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The study of fracture mechanics of concrete has developed in recent years to 
the point where it can be used for assessing the durability of concrete structures 
and for the development of new concrete materials. The last decade has seen 
a gradual shift of interest toward fracture studies at increasingly smaller sizes 
and scales. Concrete Fracture: A Multiscale Approach explores fracture 
properties of cement and concrete based on their actual material structure.

Concrete is a complex hierarchical material, containing material structural 
elements spanning scales from the nano- to micro- and meso-level. Therefore, 
multiscale approaches are essential for a better understanding of mechanical 
properties and fracture in particular. This volume includes various examples 
of fracture analyses at the micro- and meso-level. The book presents models 
accompanied by reliable experiments and explains how these experiments 
are performed. It also provides numerous examples of test methods and 
requirements for evaluating quasi-brittle materials. More importantly, it 
proposes a new modeling approach based on multiscale interaction potential 
and examines the related experimental challenges facing research engineers 
and building professionals.

The book’s comprehensive coverage is poised to encourage new initiatives for 
overcoming the difficulties encountered when performing fracture experiments 
on cement at the micro-size/scale and smaller. The author demonstrates how 
the obtained results can fit into the larger picture of the material science  
of concrete—particularly the design of new high-performance concrete 
materials which can be put to good use in the development of efficient and 
durable structures.
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‘How all things hang together,
when one has the perspective from which to view them …’

John Banville, The InfInITIes
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Preface

This is a book about fracture, about concrete fracture. Since my studies at 
Eindhoven University of Technology I have developed an interest in how 
things break; eventually that knowledge helped define the limits in struc-
tural design. Perhaps it was by accident that it was all about concrete. At that 
time, 1978–1979, a large research effort was launched in The Netherlands, 
named “Concrete Mechanics.” The basic idea was to develop numerical mod-
els for the analysis of reinforced concrete structures. Experiments would be 
done as in the past, in structural laboratories, but in addition small-scale 
tests were necessary to deliver the parameters needed in the new numerical 
tools. Most of these models were based on the finite element method, which, 
in those days, attracted more and more users in engineering. Needless to 
say that the linear version is indeed very useful provided the application 
goes hand in hand with an excellent intuition for structural behavior. Just 
using the numerical tools as a black box will not help the design of excel-
lent structures. Every institute in The Netherlands involved in research on 
structural concrete collaborated in the large research program one way or 
the other. As a graduate student I became part of it via my thesis supervisor 
Professor Wim van der Vlugt. The years between 1979 and 1984 span the 
time of my doctoral research. With hindsight this was a very fruitful period 
in my research career. Basically I was left alone to do what I felt was needed.

The project was summarized in one line: “Investigate the shear-punch 
failure of concrete slabs; the preliminary investigation will focus on the 
multiaxial behavior of concrete.” I started along both tracks: doing some 
punching experiments on slabs, and reading the literature on multiaxial 
concrete behavior. Finally, the failure of concrete under multiaxial compres-
sion seemed to be an interesting area, in particular the softening behav-
ior. Only very limited experimental data were available in this field; the 
new computer models required full three-dimensional knowledge of plain 
concrete, and it was a major input parameter for solving the shear-punch 
problem. I got the opportunity to build a new multiaxial apparatus, which 
allowed for measuring the complete stress–strain behavior including the 
softening regime. Ironically, the most interesting result was related to the 
behavior of concrete under uniaxial compression. I am still grateful today 
that I could follow my own nose, which has helped to develop an indepen-
dent position and critical mind.

Ever since my doctoral work, concrete fracture has fascinated me, and at all 
the places where I have worked for longer or shorter periods of time, at least 
part of my research focused on the fracture of concrete. Rather than having 
to work with numerical models based on continuum theory, it was quickly 
decided to follow new interesting developments from theoretical physics. I 
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became interested when I read an article by Termonia and Meakin (1986), 
and after I participated in a summer school in Cargèse (France) in 1989 it was 
absolutely clear: a lattice model would be needed. The inspiration came from 
work done by, among others, Stéphane Roux and Alex Hansen. I learned a lot 
in discussions with my good friend, Dusan Krajcinovic, who unfortunately 
passed away two years ago. Dividing my time between numerical simula-
tions and experiments was not done in those days. In Delft, at the civil engi-
neering department where I worked, there was a strict separation between 
the two fields: experimentalists performed experiments and “model engi-
neers” built models. Anyhow, the lattice model was built, in the laboratory, 
in a rather special way, namely as a continuing series of PhD projects, where 
the coherence between projects always has been my greatest concern. The 
first version of the lattice model for concrete was written by Erik Schlangen, 
followed by Adri Vervuurt, Marcel van Vliet, Eduardo Prado, Giovanna 
Lilliu, and, most recently in Zurich by Hau-Kit Man. Without these excellent 
researchers the “Delft lattice model” would never have existed, and I am 
grateful that it has helped considerably in elucidating many of the questions 
about fracture of concrete. Next to these numerical results, a constant stream 
of experiments yielded new insight.

I have always tried to organize the doctoral work in such a way that a 
student hardly could avoid being confronted with experiments. So, most of 
the aforementioned researchers, plus a number of others helped move the 
experimental work forward: M. B. Nooru-Mohamed on mixed-mode I and II 
fracture, Marcel van Vliet worked on size effects in tension, Jeanette Visser 
on fluid-driven fracture, Jan Bisschop did experiments on drying shrink-
age cracking, Ahmed Elkadi on the size effect in compression, Chunxia Shi 
worked on difficult experiments related to crack stability, Pavel Trtik was 
active with the microtensile testing, and luckily, because The Netherlands 
is a small country, I could be involved in the continuation of the multiaxial 
work that I started at Eindhoven; specifically the collaboration with Rene 
Vonk, Erik van Geel, Henk Fijneman, and Harry Rutten has been quite mem-
orable. A constant stream of foreign visitors to the lab has helped improve on 
the results, both the experiments and the simulations. Memorable also is the 
excellent atmosphere in the Stevin laboratory when my group was shaped 
between 1988 and 1995, and later on, between 1999 and 2002 when I built 
a new microlab in collaboration with the computational mechanics group, 
which in the beginning was led by Rene de Borst, and, after his departure by 
Johan Blaauwendraad. After my transition to ETH-Zurich in 2002, research 
continued on the fracture of cement and concrete, but at a slower pace because 
some of my energy deviated toward the development of new concretes.

The combination of numerical simulations alongside physical experi-
ments is considered particularly fruitful. Unfortunately many believe just 
doing the modeling will do. It is a recurring theme in this book: just sit-
ting behind a computer will not teach you how a material such as concrete 
behaves. Hands-on experience is crucial, and seems increasingly more 
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important in times where the entire world is hiding behind a laptop or a 
tablet or is fumbling with a smart phone. This book presents the state of the 
art in concrete fracture, and in the last decade we have witnessed a gradual 
shift of interest toward fracture studies at increasingly smaller size/scales. 
There are enormous experimental challenges to address in the near future; 
some of them are mentioned in this book. It is hoped that there will be new 
initiatives to overcome the difficulties that are encountered when perform-
ing fracture experiments on cement at micro-size/scale and smaller, not 
forgetting that the obtained results should fit in the larger picture of the 
material science of concrete, particularly the design of new high-perfor-
mance concrete materials which can be put to good use in the development 
of efficient and durable structures.

I am grateful to all persons mentioned: they were important in arriving at 
the results presented in this book. Foremost I am grateful to my wife Ria: she 
lets me fumble on with this fracture stuff, even when I should actually do 
something more important.

Jan	van	Mier
Bergschenhoek, The Netherlands
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1
Introduction—Why a New Book 
on Fracture of Concrete?

Fracture mechanics of concrete remains an important topic of research. The 
material and structures made of concrete are prone to cracking caused by 
a variety of reasons. Mechanical loading is one important cause, but other 
physical loadings such as differential drying, temperature gradients, and 
chemical attack may also lead to severe cracking and deterioration of struc-
tures. The inherent reduction of serviceability time is not acceptable, espe-
cially in a world where resources are becoming scarce and global warming 
threatens the living conditions of all creatures on our home planet. During 
the production of cement a large emission of greenhouse gases is inevitable; 
roughly one metric ton of CO2 is emitted for the production of one metric ton 
of cement, reason enough to limit the use of cement as a building material, not 
only through a direct decrease of the amount of cement used, but also by pro-
viding longer service time for new and existing structures. Both for the devel-
opment of new high-performance cement composites, as for the improvement 
of the durability of concrete structures, fracture mechanics plays a key role.

Concrete cracking is primarily caused by the material’s low tensile resis-
tance. For ordinary concrete with a compressive strength of around 40 MPa, 
we may expect a tensile strength of no more than 10% of the compressive, 
thus approximately 4 MPa is the maximum. The imbalance between ten-
sile and compressive strength is traditionally taken care of through the use 
of steel reinforcement placed at those locations where the highest tensile 
stresses appear in the considered structure. The main reason the joint ven-
ture between steel and concrete is successful is their almost identical ther-
mal expansion coefficient. Moreover, the bond between steel and concrete 
is sufficiently good to allow for short anchorage length of the rebar. In prin-
ciple the combination is ideal, yet problems arise owing to the relatively high 
porosity and often good permeability of the concrete cover of the steel rein-
forcement. Bad workmanship may do the rest, and given sufficient amounts 
of water and oxygen the rebar may start to corrode once the protective oxide 
layer is passivated, either through the ingress of chlorides, or through car-
bonation of the cover concrete. Cracks may facilitate the ingress of corrosive 
media; therefore there is interest in reducing crack widths to a minimum, or 
to prevent cracking altogether. The swelling of a corroding rebar may lead to 
substantial increase of cracking, thereby accelerating the corrosion process, 
depending on the actual climatic conditions.
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In summary, there is an interest in developing high-tensile strength con-
crete, which resists higher tensile stresses, and thereby reduces the probabil-
ity for crack nucleation and growth. High-performance concretes are usually 
much denser than the aforementioned average quality, and as an additional 
advantage there is reduced permeability and the protective cover may per-
form much better leading to substantial improvement of the service lifetime 
of the structure.

Of course there are many influence factors when the durability and ser-
vice lifetime of concrete structures are considered, but because cracking is 
the major deterioration mechanism, it seems quite appropriate to give some 
attention to fracture processes in concrete and concrete structures, inves-
tigate causes for cracking, and to develop models that can “predict” the 
whereabouts of cracks during any stage of the lifetime of a concrete struc-
ture. Since the beginning of the 1970s there has been a steadily increasing 
interest in developing robust and reliable models that can simulate concrete 
cracking; much of the development is certainly caused by the introduction 
of the finite element method and other numerical simulation techniques in 
science and engineering.

One expression that has been heard a lot over the past decades is that 
improvements in the said computer models may eventually reduce the role 
of experiments, if not make experiments completely obsolete. Experiments 
are considered expensive, time consuming and cumbersome, only limited 
structural conditions can be tested, some loading situations are so complex 
that testing is considered impossible, and, after all, it is much worldlier to 
spend one’s time behind a computer screen in a neat office, rather than in 
a dusty concrete laboratory. Unfortunately practice has shown that experi-
ments are still very useful, if not always leading to the development of new 
and improved models, even though often it is claimed that an ingenious 
theoretical insight has led to the new model, which was subsequently con-
firmed by experiment. It is quite clear that the statement is wrong: a theory 
cannot be confirmed by a single experiment; at best the experiment may 
falsify the claims made by the modelers. In short, experiment and theory 
must be considered in unison. Both theory and experiment play their role 
in the progress of science and engineering. Experiments can be used to fal-
sify existing theoretical points of view, and may subsequently lead to new 
insights that help to develop improved theories. The interaction is crucial; of 
extreme importance is that in the highly specialized world we live in, those 
doing the experiments and those involved in theory development speak the 
same language, and are prepared to make the necessary sacrifices of reject-
ing developments that subsequently did not show the expected results, or 
were somehow in contradiction to “accepted” wisdom.

Studies related to the fracture of materials and structures go back a long 
time in history. The oldest practice was purely empirical, and many would 
agree that the earliest theory development dates back to 1920–1921 when 
Griffith presented his theory of the fracture of glass. Rock and metal fracture 



3Introduction—Why a New Book on Fracture of Concrete?

have a lengthy history as well, but the fracture of cement and concrete is 
a relative newcomer. Surprisingly, every time attention shifts toward new 
materials, new additions or new versions of the classical theories emerge. 
Seldom are these new developments applicable for the new class of mate-
rial only, but attempts are made to devise modifications and apply the new 
insights to a wider class of materials and structures. It remains to be seen 
whether this is not just a waste of time. With the increased attention to frac-
ture of ductile materials the plastic crack-tip model was developed, which 
subsequently served as a basis of cohesive crack models widely used nowa-
days for fracture of cement and concrete, and some advocate using cohesive 
models for other materials including rocks, ceramics, and polymers as well.

One important change in the cross-over from the plastic crack-tip model 
to the cohesive crack model used for concrete is that a local fracture criterion 
suddenly was used to describe global specimen/structure behavior. The size 
of the plastic zone in metal plasticity, or its equivalent, the cohesive zone in 
concrete suddenly changed from a very small, local zone, to an area encom-
passing the entire material-specimen/structure, in particular in common 
laboratory-scale specimens. The expected result is of course a tremendous 
dependency of the results on structure/specimen size and boundary con-
ditions. These latter aspects were hitherto successfully incorporated in the 
linear elastic fracture mechanics theory. Obviously the fracture process in 
concrete and related materials such as rock and ceramics is more compli-
cated or we simply lack the right insight. Just transferring an existing theory 
(plastic crack-tip model) to cement and concrete leads to previously unsus-
pected complications, which need to be resolved before a new truly effective 
theory becomes available.

Because the cohesive zone in concrete is often considered to be larger 
than the dimensions of the considered specimen/structure, and the nearby 
boundaries influence the fracture process, a better approach seems one 
where everything is considered to be a structure: from the so-called material 
experiments all the way up to the real structural applications. Size/scale is 
the only difference. A common material experiment for concrete uses speci-
mens on the order of five times the maximum aggregate size, that is, 100–150 
mm. This is considered the minimum specimen size where the material vol-
ume can be considered as a representative volume element and continuum 
ideas can still be used. Forces can be averaged over a surface (σ = F/A), and 
strains can be calculated as the relative elongation over the specimen length 
(ε = Δℓ/ℓ). As soon as a large crack of a large cohesive zone develops (i.e., 
larger than half of the specimen size), averaging seems to be less obvious, 
and perhaps another approach is needed. At the scale of laboratory exper-
iments the scale of the material structure may directly affect the fracture 
process, as in the case of concrete the particle structure of the material. For 
larger structures, it may seem that the behavior can be expressed in the usual 
continuum variables stress and strain, but the final stages of the fracture pro-
cess rely on the carrying capacity of a compression zone often no more than a 
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few centimeters wide, for example. Thus, the development of a macroscopic 
theory, based on the aforementioned continuum state variables, or an alter-
native fracture theory based on energy considerations or stress-intensity 
factors may benefit from structural analyses at a size or scale just smaller 
than the size or scale of the real structure. This means that for the usual 
material size or scale specimen we descend one step on the dimensional lad-
der and consider the material specimen as a small-scale structure where the 
aggregate structure of concrete affects the fracture process directly. Thus, 
the aggregate structure must be included in the model. This may be seen 
as an enormous complication, yet the widespread use of the finite element 
method allows analyzing the behavior of structures with complex geometry.

So, this is one of the ideas behind this book. Use so-called meso-level anal-
yses of laboratory-scale specimens for a better understanding of the fracture 
process and the fracture mechanisms, and apply the obtained knowledge to 
criticize existing macroscopic fracture models and propose new ways that 
may lead to improved models. Thus, analyze a laboratory-scale specimen as 
if it were a full-scale structure and consider the internal material structure 
as well as the exact boundary conditions of the experiments (restraint, free, 
or suppressed rotations and translations of supports and loading-point). To 
help simplify the analysis, the layout of an experiment should at points be 
improved, for instance, applying a point-load at the exact desired location, 
or providing a hinge that simply defines the rotation point uniquely with 
respect to the structure. Trying to apply uniformly distributed displacement 
or stresses over a larger area, as in standard compression experiments, is not 
quite simple and at edges and interfaces stress or displacement concentra-
tions may develop leading to premature fracture from those locations.

Thus, one should not underestimate the effects caused by boundary condi-
tions: a different type of failure may occur, sometimes unwanted, but some of 
the effects may be elucidated by the aforementioned “structural analysis” of 
material-scale test specimens. For the structural analysis of laboratory-scale 
experiment relevant details about the material structure must be known, 
and it must be singled out as to what scale the structure of the material must 
be. Does it suffice to just incorporate the particle structure (aggregate struc-
ture) of the considered concrete, or is it necessary to include certain details 
of the hydrated cement structure as well? Sensitivity studies may show the 
most appropriate approach.

