7.31] was 5475.8 kN at a deflection of 414 mm, while

the ultimate failure load predicted from the finite element analysis was

5525.5 kN at a deflection of 415.2 mm. The finite element failure load

was 0.91% higher than that observed in the test.

Figure 7.21 Stress (von Mises) contours at failure of the composite bridge (enlarged
10times).
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Figure 7.22 Load-deflection relationship of the steel girder at section C-C obtained
experimentally and numerically.
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Altunişik, A. C., 562–564

Amadio, C., 102–104

American Association of State Highway and

Transportation Officials

(AASHTO), 22–23

CVN toughness and temperature zones

of, 58t

design truck specified in, 126f

dynamic load allowance in, 126t

extreme force effect specified in, 125–127

flange width provisions studied and,

30–31

load factors for permanent loads in, 159t

load factors specified in, 158t

LRFD adopted by, 157–159

specialized limit state design specified by,

164–166

structural steel categories in, 58

vehicular live loading in, 125

American Railway Engineering and

Maintenance-of-Way Association

(AREMA), 119–120

Alternate E80 live load specified in, 119f

Cooper E80 live loading specified in, 119f

American Specifications, 4–5, 41–42, 49t

Analysis procedures, 517–518

Analytic method, 377f

Anderson, D., 188

Ansourian, P., 100

ANSYS (software), 560

finite element models using, 608–609,

617–618

shell elements in, 607–608

solid modeling option in, 614–616

APDL. See Advanced parametric design

language

Arch bridges, 10–13

Arch steel bridge, carrying pipelines, 9f

Arch-type steel highway bridges,

562–564

AREMA. See American Railway

Engineering and Maintenance-of-

Way Association

Aspect ratio, 175f, 497–498, 498f

ASTM A307, 50–54

ASTM A325, 50–51

ASTM A563, 50–51

ASTM A603, 51

ASTM A709

bridge steel specifications from, 49t

material ductility specifications in, 49t, 57

steel grades and strengths, 48–50, 54t

ASTM E8, 51–54

ASTM F436M, 50–51

Average static axle load, 607–608

Axial compressive force

on diagonal bracing member, 248–249,

252, 318–319, 354, 392, 394–395,

448

on upper chord member U2, 433–434

on upper chord member U3, 294, 296,

298

on upper chord member U4, 432

on upper chord member U5, 292

on vertical member D2, 442–443

on vertical member D4, 443–444

on vertical member D5, 309

on vertical member V1, 437–438

on vertical member V2, 439

on vertical member V5, 300, 301, 303,

304, 307

on wind bracings, 252

642 Index



Axially loaded structural steel members, 542

Axisymmetric solid elements, 478–479,

478f, 479f

Axle live loads, 367–368, 367f

B
Backward Euler method, 536

Bailey, C. G., 498–500, 500f

Balakrishnan, S., 101–102

Ballasted floor bridge, 7–10, 10f

Bapat, A. V., 606–607

Barth, K. E., 603

Beam bending theory, 30–31

Beam-to-beam joint, 611–613

Bearing classifications, 209–210

Bearing plate, 259–260

Bearing resistance, 197

Bending moment

analytic method for main plate girder

with, 377f

in cross girder design, 273, 274

of cross girders, 230, 231

deck truss highway steel bridge, of cross

girders, 415, 416

double-track plate girder deck railway

steel bridge, of main plate girders,

235, 236, 242

double-track plate girder pony railway

steel bridge

of cross girders, 373, 374, 374f

on main plate girders, 378, 379, 384

on highway steel-concrete composite

bridges, 346

hinged bearing with, 262

influence line method for main plate

girder with, 377f

intermediate composite plate girder at

quarter span and, 348f

intermediate composite plate girder with

loading for, 346f

intermediate cross girders with live loads

and, 272f, 273f, 415f

intermediate stringers with loading for,

268f, 410f

Load Model 71 and, 587–590

loading on stringers with, 226f

on main plate girders, 234f

of pin connections, 202f

of pin in EC3, 202f

plate girder bridges and, 567–568

resistance, 168–170

in small-scale plate girder, 568–569, 568f

in stringer design, 226–227, 269, 369,

410–411

stringers with loading for, 226f, 368f

through truss highway steel bridge, in

stringer design, 269

Bending resistance

of composite plate girders, 181–183

cross girder design and, 275

of cross girders, 232, 375, 417

in EC4, 181–183

of intermediate composite plate girder,

347f, 349f

of main plate girders, 238, 381

of steel and steel-concrete composite plate

girder bridges, 181–183

in stringer design, 228, 270, 370, 412

Bending-dominated problems, 475–477

Bilinear stress-strain relation, 71f

Body forces, 551–552

Boeraeve, P., 612–613

Bogaert, P. V., 557–558

Bolted connections

bolted and welded joints and, 194–200

in EC3, 195t, 199t

Bolts

bearing resistance of, 197

design tension resistance of, 197–198

for diagonal member D1, 326, 335, 456

for diagonal member D2, 327, 336, 464

for diagonal member D3, 329, 337

for diagonal member D4, 330, 337, 466

for diagonal member D5, 332, 337, 461

EC3 grades for, 55

EC3 recommendations on, 252–253,

395–396

field splice and number of, 254–256,

398–399

with gusset plates, 309–310

horizontal and vertical shear on, 356–357,

396–398

main truss joints and, 326, 327f

nominal tensile strengths of, 50t

643Index



Bolts (Continued)

shear resistance per shear plane of, 195

slip factor for preloaded, 200t

types of, 50–51

vertical and horizontal shear on, 254–256

for vertical member D1, 463

for vertical member D2, 456

for vertical member D3, 465

for vertical member D4, 460

for vertical member V1, 326, 334, 456, 462

for vertical member V2, 326, 334, 463

for vertical member V3, 328, 335, 457,

464

for vertical member V4, 330, 337, 459, 465

for vertical member V5, 331, 337,

460–461, 466

for vertical member V6, 333, 337

for vertical member V11, 338, 467

vertical shear on, 254–256, 356–357,

396–398

Boundary conditions, 535–537, 539–540

bridge components with loads and,

551–553

direct or type format of, 552–553

displacement-type, 552–553

in finite elementmodels, 552–553, 606–607

overconstrained, 553

Bouras, C., 559–560

Bowknot integral joints, 30

Box girder bridges, 10–13, 12f

Bracing systems, 15–18

Brackus, T. R., 608–609

Bradford, M. A., 105–106

Braking and acceleration forces, 134–135

Bridge analysis model, 610–611

Bridge bearings

commonly used, 210t

cylindrical and flat-sided roller, 218f

design of, 209–220

design rules for, 214–216

EC3 design of, 214–215

pot, 211f

proprietary bearings as, 210–212

shear force on, 215–216

twin-roller-fabricated steel, 213f

Bridge behavior, 39

Bridge components

boundary conditions and loads on,

551–553

finite element mesh for, 496–501

finite element method modeling, 469,

496–497

geometric imperfections and stresses on,

469–470

linear and nonlinear analysis, 516–526

linear eigenvalue buckling analysis in,

522–525

materially and geometrically nonlinear

analyses in, 525–526

live load influence on, 113

material modeling, 501–516

of concrete, 503–516

of structural steel, 501–503

simulating behavior of, 470–471

stability studied of, 6–7

Bridge decks, 154t, 605

Bridge fatigue response, 35–36

Bridge steels

American Standards for, 49t

ASTM A709 specifications for, 49t

for fabricated steel bearings, 216–218

ferrous material classes of, 216t

fracture toughness of, 47–48

Bridge Welding Code, 59

British Standards, 4–5

Brittle fracture, 58–59, 513–515

Brunell, G., 29–30

BS 5400, 88f

BS EN 1337-1, 214–215, 451

BS EN 1337-4, 216t, 218–219, 219f

BS EN 1337-6, 219–220

Buckling analysis, 62, 568–569.