In many of the models presented in this book parameters need to be deter-
mined. At best these parameters have physical meaning, can be determined 
in an independent test, and are not just “fitting parameters.” The latter type of 
parameters can be used to fit any theory to any experiment, to a higher or lesser 
degree, depending on the actual number of such “empirical parameters” (to use 
a neater terminology). Although superficially sound, the approach obviously 
lacks in-depth understanding of the physical problem at hand. Here it seems 
important to use theories and (numerical) model simulations in a slightly dif-
ferent way. The theory, or model, must be considered as an approximation 
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of physical reality. The global curves may be approximated extremely well 
or extremely poorly, but what is considered as most imminent in the field 
of fracture is that the fracture mechanism resemble the one observed in the 
experiment. The sequence in which cracks appear during the entire loading 
history is crucial: when a model approximates this crack mechanism to a high 
degree of accuracy, chances are large that the fracture mechanics are right 
too. It is important to extract the necessary information from the experiments: 
the global load-deformation behavior is one aspect; the fracture mechanisms 
and the developing crack patterns must be determined as well. In general we 
can only see the outer surface of a concrete specimen, therefore ways must be 
devised to measure interior crack development. Luckily there is a great deal 
of progress in the field and much of the internal material structure and cracks 
can be revealed by means of various tomography methods.

To summarize the lengthy text above, this book deals primarily with 
three aspects: (1) fracture of concrete and concrete structures, (2) models 
and theories that are capable of approximating the observed fracture behav-
ior to a larger or lesser degree, and (3) the model–experiment interaction. 
The book is divided into 12 chapters, including this introductory chapter. 
The goal is to present the subject matter in concise form. There are sev-
eral reasons to do so. First, several books exist on concrete fracture, most of 
them focusing in quite some depth on one of the aspects sketched above, 
thus, either on cohesive modeling, only on higher-order continuum theories 
for concrete fracture, or just on experiments. Because we have the ambition 
to show the intricate connection between theory and experiment a more 
global format has been chosen. As one advantage it is possible to show the 
relation between theory and experiment and at the same time a useful text 
becomes available to newcomers in the field. We are at the brink of expan-
sion, namely the application of fracture mechanics for the analysis of dura-
bility of concrete and concrete structures under corrosive circumstances. 
Tackling such processes not only relies on knowing physical deterioration 
processes in detail (alkali–silica reaction, rebar corrosion, shrinkage and 
swelling due to moisture or temperature gradients, etc.), but also on the 
specific fracture model that can best be used under the given circumstances. 
The present book is considered useful for those starting in this emerging 
field. It provides a fast insight to existing theoretical approaches, as well as 
parameter identification and experimental techniques common in studying 
fracture of cement and concrete materials and structures.

1.1	 Contents	per	Chapter

• Chapter 2 deals with “classical” fracture models, namely linear 
elastic fracture mechanics (LEFM): the Griffith energy balance, and 
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the Irwin and Orowan solution of the crack-tip stresses and dis-
placements. After the exposure of these linear theories, including 
the three basic crack modes (tensile opening mode, in-plane shear, 
and out-of-plane shear modes, referred to as modes I, II, and III, 
respectively), the plastic crack-tip zone model for fracture in plastic 
metals, and the cohesive fracture models used for concrete, based 
on Hillerborg’s Fictitious Crack Model (Hillerborg, Modeér, and 
Peterson 1976) are described. Because the latter type of model also 
requires rather sophisticated testing (knowledge is needed on the 
softening behavior of concrete) some attention is given to existing 
test methods and proposed standard test methods. In view of the 
aim to provide a concise text, the information is given in compact 
form and sources for further reading are provided.

• In Chapter 3 the mechanics aspects of lattice modeling are explained. 
Based on simple framework analysis a discretization of a contin-
uum is obtained. The relevant theoretical background, well known 
from finite element textbooks, is described in concise form. The 
equivalence between a shell element and a simple truss as shown 
by Hrennikoff (1941) is included, demonstrating the limitations of 
the elastic constants that may hamper such solutions. Yet, mov-
ing from truss elements to beam elements eliminates the problem 
of trusses, and as shown first by statistical physicists lattice beam 
models are excellently suited for fracture analyses (Roux and Guyon 
1985; Herrmann, Hansen, and Roux 1989). Some modifications to 
the lattice geometry and the inclusion of local material properties 
are necessary, however, in order to obtain more realistic results. 
Chapter 3 continues with a comparison of lattice and particle mod-
els. Particle models are frequently used for simulating the behavior 
of soils, rocks, and also concrete. In this book, however, the similar-
ity between the lattice and particle model is presented only briefly. 
Chapter 3 closes with the description of various fracture laws for 
lattice-type models, such as the Rankine, a combined tension/bend-
ing criterion, a tension/shear criterion, and a possible buckling crite-
rion for compressive failure.

• Incorporating a realistic material structure is possible in a lattice 
model, but basically in any type of finite element model by simply 
projecting the material structure on top of the lattice. Relevant prop-
erties of the local material phases are then assigned to the respec-
tive lattice elements. This simple approach leads to models with 
geometrically correct phase distributions, which stands in con-
trast to the usual way of statistical physics, where it is widespread 
usage to apply statistical distributions, for example, following a 
Gaussian, Weibull, or any other distribution, in order to include the 
effects of the material heterogeneity. In Chapter 4 different ways of 
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incorporating heterogeneity in the lattice are discussed, as well as 
details concerning the overlay of the material structure and the lat-
tice geometry. At the end of Chapter 4 local material properties are 
given for normal concrete simulations. Of particular interest are the 
properties of the interfacial transition zone between aggregate and 
matrix. This topic is presented in a bit more depth because it is so 
decisive for the behavior of concrete.

• In order to allow the application of lattice models with particle over-
lay for the simulation of the mechanical behavior of concrete it is 
essential to show that the elastic properties of the model are correct. 
This is the topic of Chapter 5: results are shown for the elastic prop-
erties of a lattice with particle overlay in 2D and 3D. A comparison is 
made with the upper and lower bounds for the elastic properties of 
composites from classical theories such as Hashin–Shtrikman (1963) 
and the Voigt/Reuss bounds.

• In the following three chapters the fracture behavior of concrete 
subjected to tensile combined tensile and shear load, and (confined) 
compressive loading are presented. Results from both experiments 
and from numerical simulations with lattice-type models are shown. 
Where necessary additional information about experimental tech-
niques used is given in the appendix, and a comparison with results 
provided by competing models is made. In particular for compres-
sion behavior, such comparisons are provided, because a simple and 
effective model is still lacking for this important loading regime.

• First, in Chapter 6, the failure of concrete subjected to uniaxial ten-
sion is discussed. Classical experiments by Evans and Marathe 
(1968) are realistically simulated, and details of the fracture process 
become visible from meso-level analyses. There is a significant influ-
ence of the boundary conditions, that is, the free or suppressed rota-
tions of the loading platens. Different fracture mechanisms emerge, 
which are described in detail. The use of notches is frequently 
advocated in experiments for determining the softening behavior 
of concrete. The necessity can be debated, as in Section 6.2. Many 
researchers feel that uniaxial tensile tests are far too complicated, in 
particular because of the difficulty of gluing specimens in the test 
machine, therefore indirect methods are favored. Yet, such indirect 
experiments are usually difficult to interpret and require back anal-
ysis of the true tensile properties using advanced fracture models. 
The uncertainty of the entire enterprise makes the use of indirect 
test methods, such as the Brazilian splitting test or the three-point 
bending test, highly debatable.

• Chapter 7 focuses on the behavior of concrete subjected to combined 
tension and shear. The combination of loads is very important under 
many practical circumstances, for example, the shear failure of 
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reinforced concrete beams. True shear failure, as known from metal 
failure, is hard to imagine for cement and concrete due to the great 
imbalance between tensile and compressive strength. Tensile failure 
will under most (unconfined) stress states dominate the failure mode. 
For a variety of cases, hitherto considered as mode II (in-plane) shear 
modes can easily be explained from local mode I (tensile opening 
mode) crack nucleation and growth. The case of torsion is interest-
ing inasmuch as it provides an appropriate transition to compressive 
failure, the topic of Chapter 8. It appears that from a superficial point 
of view compressive fracture can be solved in the same way as the 
fictitious crack model does with tensile fracture. The tensile case was 
presented in Chapter 2; in Chapter 8 the focus is on experimental 
results that make the case for compressive localization in the soft-
ening regime, models that are capable of describing the localized 
failure mode, a discussion of surface versus volumetric effects on the 
localized failure mode, and some alternative approaches that treat 
softening as the outcome of a crack-growth process. Both results 
from confined and unconfined compression tests are presented. The 
last section of Chapter 8 deals with a meso-level model for describ-
ing fracture of concrete in compression. A mechanism still appears 
to be lacking; perhaps the newly presented buckling criterion in 
Chapter 3 may give the right answer.

• Size effect is a consequence of fracture mechanics. The linear ver-
sions of fracture mechanics theory predict that larger structures fail 
at relatively smaller loading. The traditional way to deal with size 
effect is the Weibull weakest link theory (Weibull 1939, 1951), which 
states that larger volumes of material will have a larger probability to 
contain weak spots, and consequently will fail at lower loads. How 
rapid the load decrease goes with increasing size is still subject to 
debate. Two empirical size-effect models were developed in the past 
two decades, but they are no real improvement to Weibull theory. A 
major objection to the latest models is that they are purely empirical. 
Linking the Weibull modulus to the damage distribution may be a 
more fruitful approach, and from lattice analyses of structures of 
different size, this is exactly what can be obtained. In Chapter 9 the 
various theoretical approaches are debated.

• The results presented in Chapters 6 through 8 point toward an alter-
native approach to dealing with softening, namely softening as the 
consequence of crack growth phenomena at the meso- and macro-
size/scale. In Chapter 10 the consequences of this hypothesis are 
debated. What emerges is the so-called 4-stage fracture model (Van 
Mier 2004a, 2008). Softening is treated as the stage of unstable mac-
rocrack growth; nucleation is a more important aspect, but that takes 
place in the prepeak regime of the stress–strain curve. The softening 
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behavior can be modeled using classical LEFM with a small bridging 
stress over the crack. The proposed approach opposes the cohesive 
crack models in the fact that it does not accept the complete ten-
sile softening diagram as a bridging stress profile, nor as a material 
property. The 4-stage crack model can be applied both for tension 
and (confined) compression of plain and fiber-reinforced concrete. 
Because the model is based on classical LEFM it is necessary to 
determine the geometrical factor, which included specimen size and 
boundary condition effects, for every newly considered structure.

• The meso-level computations with the lattice model represent a 
model approach where “up-scaling from a predefined scale level” is 
performed. In the applications of Chapter 6 through 9 the predefined 
scale was the aggregate scale of concrete, but at the cost of more 
lengthy computations it would also have been possible to start from 
the micro-size/scale, that is, the scale of hydrated cement phases. The 
number of elements in a given analysis will increase enormously, 
and advanced solvers, multiprocessor computers, and a substantial 
amount of wall-clock time will be needed for such detailed analyses. 
The enormous computational costs can be reduced substantially by 
means of a new approach based on multiscale interaction potentials. 
Interaction potentials describe the interaction between neighbor-
ing particles. The size of the particles determines the shape of the 
interaction potential acting between them, and corresponds to the 
actual force-separation behavior at that particular size/scale, from 
the nano size/scale to the macroscopic size/scale. The so-called mul-
tiscale interaction potential approach (Van Mier 2007) is debated 
in Chapter 11. It is a different way of dealing with the material/
structure entanglement during softening. The outcome is surpris-
ing: softening must be used as a structural property, and solving the 
kinematic and equilibrium equations in structural analysis can be 
done without relying on a separate constitutive law.

• Finally in Chapter 12 a number of conclusions are drawn. Many 
questions are posed in the book; some are resolved, and some are 
still open to debate. The role of models is that they support experi-
ments. They should provide a workable hypothesis for carrying out 
new experiments, and provide new knowledge and insight on frac-
ture of cement and concrete. A model can only become a theory or 
law if it contains physical-based parameters that can be determined 
from independent experiments. Many of our engineering models, 
probably close to 99% of them, are empirical in nature, and an exact 
fit to experimental data is quite meaningless if the model parameters 
are not well defined. Softening goes to the heart of a long-stand-
ing problem in structural engineering: where does the structure 
become a structure, and at what point does the material stop being 
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a material. One hopes that the present excursion along a variety of 
fracture problems is of help to the reader in adding some new ideas 
to the existing kaleidoscope.

• At the end of the book a list of notations and a key-word index have 
been included. A number of topics have been transferred to the 
Appendix, such as some remarks about computational efficiency 
of the lattice model (Appendix 1), two simple results from LEFM 
(Appendix 2), testing related topics such as test stability (Appendix 
3), which is of eminent importance when dealing with softening, 
and an overview of crack detection techniques (Appendix 4), which 
are of great use when determining fracture mechanisms. Finally in 
Appendix 5 the effects of internal and external confinement on the 
behavior of concrete under compressive loads are discussed. Each of 
these appendices contains examples that are used at several places 
in the main text.
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2
Classical Fracture Mechanics Approaches

2.1	 Stress	Concentrations

Linear elastic fracture mechanics (LEFM) dates back to 1920–1921 when 
Griffith proposed his energy approach for the brittle fracture of glass. Any 
material, including a very smooth homogeneous material such as glass, con-
tains imperfections. These imperfections are the source of stress concentra-
tions, which may lead to failure of the material well below its theoretical 
strength. Based on a sinusoidal approximation of the atomic bond potential,

 σ = σ ⋅ π −



r

x rsin ( )max 0  (2.1)

where σmax is the peak stress in the atomic bond stress-spacing diagram and 
r is the increase of the original lattice spacing r0 of the atoms, it is possible to 
calculate the theoretical strength of crystalline solids, which leads to (Kelly 
and MacMillan 1986):

 σ =
π
E

max
 (2.2)

The Young’s modulus E relates stress with strain following σ = E.ε = E.x/r0. 
For example, for alkali-resistant glass fiber, with a Young’s modulus E = 70 GPa 
(Gupta 2002), the predicted theoretical strength according to Equation (2.2) 
would be σmax = 23 GPa, whereas in reality about 70 MPa is measured on a sin-
gle fiber. The strength of the fiber is very much affected by its diameter. Surface 
defects result in premature failure at stress levels quite below the maximum 
attainable value. In the glass rod of Figure 2.1a, the crack seems to have nucle-
ated from the small white line at the bottom of the mirror area. The rod, which 
was a simple off-the-shelf product, was highly polluted on the outside as can be 
seen in Figure 2.1b. The crack nucleated from an imperfection, and appeared to 
have started symmetrically in the beginning. After the rather smooth mirror-
zone, surface roughness gradually increased into the mist- and hackle-zones.
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Stress concentrations in real materials are, for instance, caused by pores, 
inclusions, interfaces between distinct material phases, and the like. A sim-
ple example is a circular hole with radius r = a in a flat plate, as shown in 
Figure 2.2a. When the plate is stretched at infinity, the stresses in the neigh-
borhood of the hole are no longer uniformly distributed, with the highest 
stress concentrations appearing at the sides of the hole (points A and B). At 
the edge along the hole the radial and shear stress components (σrr and τrθ) 
are equal to zero, whereas the tangential stress σθθ is equal to

Hackle

Mist

Mirror

(a)

100 μm

(b)

FIGURE 2.1
Mirror-mist-hackle zones after loading a glass rod to failure (a), and close-up of the point 
where the crack nucleated. (After Van Mier. 2000. De Kunst van Breken and Scheuren [The Art of 
Fracturing]. Inaugural Lecture, Delft University of Technology [in Dutch]. With permission.)
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 σ = σ − σ θθθ
∞ ∞2 cos 2yy yy

 (2.3)

which is derived directly from linear elasticity theory; see Timoshenko and 
Goodier (1970) for the full solution. The term σ∞

yy  is the externally applied 
stress. It is easy to see that along the sides of the hole (θ = π/2 and 3π/2) 
stresses are three times the external stress, and above and below the hole 
(θ = 0 and π) compressive stresses equal to –σ∞

yy  are found. Thus, if the plate 
material fails in tension, the actual measured stress is three times lower than 
the material could withstand without the circular hole.

When the shape of the hole is changed to elliptical, the stress concentra-
tions become more severe (Figure 2.2b). When the semi-axes of the ellipse are 
equal to a and b, the tangential stresses at A and B increase to

 σ = σ +



θθ

∞ a
b

1 2
yy

 (2.4)

The “flatter” the ellipse, the higher the stress concentrations, and the lower 
the measured failure stress of the plate will be. For a slit, that is, when b → 0 
(see Figure 2.2c), the tangential stress at the tip will become infinitely large 
(σθθ → ∞). At this point fracture mechanics becomes of interest. The displace-
ment jump caused by the slit should be approached differently than through 
the application of classical elasticity.