See also Eigenvalue buckling analysis

inelastic, 27–28

iterative system, 23–24

linear eigenvalue, 519, 522–525

Buckling lengths, 17–18

Buckling modes, 524–525, 578

Buckling resistance moments, 170–171

Burdette, E. G., 632–633

C
C3D6 elements, 498–500

C3D8 elements, 498–500

644 Index



C3D8R elements, 475–477

Cables, 51

Cable-stayed bridge, 13f, 558–559

Caglayan, O., 562, 565–566

Cai, C. S., 101–102

Carbon equivalent (CE), 59

Carbon steel, 48, 216–218

Carden, L. P., 605–606

Carriageway classification, 13–15

Carriageway width, 121–122

Cast steel, 216–218

Cavadas, F., 28–29

Cavity radiation, 536

CC. See Concrete crushing

CE. See Carbon equivalent

Centenary double-deck bridges, 28–29

Centers of gravity, 256–258

Centrifugal forces, 127–128, 135–136, 135t

Centroid, 351

Chang, C. J., 32

Chang, S. P., 101–102

Chapman, J. C., 101–102

Charpy V-notch (CVN) test, 58, 58t

Chen, Y. W., 24–25

Cheng, B., 30

Cheng, J., 23–24

Choi, D. H., 23–24, 565–566

Choi, J. H., 34–35

Chung, W., 603–605

Classical plasticity model, 502, 503

COBENA (finite element package),

101–102

Collapse loads, 27–28

Collision forces

accidental forces and, 146

under bridges, 145–146

EC1 and curbs with, 147f

on structural members, 148–149

on vehicle restraint systems, 148

Column-type buckling behavior, 177–178

Combined highway-railway bridges, 7–10

Combined highway-railway truss steel

bridges, 8f

Compact sections, 471

Component load distribution, 219f

Composite beams

deformed shape at failure of, 623f

finite element mesh of, 104f, 621f

finite element model of, 103f

headed stud capacities and, 187

headed studs capacities and, 188

hollow core concrete units prestressed

joints and, 85f

moment-deflection behavior of, 104–105

with prestressed hollow core concrete

slabs, 189

prestressed hollow core concrete slabs

with shear connection in, 93–96

with profiles steel deck spanning, 84f

shear connection with profiled steel

decking and, 92–93

shear connection with solid slab and,

88–91

steel-concrete, 37–39

stress contours at failure of, 624f

Composite bridges. See also specific composite

bridges

deck’s fatigue behavior of, 32–33

deformed shape at failure of, 635–637,

635f

finite element mesh of, 634f

finite element model for, 635–637

plastic strain contours at failure of, 636f

single-box steel-concrete deck of,

611–612

steel, 610–611

steel-concrete, 48–50, 54–55, 62–64

stress contours at failure of, 636f

stress (von Mises) contours at failure of,

637f

thin-walled box girder steel-concrete, 602

Composite construction, 84–85

Composite girders

crack formations in, 90f

elevation and cross section of, 626f

finite element method modeling,

100–101

layout and dimensions of, 619f

load-midspan deflection of, 625f, 631f

numerical modeling of, 99–107

plastic strain contours at failure of, 630f

stress contours at failure of, 630f

stress (von Mises) contours at failure of,

625f, 631f

645Index



Composite girders (Continued)

ultimate moment resistance of, 626–627

Composite joints, 617–618

Composite plate girders.

See also Intermediate composite plate

girder; Steel and steel-concrete

composite plate girder bridges

ABAQUS modeling, 620, 627–628

bending resistance of, 181–183

cross section at supports of, 350f

deformed shapes at failure of, 629–631,

629f

finite element model for, 623–625

as mid- and quarter-span, 347–352

shear connection of, 349–352

shear forces at supports of, 350f

shearing forces on, 349

steel-concrete, 179–189, 627–628, 633

Composite sandwich bridge deck, 37

Composite steel beam, 104–105

Composite steel grid bridge, 603–605

Composite steel grid deck, 34–35

Composite steel plate girder bridge,

605–606

Composite steel-concrete beams, 105–106

Composite steel-solid slab floor, 100

Composite steel-solid slab girders,

102–104

Compression force, 191, 430f

Compression members, 17–18, 191–192,

308–309

Compression members U1 and U2, 433f

Compression upper chord member U3 and

U4, 429–432

Compression vertical member V1, 305–307,

306f, 436–438

Compression vertical member V2, 303–305,

303f

Compression vertical member V3, 302–303,

302f

Compression vertical member V4, 300–301,

300f

Compression vertical member V5, 298–300,

299f

Compressive crushing, 510

Compressive hardening data, 515f

Compressive inelastic strain, 515–516, 515f

Compressive stresses, 62–64

Computer programs, 521–522

Concentrated loads, 551

Concrete

bilinear stress-strain relation in, 71f

compressive and tensile stresses on, 62–64

concrete damaged plasticity model for,

509–516

confined, 72–73, 73f

cracking of, 185–186

creep and shrinkage of, 67–69

cross section design, stress-strain relations

in, 70–72

damaged plasticity model used for, 622,

628, 634–635

EC2 specifying compressive strength of,

64

EC2 specifying strength and deformation

of, 65t, 66–67

flexural tensile strength of, 72

inelastic behavior of, 622

material modeling of, 503–516

modeling stress-strain behaviors of,

515–516

models for crack formations and

compression in, 508–509

modulus of elasticity in, 66–67

nominal unrestrained drying shrinkage

values of, 68t

nonlinear material properties of, 62–73

nonlinear structural analysis of, 69–70

parabolic-rectangle diagram of, 71f

pretension type of, 481

rebar’s interaction with, 513

rectangular stress distribution of, 70–72,

71f

shear connections and compressive

strength of, 91

smeared cracking in, 503–509

stresses on, 64–67

stress-strain curve in compressed,

181–183

tensile strength of, 64–66

uniaxial behavior of, 504f

Concrete crushing (CC), 629–631

Concrete damaged plasticity model,

509–516

646 Index



Concrete slabs

compression and simple relationships in,

183f

full-scale specimens of, 500f

grillage analysis used on, 609–610

shear connections in, 496–497

solid reinforced, 187

steel beam’s complete and partial

connection to, 87–88

symmetry in finite element mesh used for,

498–500, 500f

Confined concrete, 72–73, 73f

Connecting elements, 484–485, 608–609

Conservative interaction formula, 307–308

Construction decks, 131f

Contact analysis, 485–486

Contact domains, 489–490

Contact elements, 492–493

Contact exclusions, 489–490

Contact pair approach, 486f, 487–488,

491

Contact surfaces classifications, 485–486

Continuum shell elements, 471–473

Conventional reduced-integration shell

elements, 474

Conventional shell elements, 471–473

Convergence criterion, 521–522

Convergence studies, 497–498

Cooper E80 loading, 119–120, 119f

Corte, W. D., 557–558

COSMOS (finite element package), 97–98,

562, 565–566

Coulomb friction model, 493–496, 494f

CPE3 elements, 478

Crack band width, 622, 628, 634–635
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fatigue, 27–28, 614–616

shear modulus reduction for, 508

Cracking displacement, 513–515

Cracking strain, 512–513, 512f

Crane truss steel bridge, 9f

Creep and shrinkage, 67–69

Creep coefficient, 67

Cross girder design, through truss highway

steel bridge, 270–276

bending moments of, 273, 274

bending resistance in, 275

dead loads in, 271

live loads in, 272–273

shear resistance check in, 275–276

shearing forces in, 273

welded plate section in, 274f

Cross girder-main plate girder connection,

253–254, 396

Cross girder-main truss connection, 316,

316f, 446, 446f

Cross girders, 15–17, 190, 229f.

See also Intermediate cross girders

bending moment and design of, 273, 274

bending moment of, 230, 231

bending resistance and design of, 275

bending resistance check of, 232, 375, 417

cross section design of, 231–232, 232f,

374–375, 375f, 416–417, 416f

dead loads acting on, 116, 229, 271,

371–372, 413–414

deck truss highway steel bridge, 413–417

bending moment of, 415, 416

bending resistance check of, 417

cross section of, 416–417, 416f

dead loads of, 413–414

live loads on, 414–415, 419f

shear resistance check of, 417

shearing force on, 415–416

design for, 229–232

double-track plate girder deck railway
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bending moments of, 230

bending resistance of, 232

cross section design in, 231–232

dead loads acting on, 229

design for, 229–232

dynamic factors in, 230

live loads acting on, 230

shear resistance of, 232
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steel bridge, 371–375

bending moment of, 373, 374, 374f

bending resistance check in, 375

cross section design of, 374–375, 375f
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Cross girders (Continued)

dead loads on, 371–372

dynamic factor in, 372

live loads in, 372

shear resistance check in, 375

shearing force in, 373–374

dynamic factor in, 230, 372
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of cross girders, 231–232, 232f, 374–375,

375f, 416–417, 416f

of diagonal compression member D2,

442f, 443f

of diagonal tension member D1, 440f
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of main plate girders, 236–238, 236f,
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Dead loads

on cross girders, 116, 229, 271, 371–372,
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of deck truss highway steel bridge,

413–414

on double-track plate girder deck railway

steel bridge, 229

on double-track plate girder pony railway

steel bridge, 371–372

on highway steel-concrete composite

bridges, 115–116, 343

highway steel-concrete composite

bridge’s empirical equations of, 116

on intermediate composite plate girder,

344f
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on intermediate cross girders, 229f, 271f,

371f, 413f

on intermediate stringers, 266f, 408f

on main plate girders, 233, 233f, 376, 376f

of railway steel bridges, 114–115

single-track open-timber empirical

equations of, 114–115

of steel and steel-concrete composite

bridges, 114–116

in stringer design, 115–116, 223–224,

225f, 264–266, 366–367, 367f,

407–408

on truss member forces, 276, 276f,

417–418, 418f

W-shaped main truss with, 430f

Deck bridges, 13–15

Deck truss highway steel bridge, 405–467

cross girders, 413–417

bending moments of, 415, 416

bending resistance check of, 417

cross section of, 416–417, 416f

dead loads of, 413–414

live loads on, 414–415, 419f

shear resistance check of, 417

shearing force on, 415–416

cross section

of compression members U3 and U4 in,

430f

of diagonal compression member D2,

442f, 443f

of diagonal tension member D1, 440f

of diagonal tension member D3, 441f
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V4, 438f

layout of, 406f, 407f

loads on lower wind bracings of, 449f

loads on upper wind bracings of, 447f

main truss with live loads on, 419f

roller steel fabricated bearings

lower bearing plate design in, 452–453

roller design in, 451

sole plate design in, 449–451

upper bearing plate design in, 452

stringer design, 406–412

bending moments of, 410–411

bending resistance check in, 412

cross section of, 411–412, 412f

dead loads in, 407–408

live loads in, 408–410

shear resistance check in, 412

shearing forces in, 411

truss member forces

compression diagonal member D4 in,

443–444

compression upper chord member U1

and U2 in, 432–434

compression upper chord member U3

and U4 in, 429–432

compression vertical member V1 in,

436–438

compression vertical member V2 and

V4, 438–439

cross girder-main truss connection in,

446, 446f

dead loads in, 417–418, 418f

diagonal chord member D1 with,

427–428

diagonal chord member D2 with,

426–427

diagonal chord member D3 with,

425–426

diagonal chord member D4 with,

424–425

diagonal member D1 in, 439–440

diagonal tension member D3 in,

440–441

hinged line rocker steel fabricated

bearings in, 453–456, 454f

joint J1 design with, 456

joint J2 design with, 456

joint J3 design with, 456–458

joint J4 design with, 458–459

joint J5 design with, 459–461

joint J6 design with, 462

joint J7 design with, 463–464

joint J8 design with, 464

joint J9 design with, 465–466

joint J10 design with, 466

joint J11 design with, 467

lower chord member L2 and L3 in,

435–436

lower chord member L3 with, 421–422
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434–435
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Deck truss highway steel bridge (Continued)

lower chord member U2 with, 423

reactions at supports of, 428

roller steel fabricated bearings in,

319–323, 320f, 449–453

stringer-cross girder connection in,

444–445, 445f

upper chord member L4 with, 420–421

upper chord member U4 with,
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wind bracings in, 446–449, 447f
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Deep penetration fillet welds, 206f
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Diagonal chord member D4, 284–285, 285f
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443f
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Diagonal member D2, 427f

Diagonal member D3, 426f

Diagonal member D4, 424f

Diagonal member D5, 308–309
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Diagonal tension D2, 310–311, 310f

Diagonal tension D3, 309–310, 310f

Diagonal tension member D1, 440f

Diagonal tension member D3, 441f
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552–553
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DOFs. See Degrees of freedom
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Double-shear connections, 199

Double-track open-timber floor plate girder

railway steel bridge, 114

ABAQUS modeling used for, 590–592

deformed shape at failure of, 596f

deformed shapes under loading of, 594f

elastic lateral buckling mode for, 593f

finite element mesh of, 591f

full-scale plate girder of, 590f

girder-midspan deflection for, 597f

layout of, 224f, 589f

load and girder-midspan deflection for,
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stress (von Mises) contours at failure of,