2.2	 Linear	Elastic	Fracture	Mechanics	(LEFM)

The above situation, farfield tension, leads to one of three fracture modes 
that are distinguished in classical fracture mechanics. In Figure 2.3 the three 

A

r = a θ

B A2b B A B

σ∞
yy

σ∞
yy

σ∞
yy

σ∞
yy

σ∞
yy

σ∞
yy

(a) (b) (c)

2a 2a

FIGURE 2.2
Plate with perfectly circular hole (a), elliptical hole (b), and slit (c).
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common modes are depicted: the opening mode or mode I, in-plane shear 
or mode II, and out-of-plane shear or mode III. Combinations of the three 
modes are referred to as “mixed-modes,” for example, tension and shear can 
either be mode I+II or mode I+III.

In engineering practice most interest centers on mode I. The other modes 
appear less frequently but are nevertheless of great importance. The crack-
tip stresses were derived by Irwin (1958), bringing in a new material con-
stant in the process, namely the stress intensity factor K. It is obvious that 
somehow the singularity has to be dealt with and changing the failure 
criterion to one based on stress intensity rather than on stress appears 
to be a viable approach. A recurring theme in this book is the separation 
between material and structural aspects of fracture, which comes in quite 
naturally in the equations derived by Irwin (1958). So, the problem here is 
a slitlike rack in an infinite plate subjected to farfield tension or shear. In 
Figure  2.4 the situation is sketched along with the definition of near-tip 
stresses in a Cartesian coordinate system. The expressions for the three 

(a) (b) (c)

FIGURE 2.3
Three fracture modes: (a) opening mode I, (b) in-plane shear mode II, and (c) out-of-plane shear 
mode III.

σyy

σyy

σyy

θ

r

x

y

σ

σ

Crack

Crack length = 2a

FIGURE 2.4
Tip of a slitlike crack with length 2a in an infinite plate subjected to farfield tension. Of interest 
are the local stresses σxx, σyy, and τxy in point P defined by polar coordinates (r,θ).
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stress components are nowadays quite familiar, and can be found in many 
textbooks; see, for instance, Broek (1983), Lawn (1993), and Suresh (1991). 
Because we need the expressions in Chapter 10, the main equations are 
listed here and their characteristics are summarized.

For mode I (tensile or opening mode) the three stresses σij and displace-
ments ui at P are:
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σzz = 0 for plane stress and σzz = ν(σxx + σyy) for plane strain, σxz = σyz = 0, and
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 = − ν σ + σu z
E

( )z xx yy
 for plane stress and uz = 0 for plane strain.

In Equation (2.6) κ = (3 − ν)/(1 + ν) for plane stress, and κ = 3 − 4ν for plane 
strain; KI is the mode I stress-intensity factor, defined as = σ π∞K aI yy  with 
dimension MPa√m. For mode II (in-plane shear mode) the expressions are 
more or less identical:
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σzz = 0 for plane stress and σzz = ν(σxx + σyy) 
for plane strain, σxz = σyz = 0, and



16 Concrete Fracture: A Multiscale Approach

 











=

π

+ ν κ + θ + θ





− + ν κ − θ + θ





























u
u

K
E

r
2 2

(1 ) (2 3)sin
2

sin 3
2

(1 ) (2 3)cos
2

cos 3
2

x

y

II  (2.8)

 = − ν σ + σu z
E

( )z xx yy
 for plane stress and uz = 0 for plane strain.

The definition for κ is the same as in Equation (2.6), and KII, the mode II 
stress intensity factor defined as = σ π∞K aII xy . And, finally, for mode III 
(out-of-plane shear mode),
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As with the other modes, KIII is the mode III stress intensity factor; that 
is, = σ π∞K aIII yz .

The expressions Equations (2.5)–(2.10) are valid only in the immediate 
vicinity of the crack-tip. The expansion with goniometric functions has 
been cut off after the first two terms; higher-order terms can in general be 
neglected, except of course for very special circumstances, which we do not 
discuss in the framework of this compact book. The equations can be cast in 
the same generic form as follows:

 
σ =

π
θK

r
f

2
( )ij ij  (2.11a)
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The stresses, as may be clear from the above equations, all show a singular-
ity when r → 0, which makes it impossible to use a stress criterion for crack 
propagation. The stress intensity factor K takes over and is now the quantity 
to compare to a critical value Kc in order to judge whether the crack grows. 
This is the point where continuum mechanics breaks down. The appearance 
of a singularity prevents further application of continuum mechanics in the 
presence of slitlike cracks, unless of course, as done in many applications, 
not calculating a stress at a point, but smeared over a larger area, as we see, 
for instance, in the plastic crack-tip model. There the notion of stress returns. 
From a physical point of view it is hard to imagine that a singularity would 
actually occur. For instance, in a crystalline solid, atomic bonds at the crack-
tip must be broken one at a time for a crack to propagate. If the atomic poten-
tials are correct, the subsequent fracturing of bonds occurs at a finite stress (or 
rather force inasmuch as it is a point of contact). Just from this fact it is good 
practice to start doubting continuum mechanics for the present application.

The stresses at the crack-tip, Equation (2.11a), are in part dependent on a so-
called geometrical function, or weight function, fij(θ). This function depends 
on the actual specimen/structure geometry and the boundary conditions, 
that is, the circumstances under which the crack-tip is loaded. To make mat-
ters clearer we can write the stress intensity factor as follows:

 = σ π ξK a f ( )  (2.12)

where ξ = a/W is used to describe the influence of the crack length and speci-
men dimensions (denoted by W, i.e., the width of the specimen in the direc-
tion of the crack growth). For the center crack in an infinite plate, as sketched 
in Figure 2.2c, f(ξ) = 1, and K reduces to σ πa. When the specimen has finite 
width W, the geometrical factor is approximated by:
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Several solutions, with varying accuracy, can be found in handbooks, such 
as the one by Tada, Paris, and Irwin (1973), as well as in the aforementioned 
textbooks on fracture mechanics.

For a single-edge notched tensile specimen, loaded between hinged 
boundaries, Tada et al. (1973) give the following expression for the geometri-
cal function f(ξ):
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which has an accuracy better than 0.5% for all a/W, whereas for the same 
single-edge notched specimen, but now loaded between fixed boundaries 
(i.e., the rotations of the loaded ends of the specimen are prevented), a more 
complicated formula results (Marchand, Parks, and Pelloux 1986):
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where F1 and F2 are the geometrical functions for a normal load (Eq. (2.14)) 
and pure bending (see Eq. (2.16) below), respectively, and Cij are dimension-
less crack compliances containing all information regarding the relations 
between normal load N, bending moment M, displacement u, and rotations 
φ. The crack compliances can only be computed numerically. It is beyond the 
scope of this book to include the full details of the solution, and the inter-
ested reader is referred to Marchand et al. (1986).

The function F2 in Equation (2.15) can be found in Tada et al. (1973) as follows:
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with an accuracy better than 0.5% for all values of a/W.
Using Equations (2.14)–(2.16) in a simple expression that shows the effect 

of relative crack length on residual stress carrying capacity of a cracked 
specimen (Equation (A1.4) in Appendix 1), it is possible to show the effect of 
hinged versus fixed boundaries in an uniaxial tensile test on a single-edge 
notched plate. The result is shown in Appendix 2, Figure A2.3, and is in 
agreement with experimental observations in concrete fracture, except for 
the tail part of the softening curve; see Figure 2.11 and related results in Van 
Mier, Schlangen, and Vervuurt (1995). A similar analysis as for the bound-
ary rotation effect in uniaxial tension tests can be carried out showing the 
size effect emanating from linear elastic fracture mechanics. LEFM predicts 
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that larger structures carry smaller loads than smaller geometrically similar 
structures; see Appendix 2. We return to the boundary rotation effect and 
the size effect in Chapters 6 and 9, respectively.

The above-mentioned solution of Irwin succeeds the original energy 
approach by Griffith by several decades. The elastic energy UE released in an 
area of radius 2a (the total crack length) is in balance with the total surface 
energy US needed to create the new crack area 2a.1 (assuming unit thickness 
of the plate containing the slitlike crack). The elastic energy can be written 
in the familiar form

 = π σU a
EE

2
2  

(2.17)

The surface energy is the product of the crack area and the specific surface 
energy γ:

 = ⋅ γU a2S
 (2.18)

Crack growth occurs when the rate of energy release dUE/da exceeds the 
increase in surface energy dUS/da following:

 ≥ = γdU
da

dU
da

2E S  (2.19)

which leads to:

 σ = γ
π







E
a

1/2
 (2.20)

where E is the Young’s modulus in plane stress, which must be replaced by E’ 
= E/(1 – ν2) in the case of plane strain. Thus, as the externally applied stress 
exceeds the stress given by Equation (2.20), the crack will propagate. Note that 
crack propagation is unstable, unless specific boundary conditions restrain 
the crack. The difficulty lies in establishing accurate values of the surface 
energy γ. In the literature γ is often replaced by the critical energy release rate 
GIc, where the subscript I refers to mode I. It is equal to the amount of energy 
consumed in the fracture process. The critical energy release rate is related to 
Irwin’s critical stress intensity factor, as one can easily derive from Equation 
(2.12) for the infinite plate ( f(ξ) = 1) and Equation (2.20) with GIc instead of γ. 
This leads to the well-known relation:

 =K EGIc Ic
 

(2.21)
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2.3	 Plastic	Crack-Tip	Model

The singularity from the Irwin analysis leads to problems. The applicability 
of continuum mechanics seems restricted in the case of a slitlike crack in an 
elastic plate. For crystalline solids such as we mentioned at the beginning of 
this chapter, it seems to make sense to include the atomic potential as a real-
istic way of dealing with crack-tip processes. The sinusoidal atomic potential 
of Equation (2.1) is depicted in Figure 2.5. The area under the curve is the 
amount of energy needed to separate two atoms, that is, to break the bond. 
This energy is in fact twice the specific surface energy for the solid under 
consideration. Based on the cohesion caused by this potential, Barenblatt 
(1962) devised a cohesive crack model that served as a basis for subsequent 
developments in concrete fracture mechanics. The cohesive stresses caused 
by the atomic bonds act along the plane of the crack near its tip.

Barenblatt posed an important hypothesis, namely that the cohesive zone 
at the crack-tip should be small compared to the size of the whole crack. As 
we show later on, in their analogy of the model applied to concrete fracture, 
Hillerborg, Modeér, and Peterson (1976) violated this assumption. Dugdale 
(1960) proposed a similar model for plastic metals, where the interatomic 
cohesive forces used by Barenblatt were replaced by the yield stress of the 
metal. In Figures 2.6a,b the principle of the plastic crack-tip model is shown. 
The size of the plastic zone is t, advancing in front of the stress-free crack 
with length 2a. The LEFM analysis would lead to a stress singularity at the 
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FIGURE 2.5
Atomic potential or cohesive stress–separation curve describing the bond between two atomic 
planes in a crystalline solid. The real behavior is shown as a solid line; the sinusoidal approxi-
mation of Equation (2.1) is shown as a dashed line. At the point where the curve intersects the 
x-axis, the slope of the curve is equal to the Young’s modulus as commonly used in Hooke’s law.
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tip of the stress-free crack, but through the assumption of the cohesive zone, 
also referred to as the process zone, the maximum stress is limited to the 
yield stress σy. In the subsequent analysis it is assumed that the total crack 
length is 2(a + t), and over the tip region of this longer crack, that is, over 
the segments of length t, a closing pressure σct acts equal to σy. Now two 
stress intensities are calculated: one from the crack-tip stresses σy (which are 
assumed to be constant over t), and the other from the farfield tensile stress
σ∞
yy; see Broek (1983):

 = σ π +σ∞K a t( )
yyyy

 (2.22a)
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FIGURE 2.6
Principle of the plastic crack-tip model (a), closing pressure at crack-tips (b), and similarity of 
the Fictitious Crack Model (c).
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From the condition that the two stress intensities should cancel when super-
imposed, it follows that the size of the plastic crack-tip zone t is:
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π σ

σ

∞

t
a( )

8
yy

y

2 2

2
 (2.23)

Much can be said about the actual stress distribution over the crack-tip 
cohesive zone, and much can be said about the shape of the plastic zone. 
Because this is not extremely important for the discussion to follow, the 
interested reader is referred to Lawn (1993) and Broek (1983). What is of 
importance though, is the stress intensity due to an arbitrary wedge-stress 
distribution in the process zone, which leads to:

 ∫= +
π

⋅ σ
+ −

σ

+

K a t x dx
a t x

2 ( )
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y
ct

a

a t

2 2
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where σct(x) denotes the stress distribution in the crack-tip plastic zone, 
and the x-coordinate runs from the origin at the center of the crack toward 
the tip as indicated in Figure 2.6b. An example of a useful function for the 
crack-tip wedging stress is the interatomic potential of Figure 2.5; see also 
Equation (2.1).

2.4	 Fictitious	Crack	Model	(FCM)

In 1976 Hillerborg, Modéer, and Petersson proposed an extension of the 
aforementioned plastic crack-tip model for concrete fractures. The so-called 
“Fictitious Crack Model” included a process zone similar to the plastic crack-
tip zone, although the stress distribution would not be uniform as in the 
Dugdale model, and the maximum “yield stress” was much smaller, namely 
equal to the uniaxial tensile strength of concrete; see Figure 2.6c, which is 
similar to Figure 2.6a except for the changes in the crack-tip process zone. 
Microcracks would be present in the process zone, but stresses could still 
be transmitted. In Hillerborg et al. (1976) and Petersson (1980) the model is 
described in detail. The closing pressure over the crack-tip zone was thought 
to resemble the shape of the softening curve of a concrete test specimen 
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loaded in uniaxial tension. There are some drawbacks to the model, which, 
however, are frequently ignored. So, let us summarize the most important 
aspects of the model

In doing so, it is interesting to repeat some of the original assumptions 
and starting points here; see also Van Mier (2004a). The first one is:

The fracture zone is formally represented as a crack with the ability 
to transfer stresses. Such stress transferring crack is called a fictitious 
crack, as distinguished from a real crack, which cannot transfer tensile 
stresses perpendicular to itself. (Hillerborg 1992, p. 488)

And, reflecting about the nature of the process zone:

At the same time the assumptions of Figure 2.6 [i.e., the correspondence 
between the closing pressure in the Dugdale/Barenblatt model and 
the Hillerborg model] may be looked upon as a reality. Stresses may be 
present in a microcracked zone as long as the corresponding deforma-
tion is small. This has been clearly demonstrated in tension tests, using 
very rigid testing equipment, e.g., by Evans and Marathe (1968). (see 
Hillerborg et al. 1976)

The experiments of Evans and Marathe (1968; see Figure 2.10) appear to 
have played a crucial role in the development of the Fictitious Crack Model. 
These experiments were among the first to demonstrate that significant 
load transfer was possible after the tensile strength of the material was 
exceeded. We discuss these results, as well as some further consequences 
later on in this chapter, and in Chapter 6 in more depth. The hint toward 
microcracks in the process zone is quite essential, because it is exactly this 
point that has been used by many others in similar model developments 
(e.g., the crack-band model by Bažant and Oh 1983). Petersson (1980, p. 80) 
refers to the microcrack zone as follows:

It is supposed that when the tensile strength is reached, a micro-cracked 
zone starts developing. The micro-cracked zone continues to grow when 
the load increases and finally some of the microcracks join together and 
a real crack opens.

This then continues:

The micro-cracked zone is able to transfer stress. The greater the number 
of microcracks, i.e., the wider the micro-cracked zone. (Petersson 1980, 
p. 80)

Thus, it is clear that the process zone is assumed to consist of many 
closely spaced microcracks; the larger the deformations are (i.e., the virtual 
crack opening of the fictitious crack), the larger the number of microcracks.
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These statements have led to a significant research effort to determine the 
exact size of the “micro-cracked zone in front of the stress-free macrocrack.” 
In Mindess (1991) the outcomes of many such studies have been compared. 
The main conclusions were that the extent of the microcrack zone seemed 
to depend on the resolution of the crack detection technique used, as well as 
on the structural conditions and the size of the specimen. In Chapter 6 we 
describe the true nature of the fracture process in tension in greater detail. 
Suffice it to say here that the above citations from the 1976–1992 papers of 
Hillerborg et al. and Petersson were a wild guess and real proof of the true 
nature of the process zone was lacking. The only hunch was that when the 
frontal zone at the crack-tip was sprayed with water, it would absorb the water 
more quickly than other (uncracked) parts of the concrete specimen. The mat-
ter is of importance because many experimentalists were driven in the wrong 
direction, and actually started to measure the extent of the process zone.