595f, 597f

stress contours under loading of, 594f

stress (von Mises) contours under loading

of, 595f

Double-track plate girder deck railway steel

bridge, 222–263

cross girders

bending moments of, 230

bending resistance of, 232

cross section design in, 231–232

dead loads acting on, 229

design for, 229–232

dynamic factors in, 230

live loads acting on, 230

shear resistance of, 232

field splice design for, 254–256

hinged line rocker steel fabricated

bearings for, 260–263, 261f

layout of, 223f

Load Model 71 conformance of, 222–263

main plate girders

bending moment of, 235, 236, 242

bending resistance checked on, 238

cross section design for, 236–238

dead loads acting on, 233

design of, 233–239

dynamic factors in, 235

fillet weld between flange plates and

web, 242–243

flange plate curtailment of, 239–242

flange plate length of, 242

lateral torsional buckling of, 243–245

live loads acting on, 233–235

shear resistance checks on, 239

shearing force acting on, 236

roller steel fabricated bearings

design for, 256–260, 257f

lower bearing plate design for, 259–260

rollers design for, 258

sole plate design for, 256–258

upper bearing plate design for, 259

stinger bracing design for, 247–249

stringer design, 223–228

bending moment of, 226–227

bending resistance check in, 228

cross section design in, 227–228, 228f

dead loads in, 223–224

dynamic factors in, 226

live loads in, 223–224

shear resistance in, 228

shearing forces in, 227

stringer-cross girder connection design

for, 252–253

web stiffeners

intermediate, 247

load bearing, 246–247

main plate girder design of, 245–247

Double-track plate girder pony railway steel

bridge, 364–405

cross girder-main plate girder connection

in, 396

cross girders, 371–375

bending moment of, 373, 374, 374f

bending resistance check in, 375

cross section design of, 374–375, 375f

dead loads in, 371–372

dynamic factor in, 372

live loads in, 372

shear resistance check in, 375

shearing force in, 373–374

description of, 364–365

field splices in, 396–399, 397f

fillet welds between flange plate and web

of, 385

hinged line rocker steel fabricated bearing,

402–405, 403f, 404f

lateral torsional buckling of, 386–388,

387f

layout of, 365f, 366f

main plate girders, 375–382

bending moment of, 378, 379, 384

bending resistance checks of, 381

cross section of, 379–381, 380f

dead loads on, 376

dynamic factor of, 378

flange plate curtailment of, 382–385,

383f

flange plate lengths in, 385, 385f

live loads on, 376–378

properties of area for, 381f

shear resistance checks of, 382

shearing force on, 378

roller steel fabricated bearings, 399–402
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Double-track plate girder pony railway steel

bridge (Continued)

details of twin, 400f

lower bearing plate design in, 402

roller design in, 401

sole plate design in, 399–400

upper bearing plate design in, 401–402

stringer bracing, 390–392

stringer design, 366–371

bending moment in, 369

bending resistance check in, 370

dead loads in, 366–367, 367f

dynamic factor in, 368–369

live loads in, 367–368

shear resistance check in, 371

shearing force in, 369

stringer cross section in, 370, 370f
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in main plate girders, 235, 378
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Eiffel Bridge, 28–29

Eigenmodes, in ABAQUS, 522

Eigenvalue analysis, 564–565, 568–569

Eigenvalue buckling analysis, 522–523,

555–556

in ABAQUS, 522–523, 570–571,

584–585

of bridge components, 522–525

bridge’s geometric imperfections with,

592–593

linear, 519, 522–525

preloads in, 523

residual stresses specified for, 524–525

Elastic analysis, 350f

Elastic behavior, 186f

Elastic girder stresses, 605–606

Elastic global analysis, 166–167
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for double-track open-timber floor plate

girder railway steel bridge, 593f

for I-section plate girders, 571f, 578f, 585f

Elastic plastic theory, 508

Elastic section modulus, 380–381, 384

Elastic-plastic model, 502

Elastoplastic finite element method,
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Element types, 476f, 477

Element-based distributed loads, 551
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545–549

composite steel beam width evaluated by,
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finite element analysis by, 98–99

finite element mesh detailed by, 546f

headed stud shear connectors studied by,

99

stress-strain curve of stud presented by,

547f

Embedded rebars, 479

Embedded uniaxial finite elements, 479
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EN 10080, 74–77
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End supports, types of, 173f
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137t

carriageway width specified in, 121–122

centrifugal forces recommended by, 135t

collision forces on curbs in, 147f
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equivalent motortrucks specified in,

139t

Fatigue Load Model 3 in, 137–140, 140f

footways and cycle tracks loads in, 147f

force coefficients in, 133f

force factors for bridges in, 134t

frequent motortrucks specified in, 138t

lane numbering in, 120f

live loads specified in, 117

LM 1 values specified in, 121t, 122f,

405–406, 408–410
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Load Model 71 for vertical loads in, 118f
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Load Model SW/2 in, 118f
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143f
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148t
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405–406

vertical loading in, 367–368
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392–393
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bilinear stress-strain relation in, 71f

compressive strength specified in, 64
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parabolic-rectangle diagram of, 71f

rectangular stress distribution of, 71f

strength and deformation in, 65t, 66–67
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stress-strain on prestressing steel in, 80f,
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bridge bearing design in, 214–215
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compression force design in, 191
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of steel and steel-concrete composite

bridges, 35–36

Fatigue crack formation, 27–28, 614–616

Fatigue life estimation, 607–608

Fatigue Load Model 1, 137–140
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Fatigue Load Model 4, 137–140
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Film coefficient, 535

FineLg software, 612–613

Finite element equations, 516–517

Finite element mesh, 546f

aspect ratio of, 498f

for bridge components, 496–501

of composite beams, 104f, 621f

of composite bridges, 634f

concrete slabs and symmetry of, 498–500,

500f
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of double-track open-timber floor plate

girder railway steel bridge, 591f

Ellobody detailing, 546f
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elastoplastic, 556–557

by Ellobody, 98–99

failure modes captured by, 3–4

first-order reliability method with,
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ABAQUS used for, 469, 470–471,

564–565, 616–617
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Fire response, 26, 613–614