The Fictitious Crack Model is shown schematically in Figure  2.7. In the 
prepeak regime stress and strain are state variables. The uncracked mate-
rial is often assumed to exhibit perfect linear elastic behavior, as shown in 
Figure  2.7a. The most important parameters in this stage are the Young’s 
modulus Et and the tensile strength ft. The material cracks as soon as the ten-
sile strength is reached, where the material can then be characterized by the 
softening diagram of Figure 2.7b. Because the crack-opening displacement 
cannot be smeared over a specific part of the specimen’s volume, Hillerborg 
et al. (1976) proposed that the state variables should change to stress and 
displacement. Obviously this is a complication: at the peak of the stress–
strain diagram a “phase change” occurs, from the uncracked to the (micro) 
cracked material. The stress that can be carried by the cracked concrete can 
be described by the softening curve. The shape of this curve is therefore 
essential information, as is the maximum crack opening wc at which the 
crack becomes stress-free.
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The shape of the softening curve is often approximated by means of simple 
linear or bilinear functions, as shown in Figure 2.8. Deviations from truly 
observed softening curves can be very large, as can be seen from a compari-
son of the approximate curves with the measurement result of Figure 2.8d. 
Therefore many researchers have invested time in developing improved rep-
resentations such as exponential or power law functions. Directly based on 
the Dugdale/Barenblatt plastic crack-tip model, Reinhardt (1984) proposed a 
simple softening power law:

 σ = −
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w
w

1t

t c
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(2.25)

with k = 0.31 and wc = 175 μm giving the best comparison to experimental 
data published in the same paper. A slightly different form was proposed by 
Foote, May, and Cotterell (1986):

 σ = −
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In both equations ft is the maximum tensile strength of the concrete and wc 
is the maximum crack opening at which the crack becomes stress-free.

Hordijk (1991) made an exponential best-fit to test data by Cornelissen, 
Hordijk, and Reinhardt (1986a,b) using

 σ = +
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Four parameters are needed, namely ft = 3.2 MPa, c1 = 3, c2 = 6.93, and wc = 160 
μm. With these values for the parameters the fracture energy Gf = 99.7 J/m2 
(see Equation (2.28)). Two purely empirical parameters c1 and c2 appear; they 
are a consequence of the chosen function and have no physical meaning. 
The comparison of Equation (2.27) derived by Hordijk with the experimental 
data by Cornelissen et al. is included in Figure 2.9. Linear and bilinear soft-
ening relations are also shown. In all three cases the same fracture energy 
has been assumed, namely Gf = 99.7 J/m2. This leads to the values for the 
maximum crack opening wc shown along the x-axis. Equations (2.25)–(2.27) 
are sometimes used in finite element calculations. The success of the model 
is demonstrated in many papers; see, for example, Elfgren (1989), Van Mier 
(1987), and CUR (2003).

It appears that the slope of the softening curve directly beyond peak 
stress is of utmost importance: the bilinear and nonlinear curves will likely 
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yield satisfactory results, whereas linear softening may fail to do so (see 
Van Mier 1986b). Often simulations are not based directly on the fictitious 
crack model, which actually requires that the crack develops between ele-
ment boundaries, but on the crack-band model (CBM; Bažant and Oh 1983), 
which is a modification of FCM. In CBM the crack-opening displacement in 
the process zone is smeared out over a band of width cb = n.dmax, where dmax 
is the maximum aggregate size of the concrete, and n = 3. The factor n is also 
a fitting factor, in spite of the fact that it was named a material property. A 
unique relationship between the actual process zone width and the maxi-
mum aggregate size of concrete has never been satisfactorily established. In 
recent years many more complicated models have been developed, such as 
higher-order continua. In the context of this book it suffices to say that over 
90% of the finite element models appear to be based on the simple earliest 
models mentioned above.

One remark should be made about the representation of the experimental 
data in Figure 2.9. A collection of data points from tests by Cornelissen et al. 
(1986a,b) is shown. These points derive from many experiments, and do not 
reveal the shape of the actually measured curves, which means that some 
effects important to our understanding may simply be missed, for instance, 
the effect of the rotational stiffness of the loading platen (see Figure 2.11). 
Using a test apparatus with loading platens fixed against rotation leads to 
a specific “bump” in the softening curve, which is simply averaged out in 
the data representation of Figure 2.9. We return to the effect of the rotational 
stiffness of the loading platen later in this chapter.

There are two important quantities that can be derived from the Fictitious 
Crack Model: the specific fracture energy Gf (already mentioned above) and 
the characteristic length lch. These parameters are used to try to quantify 
the brittleness of concrete. The specific fracture energy Gf is defined as the 
amount of energy needed to create one unit crack area, and is equal to the 
area under the softening curve of Figure 2.7b. The softening curve, and thus 
also the fracture energy can only be determined in a stable displacement-
controlled uniaxial tension test. It is important that the deformations are cor-
rected for the elastic deformations in the total measuring length; see also 
Section 2.5 and Appendix 3. Thus, the fracture energy can be written as

 ∫= σG w dw( )f

w

0

c

 (2.28)

Higher specific fracture energy would mean a more ductile material. Yet, 
the shape of the softening curve is in this context very important. When 
a steep stress-drop occurs, for example, directly after maximum stress, the 
overall behavior may still be judged as brittle.

The second parameter, the characteristic length lch of the material is defined as
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Hillerborg and coworkers proposed that the characteristic length is a mea-
sure of the brittleness of the concrete. A 16-mm concrete has a higher specific 
fracture energy than a 2-mm mortar. With constant E, the value of lch would 
depend on the ratio between Gf and ft. Differences in tensile strength may 
occur due to a different w/c-ratio to achieve similar workability, the cement 
content, age, and other (environmental) factors. A tendency for more hetero-
geneous concretes to have larger characteristic lengths has been observed. 
There is a catch, however. The brittleness of a material may differ when the 
structural conditions change. This was recognized by Elfgren (1989, p. 399) 
who proposed a brittleness number as the quotient of the elastic energy 
stored in the structure and the fracture energy. The elastic energy UE is con-
trolled by the volume of the structure (i.e., the third power of a characteristic 
length of the structure L), whereas fracture energy Us is a surface measure 
and depends on L2 only. The result is:
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and a measure for the size of the structure comes into play. A structure 
is brittle when the stored elastic energy is higher than the energy needed 
to create the critical fracture plane; that is, UE >> Us. When the balance is 
reversed, UE << Us, ductile behavior is observed. This result is quite interest-
ing, and again hints toward the influence of the structural environment on 
the fracture properties of a material. The interdependence of structural and 
material aspects of fracture is at the core of coming to a true understanding 
of fracture mechanics. It is the main theme of this book.

2.5	 Determination	of	FCM	Parameters

The softening diagram of any material and structure can only be measured 
using advanced testing techniques. Nowadays a fast servohydraulic or elec-
tromechanical test machine is used; in the past systems with bars arranged 
in parallel to the test specimens allowed for a first insight in the postpeak 
behavior of concrete (and rock). In Appendix 3 the stability of fracture experi-
ments is addressed. For the determination of the FCM-parameters it was 
proposed to use a displacement-controlled uniaxial tension test. The load-
ing platens should be fixed against rotation, thereby imposing uniformly 
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distributed deformations at the specimen’s ends. The FCM was developed 
with the now classical tensile test results of Evans and Marathe (1968) in mind. 
In Figure 2.10 some of their results are shown. For a concrete with a w/c-ratio 
of 0.45 and an aggregate-to-cement ratio of 3:1 the stress–strain curves were 
measured at varying ages. Using the parallel-bar setup shown in Appendix 
3 (Figure A3.1a) stable softening curves were measured. These tests, together 
with those of Hughes and Chapman (1966) are probably the earliest known 
examples showing the softening behavior of concrete in tension.

The curves were very smooth and showed that after reaching a maxi-
mum ( ft), the tensile stress would decrease again, very slowly, with increas-
ing longitudinal strain. The notion of using displacements in the postpeak 
regime was not introduced until 1976 with the FCM. Interestingly, Evans and 
Marathe marked the onset of microcracking in the diagrams, which was well 
in the prepeak regime, and not postpeak as assumed in the FCM (see Section 
2.4). As said, Evans and Marathe seemed not to be aware of the localization 
of deformations in a single crack during the postpeak regime, at least not so 
much as to propose a change to a different model, that is, a model with dif-
ferent state variables for the postpeak behavior. Therefore by simply divid-
ing the total deformations by the specimen length the longitudinal strains 
were determined. Nowadays it is common either to mention the measuring 
length used, or to show softening curves in terms of stress and displacement. 
Note that extensometers or LVDTs are more useful measuring devices when 
cracks appear; strain gauges might break and can in general not be used in 
fracture experiments other than showing the growth of a crack: when the 
strain-gauge breaks we know a crack is passing.

The exact boundary conditions in the experiments of Evans and Marathe 
are not completely clear. Hillerborg et al. specified that a test between fixed 
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boundaries is needed, or at least between plates with very high rotational 
stiffness compared to the bending stiffness of the specimen itself. In the 
late 1980s it was found that this led to a more or less pronounced bump in 
the postpeak regime, depending on the size of the specimen; see Van Mier 
(1986b), Van Mier and Nooru-Mohamed (1990), Hordijk (1991), and many oth-
ers. In Figure 2.11 results by Van Mier, Schlangen, and Vervuurt (1995) are 
presented, which show the bump very clearly when fixed platens are used, 
whereas a smooth curve is obtained when the loading platens are free to 
rotate. Obviously there is more to the uniaxial tension test than previously 
thought. The problem raised, of course, is whether softening can be used as 
a material parameter. Figure 2.11 is quite clear: there is a profound influence 
of the structural conditions in the experiment on the test result. Either the 
selected test is not correct, and other loading arrangements must be estab-
lished, or softening is simply a structural property, and as such cannot be 
used unrestrictedly in finite element analyses as proposed with the develop-
ment of the FCM and the crack-band model.

There have been attempts to minimize the effect of boundaries, for exam-
ple, by using very short specimens. Hordijk (1991) showed that the postpeak 
behavior was smoother when the specimen size was reduced to 50 × 60 × 50 
mm3 (with two 5-mm deep notches at half height), yet there appears to be an 
effect on the maximum stress, which is considerably lower than that of 250-
mm long prisms, and the peak is more “rounded.” Likely boundary effects 
still play a role but the effects from bending are reduced when the specimen 
slenderness decreases. It all adds to the conclusion that softening is a struc-
tural property; the effect of boundaries and specimen size becomes notable 
around peak stress.
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age behavior.
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Uniaxial tension tests are not so easy to conduct; at least that is the gen-
eral opinion. There are several practical problems that need to be solved. 
An exhaustive overview of important test-related factors has been given 
in Van Mier (1997) and Van Mier and Shi (2002). Most researchers tend to 
follow the proposal by Hillerborg and use nonrotating boundaries; see, for 
example, Hordijk (1991) and Mechtcherine (2007). The argument is that uni-
form displacement is applied, but that is only true when the total specimen 
length is considered. Flexure of the specimen cannot be avoided because the 
heterogeneity of the material will always cause fracturing from one side, 
in most cases a corner (if prismatic specimens are used). This asymmetric 
failure is not dependent on centric placement or alignment of the specimen 
in the loading chain, but is simply the consequence of testing a highly het-
erogeneous material. Thus, as shown in Figure A.2.1 in Appendix 2, crack 
growth will start from one side and continue to grow toward the other side, 
but at some moment a second crack will nucleate from the opposite side 
when boundaries are prevented from rotating. As a result the total crack 
area exceeds the specimen cross-section, and for a proper evaluation of the 
specific fracture energy, Equation (2.28), it is necessary to measure the exact 
crack area. Things become easier, as far as determining the specific fracture 
energy is concerned, when freely rotating platens are used. In that case only 
a single crack develops perpendicular to the loading direction, and it has 
been shown that the fracture energy is lower compared to the result from 
experiments between fixed platens, and likely matching the “true” specific 
fracture energy of the tested material; see Van Mier et al. (1995).

The second major problem in performing uniaxial tension tests is gluing 
the specimen between the loading platens. Gripping the specimens is not 
really possible, and gluing is considered the best solution for applying ten-
sile loading. Many commercial two-component epoxies are available, with 
tensile bond strength far exceeding the tensile strength of plain concrete (for 
fiber concrete, especially high-performance fiber concrete, the bond strength 
of the epoxy may not be high enough), but often the concrete has to be com-
pletely dry in order to guarantee a proper adhesion to the loading platens. 
Essential steps in gluing are providing a rough concrete surface, taking pre-
cautions that a uniform glue layer thickness is applied, and that the glue sur-
faces are not polluted by some greasy substance. It may take some practice 
before the best combination is found, but once everything is set there are no 
longer any appreciable difficulties.

Notches are often used to crack the specimen at a known location. The 
major reason is to have a fixed place where the transducers for test control 
can be positioned, but an additional reason is that the stresses at the glue 
contact to the loading platens are somewhat lower than the stress in the 
notched area. In Section 6.1.4.2 we return to the use of notches and the shape 
of the tensile specimen in general.

Because of the aforementioned difficulties encountered in tensile testing 
many researchers prefer to measure the parameters for FCM via indirect 
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test methods, including the 3-point or 4-point bending test (Figure 2.12c), the 
wedge-splitting test (Figure 2.12d; Tschegg and Linsbauer 1986 and Linsbauer 
and Tschegg 1986), the Brazilian splitting test (Figure  2.12b, proposed by 
Akazawa in 1943 and Carneiro in 1949; see Nilsson 1961) or the double-punch 
test (Figure 2.12e; Chen 1970). These tests are favored because in general they 
can be performed in a standard compression test rig and no complicated glu-
ing procedure is needed. The Brazilian test, using either cubes or cylinders, 
will provide an estimate of the uniaxial tensile strength at best. The outcome 
depends very much on details such as the width of the strips used to load 
the specimen. These matters are usually prescribed in model codes, and it 
is quite essential to perform tests as laid down in codes in order to allow 
for comparison with results from others. Bending tests or wedge-splitting 
tests are not useful for determining the tensile strength of concrete; at best 
the specific fracture energy can be determined. Guinea, Planas, and Elices 
(1992), Planas, Elices, and Guinea (1992), and Elices, Guinea, and Planas (1992) 
have published in-depth analyses of problems met in the 3-point bending 
tests, and indicate how the fracture energy should be derived, eliminating 
the known error sources as much as possible.

For the determination of the FCM parameters the bending test (or wedge-
splitting test) must be combined with the Brazilian splitting test: the bending 
test (or wedge-splitting test) gives the specific fracture energy; the Brazilian 
test provides an estimate for the uniaxial tensile strength (see Planas et 
al. 2007). Using inverse parameter identification techniques, the softening 
diagram as needed in the FCM (usually a bilinear diagram is fitted) may 
be derived, but uncertainty about uniqueness of the obtained solution will 
always remain; see, for example, Wittmann et al. (1987). In Section 6.2 we 
return to these indirect methods. There a meso-level analysis provides 
insight to the actual behavior in such experiments, and clarifies why some of 
the test methods should not be used.

Finally, because in this book we consider each experiment that leads 
to complete failure of the specimen as a structural experiment, it is not 

(a) (b) (c) (d) (e)

FIGURE 2.12
Direct and indirect tests for determining the tensile strength of concrete: (a) uniaxial tension 
test, (b) Brazilian splitting test, (c) 3-point bending test, (d) wedge-splitting test, and (e) double 
punch test.
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considered useful to address one of these tests as leading to “the best” or 
“pure” material properties. This point of view is abandoned completely. It 
can always be shown that specimen size and boundary conditions affect the 
outcome of any fracture experiment, and thus one always determines struc-
tural properties of the complete specimen/machine system. Thus, instead, 
all experiments are analyzed as being a structure using meso-level mod-
els that require simple input parameters only, such as local tensile strength 
and the Young’s modulus of the various material phases inside the concrete 
(matrix, aggregate, interfacial transition zone). Before analyzing the various 
loading cases we next explain the meso-level approach.
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3
Mechanics Aspects of Lattice Models

3.1	 Short	Introduction	to	Framework	Analysis

A continuum can be discretized in a lattice of truss or beam elements. This 
has been known for a long time: in 1941 Hrennikoff showed how the element 
parameters should be set to obtain the same elastic properties in a truss lat-
tice and a shell element loaded in plane stress. A lattice can consist of differ-
ent types of elements. Linear elements are always used, but the connectivity 
may vary. Truss elements (Figure 3.1a) have two degrees of freedom (dof) 
in each node (displacements ui and vi); beam elements also include rota-
tions (φi) and have 3dof per node (Figure 3.1b). Thus for the beam element of 
Figure 3.1b the displacement vector is

 = ϕ ϕu v u vvT i i i j j j
 (3.1)

where the subscript i and j refer to the two nodes. For the simple truss ele-
ment of Figure 3.1a the two rotations φi and φj are missing. The hyphen in v  
indicates that displacements are considered in the local coordinate system. 
This is the situation for simple linear elements deforming in a two-dimen-
sional plane. We start by briefly describing the set of equations needed in a 
2D truss or beam-lattice. Generalization to three dimensions is quite elabo-
rate but straightforward.

Three sets of equations must be solved to arrive at a solution in structural 
mechanics: the kinematic equations describe the relation between displace-
ments and strains, the constitutive equations relate stress and strain, and 
equilibrium equations describe the relationship between internal stresses 
and external forces. For an elastic material the relation between strains ε and 
displacements v  is given through the combination matrix C following

 ε = Cv  (3.2)

For the simple truss element of Figure 3.1a, three degrees of freedom are 
needed to describe the rigid body motion, which leaves one dof to describe 



36 Concrete Fracture: A Multiscale Approach

the deformation of the element; in this case only the axial deformation is 
needed: ε = −u uj i. Similarly, for the beam element of Figure 3.1b the rigid 
body motion is described by 3 dof, and thus 3 dof are left for describing the 
relation between displacements and strains, following:

 ε = −u uj i1  (3.3a)

 ε = ϕ −
−v v
li

j i
2

 (3.3b)

and

 ε = ϕ −
−v v
lj

j i
3

 (3.3c)

The constitutive equations are defined through the stiffness matrix S,

 σσ εε= S  (3.4)

For the simple truss element the relation between stress and strain is quite 
straightforward and is written as

 =S EA
l

 (3.5)

where E is the Young’s modulus of the (elastic) material and A is the cross-
sectional area of the truss element. Finally, we need the relation between 
stresses and external forces, which can be derived using the combination 
matrix C following

x, u, N

(xi, yi) (xi, yi)

(xj, yj) (xj, yj)
y, v, D

y, v, D

α

– – – y, v, D– – –

x, u, N– – – x, u, N– – –

(a) Truss element (b) Beam element

�i

�j M–

FIGURE 3.1
Positive directions for forces and displacements for truss element (a) and beam element (b).
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 σ =C kT  (3.6)

where k  is the vector containing the nodal forces Ni, Di, Nj, and Dj as indi-
cated in Figure 3.1a. Positive directions are as shown in this figure.

The above is written in terms of the local coordinate system of the consid-
ered truss (or beam ) element. In the global lattice elements may have dif-
ferent orientations and it is necessary to transform everything to the same 
global coordinate system. Using the transformation matrix T local forces and 
displacements are transformed following

 
=v Tv  

(3.7)

and

 
=k T kT

 
(3.8)

The transformation matrix T takes the following form,

 =T
T

T
0

0
i

j

 (3.9)

where Ti and Tj are identical if both element ends have the same orientation:

 

= = α α
− α α

T T cos sin
sin cosi j  (3.10)

and α is the angle between the truss element and the positive x-axis as shown 
in Figure 3.1.

Finally the complete relation between external forces and displacements 
can be formulated as

 
= =k T C SCTv SvT T  (3.11)

S is the stiffness matrix for a single element in the global coordinate system. 
The entire matrix for the global lattice, containing many elements, is then 
constructed placing exactly those stiffness terms at their respective places. 
Where two or more truss elements meet in the same node, the stiffness terms 
are added. In the end a symmetric diagonal matrix emerges, which is quite 
suitable for numerical processing. The entire procedure is described in detail 
in various textbooks, for example, Nijenhuis (1973). We do not go into fur-
ther detail in this chapter where the goal is to describe a numerical model 
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globally based on the finite element method only, and indicating its potential 
use for the analysis of particle composites. Before doing that, however, it is 
interesting to consider the elastic properties of the lattice. For that purpose 
we write in full detail the equations for a simple truss element. First we com-
pute CT	=	D.

 
= − ⋅

α α
− α α

α α
− α α

= = − α − α α α

CT

D

1 0 1 0

cos sin 0 0
sin cos 0 0
0 0 cos sin
0 0 sin cos

cos sin cos sin

 (3.12)

Next we determine the stiffness matrix from

 

= =

− α
− α

α
α

⋅ ⋅ − α − α α α =

= =

α α α − α − α α
α α α − α α − α

− α − α α α α α
− α α − α α α α

EA
l

EA
l

D SD T C SCT

S

cos
sin

cos
sin

cos sin cos sin

cos cos sin cos cos sin
cos sin sin cos sin sin

cos cos sin cos cos sin
cos sin sin cos sin sin

T T T

2 2

2 2

2 2

2 2
  

  (3.13)

which can be written in compact form as

 =S
S S
S S

11 12

21 22

 (3.14)

This compact form is the usual representation in truss and frame analysis. 
Close scrutiny of Equation (3.13) reveals

 = − = − = = α α α
α α α

EA
l

S S S S cos cos sin
cos sin sin

11 12 21 22

2

2
 

(3.15)

When the local and global coordinate systems coincide, α = 0 and all the ele-
ments in the 2 × 2 matrix are zero except for the first diagonal element, which 
is equal to 1.
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3.2	 	Equivalence	between	a	Shell	Element	
and	a	Simple	Truss	(Hrennikoff)

Let us now consider a simple truss that is supposed to replace a shell element 
loaded in plane stress. In Figure 3.2 the two cases are shown side by side in 
a global Cartesian coordinate system (x,y). This situation was first consid-
ered by Hrennikoff (1941), but the solution can be found in many textbooks. 
Here we follow the solution provided in Nijenhuis (1973). The shell element 
is replaced by a simple truss containing six elements. The main question 
is how the sectional area of the various truss elements must be selected to 
obtain the same elastic deformations as the shell element. In Figure 3.2 the 
sectional areas are indicated as A1, A2, and A3 for the horizontal, vertical, and 
diagonal elements, respectively. The length of the horizontal and vertical ele-

x, u

y, v

3

3 4

Truss

(b) Loading Cases

(a)

Shell

1 2
1

2

5 6
4 l2

l1 l1

l2 l2

l3

Ky1 Ky2

Kx1

Kx3 Kx4

Kx2
Kx1

Ky1
Ky2

Kx2

Kx4

Ky4
Ky3

Kx3

Ky4Ky3

Cross-sectional
areas Ai
1,2
3,4
5,6

A1
A2
A3

�ickness = t

Vertical stretch

Horizontal stretch

Shear

FIGURE 3.2
Shell element and equivalent truss lattice under generalized plane stress (a). For determining 
the geometrical properties of the lattice and the shell element three loading cases must be 
considered (b): vertical stretch, horizontal stretch and shear. (Adapted from Nijenhuis. 1973. 
De Verplaatsingsmethode: Toegepast voor de Berekening van (staaf) Constructies. With permission 
from Elsevier.)
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ments is equal to l1 = l and l2 = cl; consequently the diagonals have length l3 = 
l(1 + c)1/2. The thickness is denoted by the symbol t (t < l).

The deformation of the shell element under plane stress is well known:

 ε = σ − ν σ ε = ν σ − σ γ = + ν τ
E E E E E
1 , 1 , and 2(1 )

x x y y x y xy xy
 (3.16)

The 6-element truss which is compared to the shell element has four nodes, 
and the relation between the nodal forces and displacements is described 
completely by

 

=

+ + − − −
− + + − −
− − + + −
− − − + +

⋅

K
K
K
K
K
K
K
K

u
v
u
v
u
v
u
v

S S S S S S
S S S S S S
S S S S S S
S S S S S S

(1) (3) (5) (1) (3) (5)
(1) (1) (4) (6) (6) (4)
(3) (6) (2) (3) (6) (2)
(5) (4) (2) (2) (4) (5)

x

y

x

y

x

y

x

y

1

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4
  

  (3.17)

where the S(i) are all 2 × 2 matrices as shown in Equation (3.15) and are the 
individual stiffness components for the elements i = 1, . . . , 6. In each submatrix 
the appropriate value of α for each truss element must be substituted. After 
specifying the external nodal forces on the truss-work to resemble the stresses 
on the shell element, and after some mathematical manipulation (Nijenhuis 
1973), two sets of equations are derived that must be fulfilled simultaneously.

First set:

 = − ν
ν + ν

= + ν −
+ ν

A lt c
c

A lt c
4 (1 )

and 2 3
4(1 )1

2

2

2
 (3.18)

Second set:

 = − + ν
+ ν

= − ν
ν + ν

A lt c c
c

A lt c2 1 3
4(1 )

and 1
4 (1 )1

2 2

2

2
 (3.19)

It is quite straightforward to show that Equations (3.18) and (3.19) can only be 
fulfilled simultaneously when ν = 1/3, which leads to the final result
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 = − = − = +A c
c

lt A c lt A c
c

lt3
16

3 1 , 3
16

(3 ) , and 3
16

(1 )
1

2

2
2

3

2 3/2  
(3.20)

For a square plate, c = 1, and the three cross-sectional areas are A1 = A2 = 
3lt/8  and =A lt3 2 /83 .

In the above example a regular rectangular lattice with crossing diagonals 
was used. The geometry of the lattice may vary from other regular schemes 
to completely random geometries. The analysis to match the stiffness of shell 
and truss-work becomes increasingly more tedious. In general, for more com-
plicated lattices one must revert to numerical analysis. The same approach 
can be followed for 3D lattices, but in that case an analytical solution as given 
above is almost unthinkable.

In this book we are interested in developing a model based on a lattice 
for simulating the fracture of heterogeneous materials. Fracturing poses a 
problem because nonlinearity must be introduced in these computational 
schemes, which are suitable for elastic analysis. The problem with fracturing 
is that the stiffness of a fractured element may eventually become zero, also 
on the main diagonal of the stiffness matrix, which then becomes singular. 
One way around this problem is to remove the element when it is fractured, 
and reconstruct the stiffness matrix with one element less. Even then, when 
the lattice is built from truss-elements (normal force lattice), unstable situa-
tions may arise depending on the connectivity of the remaining elements. 
This may be one, among several other arguments, to revert to a beam lattice. 
Instabilities in the lattice after removal of even a large number of beams are 
hardly possible because of the other degrees of freedom in such elements, in 
particular the bending stiffness.

So, let us consider the element stiffness matrix for a beam. The C-matrix for 
a beam with 6 dof (2D beam element) is based on Equation (3.3):

 εε  = =
−

−
−

⋅
ϕ

ϕ

l l
l l

u
v

u
v

Cv
1 0 0 1 0 0

0 1/ 1 0 1/ 0
0 1/ 0 0 1/ 1

i

i

i

j

j

j

 (3.21)

The stiffness relations now include bending, and the various components 
can be derived giving unit displacements or rotations to the beam element. 
The resulting S-matrix for a single beam element is equal to
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 =

EA
l

EI
l

EI
l

EI
l

EI
l

S

0 0

0 4 2

0 2 4

 (3.22)

where E is the Young’s modulus of the (elastic) material, A is the cross-sec-
tion of the beam (A = bh for rectangular beams, and = πA d /42

 
for beams 

with a circular cross-section, which is more suitable for 3D analyses), and I is 
the moment of inertia (I = bh3/12 for rectangular beams).

The relation between nodal forces and nodal displacements in the 
global coordinate system with α = 0 (T = TT = I) can now be obtained by 
going through all the transformations done before for the truss element in 
Equations (3.12) and (3.14):

 

= = =

=
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−

−
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−

=

=

−
−
−

−
− − −

−

EA
l

EA
l

EI
l

EI
l

EI
l

EI
l

EI
l

EI
l

EI
l

EI
l

EA
l

EA
l

EI
l

EI
l
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l
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l

EI
l
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l
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0 0 0 0
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0 0 0 0
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3 4 3 4
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(3.23)

The shorthand forms
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 = = = =S EA
l

S EI
l

S EI
l

S EI
l

, 12 , 6 , and 2
1 2 3 3 2 4

are useful when it comes to setting up the equations for a small framework. 
In compact form the above stiffness matrix can be written as

 =S
S S
S S

11 12

21 22

 (3.24)

but for these more complicated beam elements it is not possible to simplify mat-
ters any further as we did for the truss element in Equations (3.14) and (3.15).

3.3	 Effective	Elastic	Properties	of	Beam	Lattices

It is interesting to see what changes in the lattice of Figure  3.2 when the 
truss elements are replaced by beams. How should the dimensions of the 
beams be selected to obtain the same elastic response as the simple shell ele-
ment loaded in plane stress? This problem was resolved by Schlangen and 
Garboczi (1997) for regular triangular lattice configurations based on evalu-
ation of the elastic energy stored in a single unit cell subjected to uniform 
strain. Only the final result is given here:

Bulk modulus

 
=K EA

l
3

2
 

(3.25a)

Shear modulus

 = +





G EA
l

I
Al

3
4

1 12
2

 (3.25b)

Poisson’s ratio

 ν = −
+

=
−

+

K G
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I
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1 12

3 12
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2

 (3.25c)
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With I = (1/12)bh3 and with A = bh the expression for the Poisson’s ratio can 
be rewritten as

 ν =

− 















+ 















h
l

h
l

1

3

2

2
 

(3.26)

Figure  3.3 shows the relation between ν and h/l in graphic form. The 
Poisson ratio is independent for the choice of b and depends on the ratio h/l 
of the beam elements only. Thus by choosing the appropriate h/l ratio the 
Poisson ratio of the beam lattice can be set to resemble actual values of the 
material to be analyzed. There are some restrictions, however, inasmuch as 
the highest value for ν = 1/3 when h/l = 0 and the lowest value appears for h/l 
→ ∞, namely ν = –1.

A regular triangular lattice has some disadvantages when analyzing crack-
ing, in particular when heterogeneous materials are considered. Because in 
2D, in regular triangular lattices (assuming that all beams have equal length) 
three symmetry axes appear, preferential crack paths are defined by the lat-
tice geometry. Mesh sensitivity can thus be expected, but this can be avoided 
by bringing some randomness into the lattice through a variation of the elas-
tic properties or fracture thresholds of the lattice. Alternatively it is possible to 
revert to triangular lattices with random beam lengths, for example, the ran-
dom lattice developed by Mourkazel and Herrmann (1992). The construction 
of the random lattice is explained in Section 4.5. Here we discuss the elastic 
properties. For lattices with random beam lengths Vervuurt (1997) analyzed 
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FIGURE 3.3
Relation between beam size h/l and Poisson’s ratio ν in a regular triangular lattice. (After 
Schlangen and Van Mier. 1994. Computer Methods and Advances in Geomechanics.)
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the effective Poisson ratio and Young’s modulus as a function of the height 
h over average length lavg of the lattice beams (h/lavg) and as a function of the 
randomness parameter A/s (see Figure 4.11b in Section 4.5). Several random 
lattices were generated, each measuring 50 × 50 nodes. For each randomness 
(A/s = 1.0, 0.75, 0.5, 0.25, and 0.001) several lattices were generated and the 
results presented in Figure 3.4 are the average values of all these analyses. 
In addition Equation (3.25c), that is, the Poisson ratio for a regular triangular 
lattice, has been included in Figure 3.4a. For the regular lattice the Poisson 
ratio will be smaller than zero if h/l exceeds 1.0, and this part of the curve 
has been omitted. The effect of randomness on the Poisson ratio is consider-
able. For small A/s the random lattice geometry almost resembles a regu-
lar triangular lattice, and the Poisson ratios are almost the same (compare a 
regular lattice with A/s = 0.001). When the randomness increases, the value 
of ν decreases compared to that of a regular lattice, at least as long as h/lavg < 
0.75; the trend reverses for larger values of h/lavg. For materials such as mor-
tar and concrete the experimentally determined Poisson ratio lies between 
0.15 and 0.20. Considering the empirical relations in Figure 3.4a, it is obvious 
that larger h/lavg must be selected to achieve such a value if the randomness 
of the lattice is large. If ν = 0.2, then h/l = 0.58 for a regular triangular lattice 
according to Equation (3.25c). In order to obtain ν = 0.2 for a random lat-
tice with A/s = 0.5, 0.75, and 1.0, h/lavg = 0.48, 0.57, and 0.61, respectively. This 
means that rather “stubby” beams (height is almost equal to length) must be 
used, which makes the application of Bernoulli beams rather debatable. For 
that reason several authors have suggested replacing the Bernoulli beams by 
Timoshenko beams.
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Figure 3.4b shows that when the height of the beams is determined, the 
local Young’s modulus of the beams Ebeam can be determined from the global 
Young’s modulus of the lattice, denoted by E. The influence of randomness 
A/s has almost disappeared. Note that along the horizontal axis h/s has been 
plotted instead of h/lavg. Linearity causes the E/Ebeam to be constant when h/s 
is fixed.