First-order coupled temperature-

displacement elements, 540

First-order optimization method, 30

First-order reliability method, 23–24

Five degrees-of-freedom shells, 474

Fixed bearings, 209–210

Flange plates

curtailment, 239–242, 382–385, 383f

fillet weld between web and, 242–243,

243f, 385

main plate girders and length of, 242,

242f, 243f, 385, 385f

655Index



Flange resistance, 173

Flange splices, 358

Flange width, 179–181, 180f

Flare groove welds, 205f

Flat-sided roller bridge bearings, 218f

Flexible joints, 484–485

Flexural tensile strength, 72

Footways, 147f

Force, 482

Force coefficients, 132–133, 133f

Force factors for bridges, 134t

Four-node doubly curved shell elements,

590–592

Four-node nonlinear shell finite elements

(S4R), 555–556

Four-span continuous steel-concrete

composite bridge

cross section of, 632f

finite element models of, 632–637

loading configuration of, 632f

Fracture energy, 622, 628, 634–635

Fracture energy cracking model, 507f,

513–515

Fracture toughness, 47–48, 58–59

Fragiacomo, M., 102–104

Freitas, S. T. D., 33–34

Frequent Load Model, 137–140

Frequent motortrucks, 138t

Frey, F., 612–613

Friction coefficient, 216t, 493–494

Friction models, in ABAQUS, 493–494,

494f, 495f

Frictional behavior, 493–496

Fryba, L., 564–565

Full numerical integration, 471–473, 472f

Full penetration butt weld, 205–206

Full-scale deck slab, 32–33

Full-scale plate girder

of double-track open-timber floor plate

girder railway steel bridge, 590f

layout of, 583f

load-midspan deflection relationships for,

588f

modeling of, 582–584

Full-scale specimens, 500f

Fully coupled thermal-stress analysis,

539–540

G
Galvin, P., 558–559

Gap contact elements, 493

Gara, F., 611–612

Garlock, M. E. M., 26, 613–614

Gattesco, N., 101–102

General analysis steps, 518–519

General contact approach, 485f, 487–488,

489

General contact interactions, 488–490

Geometric imperfections, 469–470,

498–500, 592–593

Geometrically nonlinear analysis, 517, 526

Girder-midspan deflection relationships,

595f, 597f

Global damping, 533

Goodpasture, D. W., 632–633

Graciano, C., 561–562

Grade 50 steel, 48–50

Grade 100 steel, 48–50

Graville, 59

Grillage analysis, 609–610

Guo, T., 24–25

Gusset plates, 190, 309–310, 431–432, 437

H
Hamidi, S. A., 24

Hawkins, N. M., 92–93

HAZ. See Heat-affected zone

Headed stud capacity, 94–95, 187–189

Headed stud shear connectors, 18–20, 83,

83f, 99, 620–621

Heat transfer analysis, 537

Heat transfer element library, 537

Heat-affected zone (HAZ), 59

Heat-treated carbon steel, 48

Heavy vehicle traffic, 137t

Hertzian stress analysis principles, 216–218

Hexahedral elements, 477

High mesh refinement, 474–475

High strength-to-self weight ratio, 1–2

High-performance steel (HPS), 48–50

High-speed load model (HSLM), 117–118,

144

High-speed trains, 616–617

High-strength bolted friction grip joints,

24–25

656 Index



High-strength steel, 48

Highway arch steel bridges, 8f

Highway bridges, 7–10

arch-type steel, 562–564

fatigue loads on, 136–141

structural components of, 17–18

3D prismatic beam elements for, 562–564

with traffic loads, 155–159

Highway steel-concrete composite bridges,

7–10, 339–364

composite plate girder

as mid- and quarter-span, 347–352

shear connection of, 349–352

shearing forces on, 349

dead load empirical equations for, 116

dead loads of, 115–116

description of, 339–343

field splices, 356–358

flange splices with, 358

hinged line rocker steel fabricated

bearings, 362–364, 362f

roller design in, 363f

horizontal forces on, 134–136

braking and acceleration forces and,

134–135

centrifugal forces and, 135–136

layout of, 341f, 342f

live loads for, 120–127

loads acting on, 343–346

bending moment with, 346

dead loads, 343

live loads, 344–345

shearing force with, 346

roller steel fabricated bearings, 358–361

details of twin, 359f

lower bearing plate design in, 361

roller design in, 360

sole plate design in, 358–359

upper bearing plate design in, 360–361

web stiffeners, 354–356

intermediate stiffeners and, 355–356,

356f

load bearing, 354–355, 355f

wind bracings in, 352–354

cross section of lower, 353f

loads on lower, 352f

Hill yield surfaces, 503

Hillerborg’s fracture energy proposal,

513–515

Hinged and roller bearings, 15–17

Hinged bearings, 209–210

Hinged line rocker steel fabricated bearings,

219–220, 260–263, 261f, 323–326,

324f, 325f

in deck truss highway steel bridge,

453–456, 454f

in double-track plate girder deck railway

steel bridge, 260–263, 261f

in double-track plate girder pony railway

steel bridge, 402–405, 403f, 404f

in highway steel-concrete composite

bridges, 362–364, 362f, 363f

roller design in, 363f, 404f

traction and braking forces on, 402–404

in through truss highway steel bridge,

263f, 323–326, 324f, 325f

Hollow core concrete units, 85f

Horizontal forces

braking and acceleration forces and,

134–135

centrifugal forces and, 127–128, 135–136

on highway steel-concrete composite

bridges, 134–136

nosing force and, 129

on steel and steel-concrete composite

bridges, 127–136

traction and braking forces and, 129–130

wind forces and, 130–134

Horizontal push-off test, 94f

Horizontal shear, 356–357, 396–398

Hosain, M. U., 89–91, 92–93, 545–548

Hot-rolled and processed bars, 79–80

HPS. See High-performance steel

HSLM. See High-speed load model

Huang, Y. H., 24–25

Hybrid genetic algorithm, 24

Hybrid glass fiber-reinforced polymer-steel

core, 37

Hybrid high tower, 35–36

I
Imperfection factors, 171t, 540–543

Imperfection-sensitive structures, 523–524

Implicit dynamic analysis, 530

657Index



Incremental analysis, 519–520

Inelastic behavior

of concrete, 622

of shear connection, 97–98

Inelastic buckling analysis, 27–28

Inelastic response models, 526

Infinite coefficient of friction, 494–496

Influence line method, 277–279

compression forces in vertical members

V4 using, 430f

compressive forces in upper chord

member U4 using, 422f

determination of reaction RA using, 429f

diagonal chord member D1 using, 289f

diagonal chord member D2 using, 287f

diagonal chord member D3 using, 286f

diagonal chord member D4 using, 285f

diagonal chord member D5 using,

283–284, 283f

diagonal member D1 using, 428f

diagonal member D2 using, 427f

diagonal member D3 using, 426f

diagonal member D4 using, 424f

lower chord member L2 using, 282f

lower chord member L3 using, 281f

lower chord member L4 using, 280f

lower chord member L5 using, 279–280,

279f

main plate girder bending moment using,

377f

main plate girder shearing force using,

378f

reactions at supports using, 289, 290f

tensile force in lower chord member L3
using, 421f, 423f

tensile force in lower chord member L4
using, 420f

upper chord member U5 compression

using, 278f

Initial geometric imperfections, 540–541

INSTAF, 101–102

Integral bridges, 24–25

Intermediate composite plate girder

bending moment at quarter span of, 348f

bending resistance at quarter span of, 349f

bending resistance of, 347f

live load transferred on, 345f

loading for bending moment on, 346f

loading for shearing force acting on,

346f

straining action from dead loads on, 344f

straining action from live loads on, 345f

Intermediate cross girders, 114–115

bending moment from live loads on, 272f,

273f, 415f

shearing force from live loads on, 273f,

415f

straining action from dead loads on, 229f,

271f, 371f, 413f

straining action from live loads on, 230f,

372f, 373f

Intermediate stability web stiffeners, 247f,

390f

Intermediate stringers

layout of, 265f, 408f

live load transfer on, 267f

loading with bending moment on, 268f,

410f

straining action from dead loads on, 266f,

408f

straining action from live loads on, 267f,

409f

Intermediate web stiffeners, 247, 355–356,

356f, 390

Intermittent fillet welds, 204f

Intermittent welds, 209f

I-section plate girder steel bridge, 567–575,

582–587

I-section plate girders

deformed shapes at failure of, 571–575,

572f, 579f, 586f

elastic lateral buckling mode for, 571f,

578f, 585f

finite element mesh of, 569f, 577f, 584f

finite element modeling of, 575–582

load-deflection relationships and, 581f

plastic strain contours at failure of, 573f,

580f, 587f

stress contours at failure of, 573f, 580f,

581f, 588f

stress (von Mises) contours at failure of,

574f, 581f, 588f

Isotropic damaged elasticity, 622

Iterative system buckling analysis, 23–24

658 Index



J
Jahanian, S., 61–62

Jayas, B. S., 89–91, 92–93, 545–548

Jeong, Y. J., 32–33

Ji, H. S., 37

Johnson, R. P., 88–89, 91, 96–97, 188, 189

JOINTC elements, 484–485, 484f

Joints, bolted and welded, 203–209.

See also Deck truss highway steel

bridge, Main truss joints, Through

truss highway steel bridge

beam-to-beam, 611–613

bolt and pin connections in, 194–203

bolted connections and, 194–200

bowknot integral, 30

composite, 617–618

design of, 193–209

EC3 safety factors for, 193t

flexible, 484–485

high-strength bolted friction grip, 24–25

hollow core concrete units prestressed,

85f

steel girder-abutment, 24–25

K
Kalfas, C., 97–98, 98f

Kaliyaperumal, G., 564–565

Kamamato, S., 61–62

Kim, B., 92–93, 99, 543–545, 544f

Kim, H. Y., 32–33

Kim, S. H., 24–25, 34–35

Kim, Y. J., 29–30

Kinetic friction coefficient, 494–496

Kirchhoff thin shell elements, 473

Krister, C., 91

Kwak, H. G., 30–31

L
Lagrange multiplier, 494–496

Lam, D., 94–95, 94f, 96, 98–99, 102–104,

104f, 189

Laminated elastomeric bearings, 210–211,

211f, 212f

Lane numbering, 120f

Lateral cracks, 89–91

Lateral shock (nosing force) bracing, 15–17

cross section of, 391f

forces acting on, 391f

for stringers, 248f

Lateral torsional buckling, 170–171,

239–241

for cross sections, 171t

imperfection factors for, 171t

of main plate girders, 243–245, 244f

of plate girder compression flange,

243–245, 244f, 386–388, 387f

Laterally unrestrained beam, 170–171

Lee, J., 515–516

Leitão, F. N., 35–36

Li, A., 91

Li, Q. S., 23–24

Limit state design approach, 162–166

Limit states, 164–166

Lin, W., 566–567

Line rocker bearing, 212–214

Linear analysis, 516–517

Linear and nonlinear analysis

of bridge components, 516–526

linear eigenvalue buckling analysis in,

522–525

materially and geometrically nonlinear

analyses in, 525–526

Linear and nonlinear mechanical behaviors,

30

Linear eigenvalue buckling analysis, 519,

522–525

Linear elastic analysis, 96–97

Linear elastic model, 502

Linear extrapolation, 520–521

Linear perturbation approach, 518–519,

522–523

Linear static analysis, 517–518

Linear temperature differences, 154t

Liu, K., 607–608

Liu, Y., 617–618

Live loads

Alternate E80, 119f

axle, 367–368, 367f

bridge components influenced by, 113

Cooper E80 and, 119f

on cross girders, 230, 272–273, 372,

414–415, 419f

distribution, 25–26

EC1 specifying, 117

659Index



Live loads (Continued)