The geometry of the lattice with random beam lengths is isotropic. The 
angles between adjacent beams vary. On average six beams connect in each 
node. When a uniform strain is applied to such a lattice, nodes are not at a 
center of symmetry and have to move to achieve equilibrium. This line of 
reasoning was followed by Schlangen and Garboczi (1996), and by varying 
the values for A (area) and I (moment of inertia) for each individual beam 
in the random lattice they achieved a uniform elastic lattice. The drawback 
was, however, that some of the beams had to be assigned a negative cross-
sectional area A in order to obtain uniform elastic behavior. One of the other 
difficulties encountered is of course that A and I are not independent of each 
other, therefore a unique solution cannot be obtained. For a random lattice 
homogenized in this way the following expressions were found for bulk 
modulus K, shear modulus G, and Poisson ratio ν, respectively:
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In these equations Ebeam is the Young’s modulus of a beam, Atot is the total 
area of the lattice, and αi = (x1 – x2)2(y1 – y2)2 for the unrestrained endpoints 
(x1, y1), (x2, y2) of the ith beam. Note that these equations are valid only for the 
homogenized lattice obtained using the procedure described by Schlangen 
and Garboczi. If the method is changed, or the lattice is newly generated, the 
equations must be derived again. It is quite questionable if this procedure 
is helpful. One of the goals of using a lattice with random beam lengths is 
to eliminate mesh dependency in the fracture patterns. The randomness is 
a convenient way to incorporate material heterogeneity, as was the original 
intention for materials such as concrete and rock. Consequently the strain 
field will become nonuniform, and the best approach seems to keep A and 
I the same for all beams in the lattice. The simplicity derived from this, at 
least at the moment, would be preferable instead of the added complexity for 
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obtaining an homogenized random lattice as proposed by Schlangen and 
Garboczi. The homogenized random lattice leads to nice mesh-independent 
crack patterns, but the same is true for the direct application of the (unho-
mogenized) random lattice; see Schlangen and Garboczi (1996) and Vervuurt 
(1997), respectively.

3.4	 	Similarity	between	Beam	Lattice	
Model	and	Particle	Model

For simulating the mechanical behavior of particulate materials such as sand 
often so-called particle models are used, for example, the models developed 
by Cundall and Strack (1979), Thornton and Antony (2000), Luding (2004), 
and many others. Basically the material is considered as an assemblage of 
spheres which is a close representation for soils and other granular media, 
but may be a bit far-sought for concrete and rock, except perhaps for sand-
stone. Many geological materials, or rather geomaterials when concrete is 
included, show quite similar mechanical behavior at the macroscopic level, 
which may lead to the idea to model all these materials with the same type 
of particle models. In general equal-sized particles are used, with spheri-
cal shape, although in some cases certain particle variations (in size and 
shape) were considered. The particles are generally considered as rigid, and 
all deformation is localized in the contacts between the spheres, which may 
transmit normal and shear forces; shearing not only includes sliding fric-
tion but also rolling friction (see, e.g., Iwashita and Oda 2000). The contact 
force-displacement relations for normal and shear forces are of particular 
interest because they define the mechanical response, and various propos-
als have been made over the years. We return to these matters in Chapter 
11. Similarities between the particle models and a beam lattice have been 
demonstrated by Beranek and Hobbelman (1992, 1994). They considered a 
particle model where a thin layer of “matrix-material” appeared between 
two neighboring spheres. The spheres were all assumed to be undeform-
able, and consequently all deformations occurred in the contact layer. The 
properties of the contact layer are the Young’s modulus E*, the Poisson ratio 
ν*, and shear modulus G*, where the Young’s modulus and shear modulus 
are related following

 G* = ψ*E* (3.28)

Beranek and Hobbelman considered a hexagonal close-packing (hcp), 
which reduces to either a regular triangular lattice or a regular diamond-
shaped lattice for various 2D intersections of a 3D hcp stack. In the example 
presented here only the 2D equivalence between an assemblage of disks (the 
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distance between the centers of two neighboring disks is twice the radius 
and equal to l, which is the length of the elements in the beam lattice) and the 
regular triangular beam lattice is shown. Figure 3.5a–c shows the particle 
stack considered; all relevant parameters are indicated. Of particular interest 
are the displacements Δu and Δv of the contact layer, which has thickness d* 
and area A*.

The contact layer is subjected to a normal force N and shear force D (see 
Figure 3.6), which results in displacements Δu and Δv. The displacements can 
be written as

(a) (b) (c)
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FIGURE 3.5
Assemblage of three rigid disks A, B, and C subjected to vertical compression (a), close-up of 
the contact layer with thickness d* and area A* (b), and deformed contact layer under normal 
and shear loading (c). (From Beranek and Hobbelman. 1992. Glossary of the Mechanical Behaviour 
of Masonry. With permission from CURNET.)

N M
M

CC

C
C

(a) (b) (c)

∆u
∆v D

N
N

F

F
N

D
A

D

C

�

M

A

D

FIGURE 3.6
Beam model: definitions for an equivalent beam: (a) external forces and displacements for a sin-
gle beam, (b) moment distribution, and (c) compressive load. (From Beranek and Hobbelman. 
1992. Glossary of the Mechanical Behaviour of Masonry. With permission from CURNET.)
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The ratio between the normal and shear displacement is then,
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The angle φ is shown in Figure 3.5a, and derives directly from equilib-
rium considerations:

 ϕ = ψ
+ ψ

tan 3 *
2 *

 (3.31)

For a comparison with a beam lattice consider the situation sketched in 
Figure 3.6a–c. The assemblage of disks is replaced by a regular triangular 
beam lattice. The dashed lines in Figure 3.5a are the lattice beams connecting 
the particle centers.

The demand is that the lattice beams deform in such a way that the nodal 
displacements of the centers of the particles are identical to those in the particle 
model where all deformations are lumped in the contact zone. As debated by 
Beranek and Hobbelman, the bending moment is zero at the location of the con-
tact zone. Only normal and shear forces must be considered and thus the nor-
mal stiffness EA and bending stiffness EI must be selected in such a way that 
the deformations are the same. For the beam the displacements are as follows:

 ∆ =u Nl
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(3.32a)
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where l is the length of the lattice beam, or the distance between two particle 
centroids. Similar to Equation (3.30) we can now calculate the displacement 
ratio

 ∆
∆

= = ϕv
u

Al
I
D
N

Al
I12 12

tan
2 2  

(3.33)



50 Concrete Fracture: A Multiscale Approach

Equating to Equation (3.29) leads to,

 = ψI Al*
12

2  
(3.34)

which should be fulfilled to guarantee equal displacements in the particle 
and the beam lattice model. For a circular cross-section of the beam

 
= π = πA r I r,

4
2 4

and thus follows for the radius of the beam’s cross-section r = 0.378l when 
it is assumed that ν* = 1/6. Likewise, for a square cross-section with A = b2, 
I = b4/12 it follows that b = 0.655l. This is a rather stubby beam with a large 
height compared to its length, and it is debatable whether simple Bernoulli 
beam theory still applies. Most likely Timoshenko beams would be more 
appropriate as argued by several authors.

The relation between the effective Poisson ratio and the h/l ratio of the 
lattice beam of Equation (3.26) can also be used to determine the effective 
properties of the contact zone in the particle model, given of course the 
various assumptions made. One advantage of the particle model and the 
idea that all deformations are lumped in the contact zone is that a Mohr–
Coulomb type failure criterion can easily be formulated. Such a failure cri-
terion is considered quite appropriate for geomaterials, as we debate in the 
next section.

3.5	 Fracture	Criteria

Part of the lattice model is of course the constitutive equation, in particular 
the fracture criterion used. The simplest approach is removing lattice ele-
ments for which the loading has exceeded a certain critical threshold. The 
“gap” between the remaining elements is considered to be a crack. When the 
element is removed, the lattice contains one element less, and the excess load 
is redistributed over neighboring elements upon reloading. Thus, in each 
step the external load on the lattice is increased and the element closest to the 
critical threshold is removed. Because the critical element is simply removed, 
the load carried by that particular part of the lattice is relaxed instanta-
neously; that is, no softening is assumed at the local level of the lattice beams. 
In Chapter 2 we already suggested that softening should be considered a 
structural property, that is, depending on the structural boundary condi-
tions in the immediate surroundings of the element. By simply assuming 
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a steep load drop after the critical (strength) threshold has been reached is 
no more than saying, “We don’t know what the actual softening behavior at 
the meso-level looks like,” or, “We cannot untangle the structural influences 
from the lattice-beam element at this stage of the debate.”

The (strength) threshold is obviously an important element in a lattice 
analysis. What should best be used depends to some extent on the problem 
to be solved and the lattice layout used (truss or frame-lattice, 2D or 3D lat-
tice). As we have seen from the foregoing discussion on the elastic properties 
of a lattice, beam lattices can be fitted over a wider range to match the elastic 
constants of (uncracked) concrete. Truss lattices have some serious limita-
tions, as shown in Section 3.2. There is another argument to use beam lattices 
in fracture simulations, namely, the lattice may become unstable when too 
many beams are removed, as in the case of very dense crack patterns. Beam 
lattices are just slightly more robust under that circumstance.

The simplest possible fracture law is where the effective tensile stress in 
a truss or beam lattice element is tested against the (local) uniaxial tensile 
strength of the material. Thus,

 σ = σ = ≥N
A

feff tens t
 (3.35)

where N is the normal force of the lattice element and A is its cross-sectional 
area. The above criterion can be used in 2D or 3D lattices. For 3D simula-
tions this simple Rankine-like criterion is considered the best choice, mainly 
because of its simplicity; see Lilliu (2007).

In the case of a 2D beam lattice, one might not just look to the tensile stress 
caused by the normal force N, but include the effects of bending, following,
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where Mi, Mj are the bending moments in the nodes i and j, respectively, and 
W is the section modulus (see Figure 3.7a). The coefficient α (between 0 and 
1) can be added to limit the effect of bending in the fracture law. For fur-
ther debate on this criterion see Schlangen (1993). Here it is just mentioned 
that the criterion, Equation (3.36), is well suited for simulating the fracture of 
concrete subjected to tensile or combined tensile and shear loading. For com-
pressive loading the model seems less ideal; see Chapter 8. In three dimen-
sions it is required to include bending in the x- and y-direction (the z-axis 
is oriented along the beam axis), and likely also torsion; see Lilliu and Van 
Mier (2003).

Fracture of concrete subjected to compression is accompanied by a con-
siderable amount of tensile microcracking, and it is tempting to assume that 
the above criteria would suffice for compression as well. Yet failure seems 



52 Concrete Fracture: A Multiscale Approach

to be caused by additional mechanisms. The microcracking is important, 
but should best be seen as a means to weaken the material, before compres-
sive failure may proceed. Following the classical work of Coulomb (see, for 
instance, Timoshenko 1983) the failure of solids in compression may be the 
result of shear failure and sliding along an inclined plane to the loading 
direction. If the normal to the shear plane makes an angle α to the axis of the 
compression load P (as shown in Figure 3.7b), and failure along the inclined 
plane is governed by overcoming the tensile resistance ft of the material only, 
the maximum compression load Pmax derived from

 ⋅ α = =
α

P P f Asin
cos
t

max
 (3.37)

where A is the cross-sectional area of the prism. When α = 45o, the maximum 
failure load is achieved, Pmax = 2A ∙ ft, that is, just two times the maximum 
failure load carried under uniaxial tension. For concrete, brick, and several 
types of rock the ratio of compressive to tensile failure stress is in the range 
of 5–15, and thus the factor 2 is far too low. Therefore Coulomb suggested 
that friction in the inclined plane plays a major role. If the friction coefficient 
is denoted by μ, the maximum compressive load becomes:

 =
α α − α µ

P f A
cos (sin (cos )/ )

t
max

 (3.38)

The friction coefficient μ for the shear plane is difficult to measure, but 
could lie between 1.0 and 2.0. The angle α of the shear plane can more easily 
be determined from experiment, and for concrete may range between 60 and 
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FIGURE 3.7
Fracture laws for lattice beam elements: (a) normal force or combined normal force and bend-
ing criterion, (b) prismatic element subjected to axial compression with inclined failure plane, 
and (c) column between pinned supports loaded in compression (buckling instability).
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80o (i.e., shear-band angle between 10 and 30o), which not only depends on 
the composition of the material, but also on the frictional restraint between 
the loading platen and the specimen as shown in Section 8.2. Coulomb calcu-
lated that the maximum load would develop when tanα = 2. Depending on 
the friction coefficient between 1.0 and 2.0, this leads to maximum compres-
sion loads between 5 and 3.33 times the tensile failure load ( ft ∙ A). When μ 
= 0.5, the goniometric function in the denominator becomes indeterminate.

Of course the above calculation is rather crude. Friction undeniably plays 
an important role in compressive fracture; consider, for example, the behav-
ior of confined concrete (see Section 8.3). Yet an additional mechanism may 
include buckling of slender parts of the material that have been split off ini-
tially through tensile microcracking. Buckling instability is governed by the 
buckling length of the element. Considering Euler buckling, the maximum 
load a column between pinned ends of length l (see Figure 3.7c) can carry is 
equal to

 = π ⋅P
l
EIE

b

2

2
 (3.39)

In this case the buckling length lb corresponds to the actual length l of the 
column. The effect of pinned, fixed, or free supports leads to a variation of 
the buckling length lb between 0.5 and 2 times the original column length l.

The buckling stress σE may be calculated by dividing PE by the area of the 
column A, leading to

 σ = π EI
l AE
b

2

2
 (3.40)

Now assuming the column (lattice element) has a square cross-section with 
side d leads to I = d4/12 and A = d2, and thus

 σ = σ = π ⋅ ⋅
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For this criterion to work the ratio η between tensile and compressive fail-
ure stress must be in the neighborhood of 10. The discussion focuses on the 
actual buckling length, which, fortunately, depends on the structural bound-
ary conditions of the considered lattice element, that is, the rigidity of the 
fixations caused by the flexural stiffness of neighboring lattice elements con-
nected to the same node. Thus, by using a buckling criterion for compressive 
failure the structural boundary conditions automatically become part of the 
solution, which is exactly what we are after. We return to these matters in 
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Chapter 8, where we show that matters are just a bit more complicated than 
suggested here.

In conclusion, there are several ways of including compressive failure in 
the lattice model, yet the above criteria have not been tested exhaustively 
today and require further research. It should be mentioned that in all of the 
above-mentioned criteria, failure is immediate and catastrophic as soon as 
the critical load (or stress) is reached. This means that no softening is con-
sidered at the local level, that is, the meso-level where individual material 
phases such as the aggregate, matrix, and interfacial transition zone (ITZ) are 
distinguished. All three phases are assumed to behave perfectly elastic and 
purely brittle. Softening fracture laws, based on the fictitious crack model 
or the crack band model can of course be applied in lattice models (see, e.g., 
Ince, Arslan, and Karihaloo 2003), but given the uncertainties with softening 
as mentioned in Chapter 2 there is a clear preference to assume perfectly 
elastic, purely brittle behavior.
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4
Lattice Geometry and the Structure 
of Cement and Concrete

4.1	 Size/Scale	Levels	for	Cement	and	Concrete

In Chapters 2 and 3 we limited the discussion to situations where the material 
is assumed to be homogeneous and isotropic. If such a material is replaced 
by a lattice, the geometry of the lattice structure cannot be ignored because 
anisotropy may be introduced. The main question is now how can we simu-
late the behavior of real materials using a lattice model. Geomaterials such 
as concrete, rock, ice, clay, and so on all have a rather heterogeneous material 
structure. Other materials, such as metals and glass, are also heterogeneous, 
but at a much smaller size/scale. In normal continuum-based approaches 
the structure of the material is ignored and the average properties of the 
material are considered. For determining average properties it is important 
that a representative material volume is considered; that is, the volume has 
to be large enough. For small material volumes the scatter may become dis-
proportionally large if the structure of the material is coarse. As an extreme 
example a dam concrete may be mentioned containing aggregates of up to 
150-mm diameter. Obviously a sample volume of 100 mm3 would not suffice. 
Every time a new sample is cut from a larger volume of material and the 
Young’s modulus is determined, the value may (in the extreme case) vary 
between the Young’s modulus of the matrix and that of the aggregate mate-
rial, which may be a variation by a factor of 6 to 7 in the case of normal gravel 
concrete. For a better understanding of the situation it is necessary to discuss 
to some extent the material structure of concrete.

Figure  4.1 shows the structure of concrete at different size/scale levels. 
Along the top part examples of atomic structures are shown: a crystal, a 
quasi-crystal, and an amorphous structure. These structures can of course 
be modeled directly by means of a lattice model, provided that the geom-
etry is dealt with in an appropriate way. The figures in the middle row, 
Figure 4.1b, show cement and concrete at three different size/scale levels. At 
the far right the aggregates in concrete are visible at the so-called meso-level 
(or intermediate level). The size of these aggregates may vary substantially, 
up to 150 mm for the aforementioned dam concrete. In the other direction 



56 Concrete Fracture: A Multiscale Approach

(i.e., at smaller scales) submicron particles are used to reduce pore space. The 
role of aggregates in concrete is to reduce costs. Cement is the most expen-
sive component, and reducing the amount leads to a cost reduction of con-
crete as a whole. Moreover, making a composite helps to improve some of 
the mechanical properties of the material, as shown later (e.g., in Chapter 6).