on highway steel-concrete composite

bridges, 120–127, 344–345

intermediate composite plate girder with

transferred, 345f

Intermediate cross girders with, 230f,

372f, 373f

intermediate cross girders with bending

moment from, 272f, 273f, 415f

intermediate cross girders with shearing

force from, 273f, 415f

intermediate stringers and transfer of, 267f

intermediate stringers straining action

from, 267f, 409f

Load Model 71 and axle, 225f

on main plate girders, 233–235,

376–378

on main truss, 419f

for railway steel bridges, 117–120

on steel and steel-concrete composite

bridges, 116–127

in stringer design, 223–224, 266–268,

367–368, 408–410

truss members and forces from, 277–278,

277f, 278f

vehicular, 125

W-shaped main truss with, 430f

Lloyd, R. M., 92–93, 99, 543–545

LM1. See Load Model 1

LM2. See Load Model 2

LM3. See Load Model 3

LM4. See Load Model 4

Load and Resistance Factor Design (LRFD),

22–23, 157–159

Load bearing web stiffeners, 246–247, 246f,

354–355, 355f, 388–390, 389f

Load combinations, 155–161

AASHTO specifying load factors in, 158t,

159t

highway bridges with traffic loads in,

155–159

permanent and transient loads in,

157–159

railway bridges groupings assessment in,

160t

railway bridge’s traffic loads in, 159–161

traffic load assessment in, 156t, 157t

Load Model 1 (LM1), 121t, 122f, 122–125,

134–135, 141

axle live loads in, 367–368, 367f

EC1 specifying, 121t, 122f, 405–406,

408–410

fatigue, 137–140

traffic situations and, 120–121

through truss highway steel bridge

conforming to, 263f, 266–268

Load Model 2 (LM2), 122–125, 124f

Load Model 3 (LM3), 122–125

Load Model 4 (LM4), 122–125

Load Model 71, 117–118, 118f, 128,

129–130

axle live loads and, 225f

double-track plate girder deck

conforming to, 222–263

loading for bending moment for, 587–590

Load Model SW/0, 118f, 119t, 129–130

Load Model SW/2, 117–118, 118f, 119t,

128, 129–130

Load Model “unloaded train”, 117–118,

129–130

Load models, 120–121, 122–124

Load-deflection relationships, 581f, 637f

Load-displacement history, 518f, 524f

Load-displacement nonlinear analysis,

568–569

Load-displacement nonlinear geometry

analysis, 526

Load-displacement nonlinear material

analysis, 525

Load-midspan deflection relationships,

578–582, 623–625

of composite girders, 625f, 631f

for full-scale plate girder, 588f

in plate girder bridges, 574f

Load-slip characteristics, 86–87, 549–550

of headed stud shear connectors, 620–621

for preloaded bolts, 200t

in pushout test, 548f

shear connections and, 98–99

in steel-concrete interface, 4–5

Local failure, 96–97

Longitudinal shear forces, 34–35, 186f,

607–608

Longitudinal steel beams, 15–17

660 Index



Longitudinal stiffeners, 176–177

Longitudinally stiffened plate girder,

561–562

Long-span steel arch bridges, 23–24

Lower bearing plate, 259–260, 322–323,

361, 402, 452–453

Lower chord member L1, 436f

Lower chord member L2, 282–283, 282f

Lower chord member L2, design of,

314–315, 314f

Lower chord member L2 and L3, 435–436

Lower chord member L3, 281–282, 281f

Lower chord member L3, design of, 313,

314f

Lower chord member L4, 280–281, 280f

Lower chord member L4, design of,

312–313, 313f

Lower chord member L4 and L5, 434–435

Lower chord member L5, 279–280, 279f

Lower chord member L5, design of, 312f

Lower chord member L5, design of,

311–312

Lower chord member U2, 423

Lower chord tension members L3 and L2,

435f

Lower chord tension members L4 and L5,

434f

LRFD. See Load and Resistance Factor

Design

Lubliner, J., 515–516

M
Machacek, J., 34–35

Macrocracks, 504–506

Main plate girders, 15–17

analytic method on bending moment of,

377f

area properties calculated for, 238f,

240f

bending moment of, 234f

bending resistance checks of, 238, 381

cross girder connection with, 396, 397f

cross girder support on, 253–254, 254f

cross section of, 236–238, 236f, 379–381,

380f

dead loads acting on, 233, 233f, 376, 376f

design of, 233–239

double-track plate girder deck railway

steel bridge, bending moment of,

235, 236, 242

double-track plate girder pony railway

steel bridge, bending moment of,

378, 379, 384

in double-track plate girder pony railway

steel bridge, 375–382

dynamic factors in, 235, 378

field splice positions in, 255f, 357f, 397f,

398f

fillet weld, between flange plates and web,

242–243, 243f, 385

flange plate curtailment of, 239–242,

382–385, 383f

flange plate lengths in, 242, 242f, 243f,

385, 385f

influence line method on bending

moment of, 377f

influence line method on shearing force

of, 378f

lateral torsional buckling, of plate girder

compression flange, 243–245, 244f

live loads acting on, 233–235, 376–378

properties of area for, 381f

shear resistance checks on, 239, 382

shearing force acting on, 235f, 236, 378

web stiffeners

design for, 245–247

intermediate, 247

load bearing, 246–247, 246f

wind forces on upper, 249–251

Main truss

cross girder’s connection with, 226f, 316,

316f, 446, 446f

live loads on, 419f

W-shaped with loading on, 430f

Main truss joints

bolts for, 326, 327f

J1 details of, 327f

J2 details of, 328f, 457f

J3 details of, 329f, 459f

J4 details of, 330f, 460

J5 details of, 331f, 461f

J6 details of, 332f, 462f

J7 details of, 333f, 463f

J8 details of, 334f, 464f

661Index



Main truss joints (Continued)

J9 details of, 335f, 465f

J10 details of, 336f, 466f

J11 design of, 338f, 467f

J12 design of, 339f

J13 design of, 340f

Maintenance technique investigations,

566–567

Mans, P. H., 618–620, 626–628

Master contact surfaces, 491–492

Master surfaces, 486f, 492, 621–622

Material and element damping, 533

Material behaviors, 47–48, 570, 584

Material ductility specifications, 49t, 57

Material modeling

of concrete, 503–516

concrete damaged plasticity model for,

509–516

smeared cracking in, 503–509

of structural steel, 501–503

Materially and geometrically nonlinear

analyses, 517, 525–526

Materially nonlinear analysis, 517, 526

Material’s physical properties, 532–533

McManus, P. F., 21–22

Mechanical behavior, 37–39

Menzies, J. B., 88–89, 187–188

Mesh size, 489

Metal plastic models, 504, 511–512

Metal structures

axisymmetric solid elements used for,

478–479

element types used in, 476f

Mises yield surfaces, 503

Mistakidis, E. S., 100–101

Mitchell, D., 92–93

Miyachi, K., 25–26

Mo, L. T., 26–27

Modal damping, 533

Modal superposition procedures, 530–531

Mode-based stead-state harmonic response

analysis, 531

Mode-based transient response analysis,

531

Modeling, 614–616. See also Material

modeling;specific models

bridge behavior investigated through, 39

concrete’s stress-strain behaviors in,

515–516

of double-track open-timber floor plate

girder railway steel bridge, 590–592

failure ratios in, 509

flexible joints in, 484–485

of full-scale plate girder, 582–584

imperfections and residual stresses in,

540–543

mass flow rates per unit area in, 536

nonlinear dynamic problems in, 530

of nonlinear material properties, 3–4

for railway loading, 117–118

rebar properties specified in, 479

self-contact specified in, 489–491

of shear connections, 543–550

solid element, 545–548

spring behavior specified in, 483–484

steel composite bridges techniques with,

610–611

steel girder bridges techniques for,

603–605

steel-concrete composite bridges

simulated in, 609–610

structural element surfaces considered in,

492

3D finite element, 562–564

3D grid, 32

3D solid elements, 627–628

time incrementation control parameters

in, 521–522

Modified Riks method, 527

Modulus of elasticity, 66–67

Mofatt, U. R., 100

Moment-deflection behavior, 104–105

Moy, S. S. J., 93–94, 93f

MPCs. See Multipoint constraints

Multigirder steel bridges, 614–616

Multiplate girder bridge, 12f, 27–28

Multipoint constraints (MPCs), 603–605

Multiracial stress states, 509

N
Nakai, H., 21–22

Nakamura, S., 35–36, 567–568, 575

Narita, N., 567–568, 575

National Annex, 133–134, 153

662 Index



Natural frequency, 142–144, 143f

Negative eigenvalues, 523–524

Nethercot, D. A., 96–97

Newton-Raphson method, 556–557

Newton’s method, 535

Nie, J. G., 37–39

Nip, T. F., 96

Node-to-surface approach, 490–492

Nominal tensile strength, 50t, 56t, 57t

Noncompact sections, 471

Nondestructive methods, 60–61, 541–542

Nondimensional slenderness, 191–192

Nonlinear 3D finite element model,

543–545

Nonlinear analysis

extrapolation used for, 520–521

geometrically, 517, 526

linear eigenvalue buckling analysis in,

522–525

load-displacement history in, 518f

materially, 517, 526

materially and geometrically nonlinear

analyses in, 525–526

static, 517–518

strain-displacement relationship in,

516–517

Nonlinear behavior, 82–107

Nonlinear dynamic problems, 530

Nonlinear equilibrium equations, 527–528

Nonlinear inelastic analysis, 27–28

Nonlinear material behavior, 47–48

Nonlinear material properties

of concrete, 62–73

modeling of, 3–4

in prestressing tendons, 78–82

of reinforcement bars, 73–77

stress-strain curve and, 5–6

of structural steel, 48–62

Nonlinear spring force-relative displacement

relationship, 483f

Nonlinear structural analysis, 69–70

Nonrecoverable (inelastic) parts, 526

Nosing force, 129

Numerical integration, 471–473

Numerical models, 34–35

of composite girders, 99–107

of shear connection, 96–99

Numerical simulation method, 24–25

Nut grades, 55

O
Oehlers, D. J., 89–91, 96–97, 101–102, 188

Okamoto, Y., 35–36

Old-fashioned riveted truss bridges, 13–15,

15f

Ollgaard, J. G., 89–91, 187–188

Open-timber floor plate girder railway steel

bridge, 16f

Open-timber floor railway bridge, 7–10,

10f, 15–17

Orthotropic floor bridges, 10–13, 14f

Orthotropic plated bridge decks, 557–558

Orthotropic steel box girders, 560–561

Orthotropic steel bridge decks, 33–34

Oven, V. A., 101–102

P
Padgett, J. E., 22–23

Parabolic extrapolation, 520–521

Parabolic-rectangle diagram, 71f

Park, S. M., 91

PE. See Plane-strain linear elements

Pedestrian arch steel bridge, 9f

Pedestrian parapet actions, 149

Pedestrian traffic, 149–151, 150f

Pedro, J. J. O., 33–34

Pelikan-Esslinger method, 557–558

Permanent loads, 157–159, 159t

Pilot bridges, 606–607

Pin connections

bending moment of, 202f

bolted and welded joints with, 194–203

EC3 requirements for, 194–203, 201t

shear resistance of, 200

Plane stress elastic analysis, 96–97

Plane-strain (PE) linear elements, 478

Plastic global analysis, 166–167

Plastic strain contours at failure, 580f

of composite bridge, 636f

of composite girders, 630f

of I-section plate girders, 573f, 580f,

587f

Plastic stress distribution, 184f

Plastic true strain, 501–502

663Index



Plate buckling effects, 174–179

in EC3, 174

stiffened plate elements

column buckling and plate interaction

in, 178–179

column-type buckling behavior in,

177–178

longitudinal stiffeners in, 176–177

plate-type behavior and, 177

under uniform compression, 176f

Plate girder bridges, 10–13, 11f. See also Steel

and steel-concrete composite bridges

bending and shear strength of, 567–568

composite steel, 605–606

curved composite steel I-shaped, 32

curved steel I-shaped, 21–22

finite element model for, 578–582,

585–587

load-midspan deflection relationships in,

574f

Plate girder compression flange, 243–245,

244f, 386–388, 387f

Plate girders, 571–575, 587–598

Plate-type behavior, 177

Poisson’s ratio, 473–474, 577

Pony bridges, 13–15

Postbuckling analysis, 542

Postfailure stress-displacement curve, 514f

Postfailure stress-fracture energy curve,

514f

Postrehabilitation assessment, 28–29

Pot bridge bearings, 211f

Pratt truss, 263–264

Preloading, 523

Prestressed concrete structures, 481

Prestressed hollow core concrete slabs

composite beams with, 189

in composite construction, 84–85

shear connection in composite beams

with, 93–96

Prestressed hollow core concrete-steel beam

construction, 85f

Prestressing tendons

in ABAQUS, 479

in EC2, 78–79

nonlinear material properties in, 78–82

properties of, 79–82

of steel and steel-concrete composite
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tension-stiffening effect and, 507–508
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Reinforcement bars, 543–545
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EC2 specifying properties of, 76t, 77t

EC2 specifying stress-strain curve on,
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EC2 specifying stress-strain diagrams of,

77f

nonlinear material properties of, 73–77
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bridge’s deformed shapes using,

595–598

dynamic analyses in, 528–533

finite element analysis using, 561–562

smooth equilibrium path for, 528

structure collapse behaviors and, 527

thermal-stress analyses and, 533–540

fully coupled thermal-stress analysis in,

539–540

sequentially coupled thermal-stress
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in through truss highway steel bridge,

319–323, 320f

upper bearing plate design in, 259,

321–322, 360–361, 401–402, 452

Roller/rocker bearings, 212–214

Romeijn, A., 559–560

S
S4R. See Four-node nonlinear shell finite

elements

Safety factors, 193t

Safety index calculations, 565–566

Saleh, A., 106–107

SAP2000 software, 562–564, 605–606

Second-order elements, 475–477

Second-order reduced-integration

elements, 477

Self-contact, 489–491

Semi-through truss bridge under

construction, 13–15, 14f

Sequentially coupled thermal-stress analysis,

538

Serviceability limit states, 164
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dynamic loads on, 142–144

fatigue loads on, 136–141
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6–7
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finite element method of, 39–40

finite element types for, 470–496
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investigations on, 30–39
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nonlinear material behavior of, 47–48
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Steel girder-abutment joints, 24–25
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Steel I-shaped bridge girders, 555–556

Steel plate girder-concrete slab, 620–622,
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Steel-concrete composite cable-stayed
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cross sections in, 227–228, 228f, 269–270,

270f, 370, 370f, 411–412, 412f

dead loads in, 115–116, 223–224, 225f,
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bending moments of, 410–411
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dead loads in, 407–408

live loads in, 408–410
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shearing forces in, 411
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bending moment of, 226–227
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cross section design in, 227–228, 228f
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shearing force in, 369

stringer cross section in, 370, 370f

dynamic factor in, 368–369
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shear resistance check in, 371, 412

shearing force in, 227, 269, 369, 411
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bending moment of, 269

bending resistance in, 270

cross sections in, 269–270, 270f

dead loads in, 264–266

live loads in, 266–268

shear resistance in, 270

shearing force in, 269
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315–316, 315f
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248f

loading for bending moments on, 226f,

368f

loading for shearing force on, 268f, 369f,
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of, 264–270
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Structural behavior, 7, 99
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determinant length and, 145t
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EC3 standards for, 55
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engineering stress-strain curve for, 54f

fracture toughness of, 58–59

material modeling of, 501–503

nonlinear material properties of, 48–62
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stresses on, 48–56
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design, 70
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Tensile stresses, 62–64

Tension members, 190–191, 308

Tension stiffening, 504, 513
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for smeared cracking, 506–507
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Thermal loading, 537

Thermally induced loads, 151–155

Thermal-stress analyses

fully coupled thermal-stress analysis in,
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Riks method and, 533–540

sequentially coupled thermal-stress

analysis in, 538

uncoupledheat transfer analyses in, 534–537
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Thin-walled box girder steel-concrete

composite bridge, 602

Thin-walled steel box girder, 560–561

3D finite element model, 562–564,

566–567, 610–611

3D grid modeling, 32

3D prismatic beam elements, 562–564

3D shell or membrane element, 480f

3D solid elements, 627–628

Through bridges, 13–15

Through truss highway steel bridge

cross girder design, 270–276

bending moments of, 273, 274

bending resistance in, 275

dead loads in, 271

live loads in, 272–273

shear resistance check in, 275–276

shearing forces in, 273

welded plate section in, 274f

general layout of, 18f

layout of, 264f, 265f

LM 1 conformance of, 263f, 266–268

stringer design, 264–270

bending moment of, 269

bending resistance in, 270

cross sections in, 269–270, 270f

dead loads in, 264–266

live loads in, 266–268

shear resistance in, 270

shearing force in, 269

stringers of, 264–270

truss member forces, 276–338

compression upper chord member U1

with, 296–298, 297f

compression upper chord member U2

with, 294–296, 295f
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with, 293–294, 293f

compression vertical member V1 and,
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314–315, 314f
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313, 314f
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force in diagonal chord member D1

with, 288–289, 289f

force in diagonal chord member D2
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282–283, 282f

force in lower chord member L3 with,
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328f
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joint J4 design with, 329–330
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joint J7 design with, 333–334

joint J8 design with, 334–335
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joint J10 design with, 336–337
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main truss joint J1 with, 327f
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