The right image in Figure 4.1b shows details as small as a tenth of a milli-
meter. The large sand grains are easily recognized as large gray patches with 
hardly any internal structure except for porosity which is visible as small 
black spots. Whether the sand grains have internal structure depends on 
the type of rock. Between the sand grains the cement matrix is visible. The 
matrix may contain small sand grains or other fillers smaller than μm-size. 
Furthermore there is hydrated cement (light gray), unhydrated cement 
(white), and quite a lot of porosity (black) in the matrix. A blown-up image 
of the matrix can be seen in the middle of Figure 4.1b. This image shows 
hydrated Portland cement without any additions. The hydrated cement 
appears in two gray shades, which reflect the commonly made distinction 
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FIGURE 4.1
(a) Three examples of atomistic material structures (crystal, quasi-crystal, and amorphous); 
(b) structure of cement and concrete at nano-, micro- and meso-level (from left to right); and 
(c) continuum interpretation applicable at all size/scale levels as long as requirements of the 
RVE are met. (From Van Mier. 2007. Int. J. Fract., 143(1): 41–78. With permission from Springer.)
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between high-density CSH (calcium silicate hydrates) and low-density CSH. 
Also in this image unhydrated cement is visible as whitish/light-gray.

Finally, on the far left in Figure  4.1b the molecular structure of CSH is 
shown. At the nano-level not all details of the structure have been deter-
mined today owing to the incredible difficulties met in sample preparation, 
for example, for observation in TEM (transmission electron microscopy). 
Cement and concrete are very prone to drying, and actually water forms an 
important part of the structure of these materials. Water contributes to the 
strength of cement and concrete at micro- and nanoscales; we return to this 
important aspect of cement behavior in Chapter 11.

At all size/scale levels it can be proposed to represent the material by 
means of a continuum. This view is depicted in Figure  4.1c. The material 
structure effects are incorporated in (nonlinear) constitutive equations. As 
mentioned, but this cannot be emphasized too often, it is important that 
the considered sample used for tuning the constitutive equations should be 
representative, meaning that the sample volume be large enough to allow 
for averaging. From an experimentalist point of view it may be argued that 
the RVE is defined when the scatter in experiments drops to a minimum 
value; at least this argument may be used when considering the elastic prop-
erties of the material under consideration. For example, for the concrete of 
Figure  4.1b (right image), with a maximum particle size dmax = 2 mm the 
minimum sample size representative for a continuum formulation is on the 
order of 16–20 mm, that is, 8–10 dmax. For fracture the arguments may follow 
another line of reasoning. Because cracks may eventually become as large as 
the test specimen itself, a representative volume can never be defined.

It is hoped that the short summary on the structure of cement and concrete 
clarifies that these materials are complex. They are far away from ideal crys-
tals or other regular material structures. Randomness is an important aspect 
and one of the problems to resolve is how to incorporate the random material 
structure into a numerical simulation model. The lattice and particle models 
mentioned in the previous sections commonly have a regular geometry and 
clearly some further steps are needed to transform these regular structures 
into a random structure resembling cement or concrete. The various ways 
to incorporate effects from a random material structure are clarified in this 
chapter. Note that the emphasis is on lattice models; particle models are dis-
cussed briefly in Chapter 11 (multiscale interaction potentials).

4.2	 Disorder	from	Statistical	Distributions	of	Local	Properties

An easy and quite straightforward manner to incorporate heterogeneity in 
a lattice model is to assign random values for the Young’s modulus and/or 
for the failure threshold of the individual lattice elements. So, every element 
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will have different material properties following a certain assumed prob-
ability distribution. For example, one may select a Gaussian or Weibull dis-
tribution. The choice for a given distribution has direct consequences, for 
example, on scaling of structural strength, brittleness, or ductility, and so 
on. Matching of global behavior is the key to justifying a certain choice for 
a probability distribution. One argument to revert to statistics may be that 
the computational effort should be reduced as much as possible. This is 
a shifting boundary because computational capacity increases constantly. 
In the future very likely structures of very large size (10–100 m) can be 
analyzed at the micro-level. For the case of a regular triangular lattice in 
the past we analyzed two different distributions and compared the results 
with the so-called “particle-overlay methods” that are discussed in Section 
4.5. The common approach in statistical physics is to base all consider-
ations on a certain probability distribution, which can be fixed from the 
beginning of the analysis or even vary while an analysis progresses. In 
the example shown here the properties were fixed at the beginning of the 
analysis, and could not change while the fracture process (which was the 
emphasis) took place. The Young’s moduli of all the lattice elements were 
kept at the same constant value, but the breaking thresholds of the lattice 
beams were varied following a Gaussian or a Weibull distribution. For the 
Gaussian distribution,

 =
πσ

− ∞ < < ∞− −µ σf x e x( ) 1
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the mean value μ and the standard deviation σ are the two important param-
eters to be defined.

In Figure 4.2a for μ = 6 MPa the shape of the Gauss-bell is shown for varying 
σ. For a material such as concrete a very wide distribution must be selected in 
view of the large range of properties: the strength of aggregates may be sub-
stantially higher than that of the cement matrix and, even more important, 
higher than the strength of the interfacial transition zone (ITZ) or bond zone 
between aggregate and matrix. We return to these matters in Section 4.6.

For the Weibull distribution the probability density function is
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where the two main parameters are the scale parameter δ and the shape 
parameter β. In Figure 4.2b the function has been plotted for δ = 4 and vary-
ing β. Whereas the Gauss distribution is symmetric around the mean value, 
the Weibull distribution shows a larger probability for smaller strength val-
ues. The number of “weak” elements increases, which might actually repre-
sent the case for concrete.
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The choice of a certain distribution has a clear effect on the fracture behav-
ior. Before explaining the entire procedure in detail, we show two examples 
here of analyses of a uniaxial tension test in 2D (Figure 4.3). The sample is 
pulled in deformation control in a vertical direction. The analysis consists 
of a number of consecutive linear analyses, therefore the typical zigzag pat-
tern develops in the force deformation diagrams. The distinction between 
the two analyses is that for the Gauss distribution microcracks appear to be 
more widespread over the entire specimen (the crack pattern with 63 beams 
removed is at peak load). In the analysis with a Weibull distribution major 
cracks start to develop at a relatively early stage (see, e.g., the situation at 
peak load with 50 beams removed), the peak load is lower, and a particular 
phenomenon called “bridging” appears at later stages of the fracture process 
(beyond peak, 400 beams removed).

The problem encountered in lattice analyses based on a random distribu-
tion of element properties is that it remains difficult to relate the distribu-
tion of local material properties to a certain probability density function. 
Moreover, as can be seen in Figure 4.1b (right image; meso-level), aggregates 
form discrete clumps, and the use of a statistical distribution will very likely 
not lead to distributions related to the spatial arrangement of particles in a 
real concrete. In connection to the spatial arrangement of aggregates in the 
real material the ITZ also will appear at certain locations, which is not just a 
matter of chance.

4.3	 Computer-Generated	Material	Structures

As an alternative to the statistical distributions discussed in the previous 
sections one may revert to generating a particle structure of concrete, using 
realistic particle size distributions. Quite common for a concrete material is a 
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(a) Gaussian probability density function for selected values of σ and μ = 6 MPa; and (b) 
Weibull functions for varying β at δ = 4 MPa. (Reprinted from Van Mier, Van Vliet, and Wang. 
2002. Mech. Mater., 34: 705–724. With permission from Elsevier.)
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so-called “Fuller distribution.” The Fuller distribution leads to a dense pack-
ing of spherical particles; the size distribution follows the equation

 =p d
d

100
max

 (4.3)

where d = the particle diameter and dmax is the size of the largest particle. 
A typical particle distribution for concrete with maximum particle size of 
32 mm leads to the following: 100% of all particles are smaller than 32 mm, 
71% are smaller than 16 mm, 50% are smaller than 8 mm, 35% are smaller 
than 4 mm, 25% smaller than 2 mm, 18% for 1 mm, 13% for 0.5 mm, and 
9% smaller than 0.25 mm, and 6% for 0.125 mm. If the aggregate volume is 
known, the aggregate particle distribution may be discretized and for each 
particle size the number of actual particles may be determined. If for a cer-
tain volume of concrete the number of particles is known, they should be 
placed in the considered volume. The procedures may vary from random 
placement to ballistic deposition (see Figure 4.4). Random placement is the 

Fo
rc

e (
N

)

Gauss
σ = 2.0 MPa

l = 2.0 mm320

240

160

80

0
0 5 10 15

Deformation (μm) 63 Beams removed 211 Beams removed

50 Beams removed 400 Beams removed

Fo
rc

e (
N

)

Weibull
β = 1.0 MPa

l = 2.0 mm320

240

160

80

0
0 5 10 15

Deformation (μm)

FIGURE 4.3
Axial force deformation diagrams and crack patterns for regular triangular lattices with beam 
length 2 mm. In the top example a Gaussian distribution of strength thresholds is used with 
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simplest method, but generally takes quite some time when many small par-
ticles have to be included. Basically one starts with the largest particles and 
places them one by one at a randomly selected position (center coordinate xi, 
yi, zi for the ith particle). If a newly placed particle overlaps with a previously 
placed particle a new random coordinate must be selected, and the particle 
placed again. If there are no new overlaps, the location is accepted, and the 
next particle is placed. The process continues until all particles have been 
assigned a specific location. When placing a particle the decision to accept 
a location may depend on certain additional rules, such as, for example, the 
minimum distance from a neighboring particle. In the past often a rule pre-
scribing a minimum interparticle distance Dmin = 1.1 (di + dj)/2, with di and 
dj the diameters of two neighboring particles. The effect obtained by using 
the minimum distance rule is that a thin ribbon of cement matrix is always 
present between neighboring aggregate particles. This corresponds to one of 
the basic assumptions in concrete technology: just enough cement must be 
included to cover the total surface of all aggregates with a minimum thick-
ness layer of cement. It will be obvious that it will take increasingly longer to 
place the next particle while the placement process progresses.

Therefore for problems involving a very dense distribution (high aggre-
gate volume Pk), it may be better to revert to alternative methods such as 
ballistic deposition or a method where particles are initially assumed to be 
very small, and subsequently are inflated to fill the space (software pack-
age Space; Stroeven 1999). Ballistic deposition is less time consuming. In this 
case, again, particles are placed one by one. Now particles are randomly 
drawn from the entire population, and dropped from a randomly selected 
position along the top surface of the volume that must be filled (left image of 
Figure 4.4b). If there are no particles in the box, the dropped particle simply 
hits the bottom and is placed directly under the drop point. When some par-
ticles have already been placed, and the next dropped particle hits one in the 
box, certain rules should be obeyed, such as rolling along the surface, and so 
on (middle image of Figure 4.4b). The porosity of the sample will depend on 
the drop rules and may vary substantially. When a stable position is reached 
(right image of Figure 4.4c) the next particle can be added.

The computer-generated material structure must be constructed a bit 
differently when a 2D analysis is made. In that case the spherical particles 

(a) (b)

FIGURE 4.4
(a) Rand random-placement method; and (b) ballistic deposition of particles.
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reduce to cylinders with height equal to the thickness of the analyzed struc-
ture. Using a method developed for aggregate interlock models in concrete 
(see, e.g., Pruijssers 1988) the distribution of intersection circles in a random 
planar section of a 3D particle distribution can be described following
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This equation gives the probability that an arbitrary point in the considered 
volume, lying in an intersection plane, is located in an intersection circle of 
diameter D < D0. Pk is the aggregate volume as percentage of the total vol-
ume. This equation is based on the aforementioned Fuller distribution; see, 
for example, Schlangen (1993).

In Figure  4.5 four different examples of computer-generated particle 
structures using Equation (4.4) are shown. The amount of aggregates var-
ies between Pk = 0.10 and 1.00. Note that for Pk = 1.0 the entire volume does 
not consist of aggregate. This is related to the minimum separation distance 
between particles, and moreover, the images of Figure 4.5 have already been 
overlaid with a regular triangular lattice (see Section 4.5). As a consequence 
some of the aggregate area is lost and incorporated in the ITZ.

4.4	 Material	Structure	from	Direct	Observation

From two-dimensional sections of the considered materials, or by means of 
CT scans in three dimensions, it is possible to include the real structure of 
concrete or cement in a micromechanical analysis. The technique is, of course, 
not limited to cement or concrete but applies to any material. Mimicking the 
real structure of materials actually leads to a model approach referred to 

(a) Pk = 0.10 (a) Pk = 0.40 (c) Pk = 0.70 (d) Pk = 1.00

FIGURE 4.5
Computer-generated particle structure representing concrete with aggregates of size 1 ≤ d ≤ 16 
mm (Fuller distribution) for different particle content Pk. (After Van Vliet. 2000. Size Effect in 
Tensile Fracture of Concrete and Rock. Reprinted with kind permission of Dr. Marcel van Vliet.)
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as “reality modeling,” where the simulations must be considered as virtual 
experiments. The consequence is that, as in physical experiments, each com-
putation has to be repeated several times, and the scatter of the results must 
be analyzed.

An early example of numerical simulations using a realistic material geom-
etry can be found in Roelfstra, Sadouki, and Wittmann (1985). Using the so-
called numerical concrete model, which is based on the finite element model 
(continuum elements combined with interface springs for the ITZ), a 2D sec-
tion of concrete containing Rhone Valley gravel was analyzed. The real mor-
phology of the grains was incorporated in the finite element mesh. The real 
structure of concrete is quite complicated, as was shown in Figure 4.1, and 
one of the most important aspects is to make the contrast between the vari-
ous phases that should be distinguished in the analysis as large as possible. 
The simplest way is to use digital images. Thresholding the grayscale may 
be an easy way of getting a good contrast between the material structural 
features that should be included in the mechanical model, which implies 
that one should have some idea about the most important phases and their 
interactions in advance.

Nowadays, it has become relatively straightforward to perform micro-
mechanical analyses in three dimensions; see, for example, Lilliu (2007). 
In order to obtain results that can be compared to experimental data, the 
three-dimensional character of many processes must be included. An exam-
ple in concrete is drying shrinkage, which is a surface phenomenon; it can 
be shown quite easily that the damage caused by drying shrinkage in con-
crete has a significant effect on the size effect on tensile fracture strength 
(see Figure  9.6). Three-dimensional analysis should become the standard 
approach rather than the exception when analyzing the behavior of materi-
als. The material structure should therefore be modeled in three dimensions 
as well. Computed tomography (CT) is an excellent technique to measure 
the material structure of concrete (and other materials) in three dimensions.

The technique will of course work best when a balance between the size of 
microstructural features and the resolution of the tomograph are in balance. 
CT scans are based on density differences, and in order to help matters a bit, 
at least for concrete, aggregates that have a much higher density than the sur-
rounding cement matrix could be used, such as basalt or granite. Typically, 
one would select aggregates with a higher Young’s modulus than the sur-
rounding cement. For basalt and granite the Young’s modulus is around 70 
GPa, whereas for the surrounding cement something like 10–15 GPa is the 
average value. The other extreme would be to leave out the aggregates com-
pletely. In that case large voids are present in the cement and we are actu-
ally dealing with a highly porous material. Foamed cement is an example 
of such a material, and Figure 4.6 shows a three-dimensional CT scan of a 
small cylinder (height/diameter = 6.0/6.7 mm) made of cement containing 
small potato-shaped voids. The pores were created by mixing the cement 
with protein foam. The image was made using a μCT-40 tomograph from 
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SCANCO MEDICAL AG in Switzerland. The device has a spatial resolution 
of 6 μm, and can also be used for crack detection. Foamed concrete is a model 
for real concrete, where the voids are simply places where the aggregates 
have been left out. An additional advantage is that the interfacial transition 
zone has been removed from the analysis, and therefore complications aris-
ing from the complex ITZ structure are temporarily excluded (see Sections 
4.5 and 4.6). This does not mean that the ITZ is ignored, but for studying 
other aspects of concrete behavior it may be helpful to temporarily look to a 
simpler model.

For other concretes containing solid aggregates (and pores, which are 
partly due to the hardening process of cement, and in part caused by mixing 
the concrete) the same procedure can be followed. In Figure 4.7 two recon-
structed particle structures are shown: from a concrete prism containing 
crushed basalt particles in Figure 4.7a, and from oval-shaped marble par-
ticles in Figure 4.7b; see Man and Van Mier (2008b). In these scans it helped 
to make the matrix very porous by selecting a w/c ratio of 0.3 and using 
CEM I 42.5. Finer sands were omitted. The density of the cement matrix, the 
basalt, and marble aggregates was 2,200, 3,000, and 2,700 kg/m3, respectively. 
The concrete prisms were scanned in the University Hospital in Zurich in a 
Siemens SOMATOM Definition CT-scanner. For these coarse aggregate mix-
tures (size range between 8 and 15 mm) the resolution of the scanner was 
certainly appropriate; for cracks it would not have sufficed.

The same technique can also be applied at smaller scales. For example, 
Figure 4.8 shows the reconstruction of unhydrated cement grains and pores 
in a cylindrical sample of Portland cement with height/diameter of 250/130 
μm. The extreme small sample was tomographed in the synchrotron at the 
PSI in Villigen, Switzerland, with a spatial resolution of about 0.7 μm. The 

FIGURE 4.6
CT scan of a small foamed-cement cylinder. The sample can be cut and sliced in any direc-
tion, and as such reveal the internal structure. The two images to the right are discretized 
lattice structures, one with a lattice beam length of 0.1 mm, and at the far right with 0.05 mm. 
The amount of detail in the material structure is best preserved when the lattice beam length 
decreases. The price for more resolution is of course that the number of elements rapidly 
increases: the two models contain 683,940 and 6,311,581 elements, respectively. (After Meyer 
et al., 2009.)
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last images do not reveal the cement structure completely. There are two 
CSH phases: low- and high-density CSH, which can be seen in the middle 
image of Figure 4.1b. Thus, a model for hardened cement paste would actu-
ally need at least three material phases: two types of hydrates and the unhy-
drated cement particles, which are usually surrounded by the hydrated 
CSH phases. Pores may appear at many different locations: in CSH, in the 
unhydrated particles, but also between two neighboring (hydrated) cement 
grains. We do not dwell further on these details at this point, but return to 
these matters in Chapter 11.

(a)   (b)

FIGURE 4.7
Reconstructed three-dimensional particle structures from CT scans: (a) 45% crushed basalt 
particles are present; (b) 45% oval-shaped marble aggregates; size range 8–15 mm. These mod-
els are overlaid with a lattice structure similar to the example of Figure 4.6. (From Man and Van 
Mier. 2008b. Int. J. Fract., 154(1–2), 61–72. With permission from Springer.)

130 μm

(a) (b)

FIGURE 4.8
(a) Reconstruction of voids and (b) unhydrated cement particles in a small cylindrical sample 
(diameter 130 μm) of partially hydrated Portland cement. (After Trtik et al. 2007. Proc. 6th Int’l. 
Conf. on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-VI).)
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In Figures 4.5 and 4.6 the lattice overlay was already made. In the following 
section the technique to incorporate the material structure into the mechani-
cal model is elucidated.

4.5	 Lattice	Geometry	and	Material	Structure	Overlay

The lattice model is particularly attractive in the way the mechanics model 
and the material structure are combined. The lattice is the mechanical 
model; the material structure, in whatever form, is simply projected on 
top of the lattice and various properties are assigned to the lattice ele-
ments depending on their specific location in the projected material struc-
ture. The lattice and material structure are thus two independent features 
of the model. An alternative to the overlay method is the finite element 
model where the mesh must be constructed in such a way that the edges 
of the finite elements fall exactly along specific boundaries in the mate-
rial structure. Especially when it comes to random material structures in 
three dimensions, the latter method is quite elaborate and the simple pro-
jection scheme is the easiest approach, even if this would mean that some 
of the elements appear in two material phases. The drawback of the overlay 
method is that some details of the material structure may simply disappear 
depending on the size of the lattice elements used. We return to these mat-
ters later in this section.

The lattice geometry is an important aspect of the mechanical model. 
The connectivity of the lattice elements is decided by the spatial arrange-
ment of the individual beams. The spatial arrangement may take a regular 
or random configuration. One form was already shown in Figure  3.2: the 
Hrennikoff lattice has a rectangular configuration with crossing diagonals. 
The two-dimensional beam lattice may have twofold or threefold symme-
try, or, as referred to before, it may have a completely random structure. In 
Figure  4.9 the regular square, regular triangular, and random triangular 

(a) (b) (c)

FIGURE 4.9
Examples of two-dimensional lattices: (a) regular-square lattice, (b) regular-triangular lattice, 
and (c) lattice with random beam-lengths.
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lattice are shown in two dimensions. Generation of a regular lattice is quite 
straightforward: nodes are placed on the regular grid and connectivity is 
specified. For the random lattice a bit more effort is needed.

In three dimensions, a regular lattice can be based on the hexagonal close 
packing (Figure 4.10a), the face-centered cubic packing (Figure 4.10b), or a 3D 
variant of the lattice with random beam length (Figure 4.10c). The hcp- and 
fcc-lattices derive from packing equally sized spheres. Man (2009) showed 
that the number of elements differs when a hcp- or fcc-lattice is used.

Two examples of constructing lattices with random beam lengths are 
the following. In the first method a particle distribution is generated as 
described in Section 4.3. Next, the centers of neighboring particles are con-
nected. Nodes in a circular area with radius 4dmax are checked for possible 

(a)   (b)

(c)

FIGURE 4.10
Examples of three-dimensional lattice geometries: (a) hexagonal-closed packing or hcp-lat-
tice, (b) face-centered-cubic packing of fcc-lattice, and (c) lattice with random beam lengths 
(randomness A/s = 0.5; see below). The examples in (a) and (b) are based on a close-packing 
of equally sized spheres. (After Man. 2009. Analysis of 3D Scale and Size Effects in Numerical 
Concrete. Reprinted with kind permission from Dr. Hau-Kit Man.)
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connectivities. Given a set of nodes, always the three nodes that are closest 
to each other are connected by beam elements. The resulting lattice can be 
considered as the backbone of a particle stack as shown in Figure 4.11a. Such 
models are frequently used, for example, the one by Beranek and Hobbelman 
(1994) referred to in Chapter 3, albeit in their particular case a regular struc-
ture is used inasmuch as all particles have the same radius.

The second method is the random lattice developed by Mourkazel and 
Herrmann (1992). This specific form has been used in several analyses in 
the past. In Figure 4.11b the construction of the lattice with random beam 
length is clarified. The starting point is a square grid of size s. In each cell of 
the grid a point is selected at random. The same procedure (i.e., the Voronoi/
Delaunay tessellation) is used to connect the points. Connecting lines are 
then the beams in the lattice, which all have a different length. One problem 
that may be encountered in this structure is when by accident two nodes 
appear at a very small distance, almost zero, along the same edge of two 
neighboring cells. In that case the short beam length may pose a problem in 
the stiffness matrix, because these elements in the matrix may have a much 
larger value than all the other matrix elements (see Equation (3.23)). Solving 
the set of equations may cause numerical problems, especially the inversion 
of the stiffness matrix. As a remedy, the area where the random grid point is 
selected may be reduced as sketched in Figure 4.11b. The size A of the sub-
cells may be as small as zero, in which case no diagonals can be generated. 
By choosing a very small A/s = 0.001, this problem is circumvented. In the 
case A = s, we have returned to the initially described random lattice.

In between these extremes the “degree of randomness” of the random lat-
tice may be varied by selecting a different subcell size. In Figure  4.12 the 
average beam length lavg/s has been plotted for various degrees of random-
ness (between A/s = 0.001 and 1.0). These results were obtained by generat-
ing 175 meshes for each degree of randomness (A/s). The white dots in the 

(a) (b)

A

s

FIGURE 4.11
Two methods for generating a random lattice: (a) based on predefined aggregate structure 
according to Section 4.3, and (b) based on a regular square grid. (After Vervuurt et al. 1995. 
Proc. 2nd Int’l. Conf. on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-2).)
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figure show the average beam length of all these 175 meshes whereas each 
individual result has been plotted by a black dot. Next to the graph appear 
three random meshes, with A/s = 0.8, 0.5, and 0.2. For the lowest A/s-value, 
the appearance is already quite regular.

For 3D lattices a similar approach was developed by Lilliu (2007). In the 
two-dimensional case nodes are checked for connectivity in an area of 6 × 
6 cells, or 36 potential neighbors. In the three-dimensional case the number 
of potential neighbors increased to 178. In the three-dimensional model the 
connectivity is established between one selected node and its three near-
est neighbors that belong to a sphere. In most of the analyses performed by 
Lilliu, the smallest possible randomness was selected; that is, A/s = 0.001.

The next step is combining the material structure and the mechanical 
model. The procedure is simple and straightforward. The lattice mesh is 
generated and the previously constructed material structure is projected on 
top of the lattice. Next the location of the lattice nodes is determined in the 
respective material phases that are distinguished. If both nodes of a lattice 
element fall within a single phase, the properties of the element will receive 
those of that particular material phase. In Figure 4.13 the procedure is shown 
for a computer-generated particle structure on a regular triangular lattice.

Figure 4.13a shows the computer-generated particle structure; Figures 4.13b,c 
show the projection of a lattice with different beam lengths (lbeam = 0.5 and 
2.0 mm, respectively), and in Figure 4.13d the procedure for assigning aggre-
gate, matrix, and ITZ-properties is elucidated. For aggregate and matrix the 
decision is based on the location of the two element nodes in the same phase. 
If one node is located in matrix and the other in the aggregate phase, the 
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Relation between randomness A/s and average beam length lavg/s. (From Chiaia, Vervuurt, and 
van Mier. 1997. Eng. Fract. Mech., 57(2/3): 301–318. With permission from Elsevier.)
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element is said to be an interface element of bond element. For concrete it has 
long been known that the interface between aggregate and matrix is very 
weak, and plays a prominent role in the fracture process. Zimbelmann (1985) 
measured tensile bond strengths between 0.1 and 1.2 MPa depending on the 
type of aggregate material. No or just a little reactivity appears between most 
natural aggregates and the cement matrix, except perhaps when calcite is 
used. The roughness of the aggregate surface may have a positive effect as 
this may promote mechanical interlock. The bond stress is thus mostly based 
on adhesion between matrix and aggregates: physical forces are more impor-
tant than chemical bonds. At a more microscopic level the ITZ appears as a 
highly porous zone (35% porosity compared to just 10% for the bulk cement 
matrix), as was measured by Scrivener (1989).

Before discussing in a bit more detail the identification of the parameters 
of the various material phases some further remarks should be made regard-
ing the lattice overlay shown in Figure 4.13. The original particle distribu-
tion is quite well captured when a fine lattice mesh is used, as shown in 
Figure 4.13b. When a coarser mesh is used (Figure 4.13c) the grains lose their 
perfect round shape, and smaller particles in the distribution may get lost 
completely when they are smaller than twice the length of an individual 
lattice element. Moreover, quite a large part of the aggregate area (in 2D; 
aggregate volume in 3D) is lost to the ITZ when the lattice element length 

(a) (b)

(d)

(c)

Interfacial Transition Zone (ITZ)
Matrix (M)

Aggregate (A)

FIGURE 4.13
Projection of a computer-generated particle structure on top of a regular triangular lattice 
structure: properties are assigned depending on the location of the lattice nodes in the pro-
jected material structure.



71Lattice Geometry and the Structure of Cement and Concrete

increases. The latter loss of aggregate area is caused by the initial assump-
tion that the ITZ thickness equals the length of a single lattice element. In 
Figures  4.13b and c the element lengths are 0.5 and 2.0 mm, respectively, 
which is more than a factor of 1,000 larger than the thickness of the “real 
ITZ,” which was determined at about 40 μm by Scrivener (1989). The obvi-
ous solution would be to take a more realistic ITZ thickness, but when the 
simplicity of the approach is to be preserved and all lattice elements have 
the same length, the number of elements would increase vastly, and likely 
the computation would explode. Of course one may decide to envelop each 
aggregate particle in a zone of very short elements, but not only will this 
affect the stiffness matrix and the numerical solution, the generation of the 
lattice mesh will be more complicated, and the computational effort would 
still increase substantially.

One of the most important aspects appears thus to come to a balanced 
approach at all levels. It does not pay to increase accuracy at one point if not 
all other aspects in a lattice analysis are improved at the same time. What 
is meant by “other aspects” are actually all details of a lattice analysis that 
play a role: lattice mesh size, fracture law, quality of properties of the vari-
ous material phases, realistic aggregate shapes, aggregate size range, includ-
ing the internal structure in the cement matrix (which would lead to a scale 
decrease below the aforementioned ITZ thickness; see also Section 4.6), com-
putational effort needed, available computational infrastructure, and so on. 
Thus, for example, one might wish to increase the accuracy of representing 
real aggregate shapes (Man and Van Mier 2008b). The price to pay is a longer 
computation because the lattice element length must be reduced. At the same 
time, the uncertainty of many material parameters has not been improved, 
such as the interpretation of the ITZ behavior. Ultimately, the drive to make 
the resemblance between “computational aggregate geometry” and “real 
aggregates” more perfect would end in severe computational problems, 
without adding to a better understanding of the fracture process. At the 
same level one should understand efforts to improve the fracture law in a 
lattice analysis. It has been proposed that a softening law would be needed 
(e.g., Ince, Arslan, and Karihaloo 2003) at the level of the lattice elements. As a 
consequence of introducing a nonlinear (softening) fracture law an iterative 
procedure would be needed to solve the problem. This again leads to a vast 
increase of computational effort. Inasmuch as a phenomenological soften-
ing law would not improve any fundamental understanding of fracture, the 
entire exercise is considered futile and a waste of time, which is confirmed 
by the analyses in Chapter 6.

In Figure 4.14 the dependence of the phase fractions (aggregate, matrix, 
bond) on the lattice beam length is shown for a two-dimensional model con-
taining aggregate particles with diameter 2 ≤ d ≤ 8 mm, Pk = 0.75 (Equation 
(4.4)). When lbeam = 0.5 mm, the smallest aggregates will have three beams 
over the diameter. However, with increasing beam length the number of 
beams over the diameter will decrease until at lbeam > 1 mm the smallest 
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2-mm particles will disappear from the material structure. In that case the 
aggregate particle is transformed completely into ITZ material. The trend 
increases with increasing lattice-beam length. Thus, Figure 4.14 shows that 
with increasing lattice-beam length the aggregate fraction (and also the 
matrix phase) decreases and the ITZ fraction increases. The way the mate-
rial phases are distributed over the specimen’s area (in 2D) or volume (in 3D) 
affects the mechanical properties of the composite. We return to these mat-
ters in Chapter 5 (elastic properties) and Chapter 6 (tensile fracture).

Let us now return to the identification of the material properties of the 
various phases in a typical lattice problem of concrete. The usual meso-level 
approach would distinguish between three material phases, namely aggre-
gate, cement matrix, and ITZ. The determination of the elastic properties, the 
fracture strength, and fracture energy of the bulk cement matrix and aggre-
gate is rather straightforward. Small representative volumes of these mate-
rials are simply loaded in displacement control, in tension, to failure, and 
the Young’s modulus; the tensile fracture strength, and the fracture energy 
can be derived from the stress-crack opening diagram. Note, however, that 
establishing “softening parameters” may cause some problems due to the 
ill-posed definition of this parameter, a recurring theme in this book; see 
also Chapters 2, 10, and 11. The matrix material should represent the com-
position of the matrix in the lattice analyses: fine-grained sand that is not 
explicitly represented in the material structure must be considered as part of 
the cement matrix. For example, it is quite normal not to include aggregate 
particles of diameter smaller than 1 mm in the lattice model. Obviously, the 
reason is to reduce the computational effort needed. The matrix in the model 
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FIGURE 4.14
Effect of lattice-beam length lbeam on the phase fractions (aggregate, matrix, ITZ) in a 2D model 
with intended Fuller particle size distribution 2 ≤ d ≤ 8 mm, Pk = 0.75. (After Van Vliet. 2000. 
Size Effect in Tensile Fracture of Concrete and Rock. With kind permission of Dr. Marcel van Vliet.)
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of Figure 4.13 would therefore be a cement–sand mixture with sand grains of 
size d < 1 mm, and with the specified water/cement ratio.

4.6	 Local	Material	Properties

Several parameters must be known before a lattice analysis can be per-
formed. In the simplest meso-level representation, three material phases are 
distinguished, namely the cement matrix, the aggregates, and the interfa-
cial transition zone. A linear-elastic beam analysis requires values for the 
Young’s modulus and the Poisson ratio of these three phases. When fracture 
is simulated using the sequential beam-removal approach, the threshold ten-
sile strengths for testing Equations (3.35)–(3.36) are needed, again for each of 
the three material phases. For the cement matrix and the aggregate material 
one can determine these parameters from small samples of the base mate-
rial. If the concrete contains river gravel, one is confronted with a mixture of 
different aggregate types. It is normal practice to assume that all aggregates 
have the same quality, which is quite appropriate inasmuch as the weaker 
cement matrix and the ITZ largely determine how the concrete will perform.

Determination of the ITZ properties is most problematic because produc-
ing a representative interface is not easy. When concrete is cast, all phases are 
mixed with water in a container, and cement particles may stick to the wet 
aggregate surfaces at an early stage of hydration. The wetting of all particles 
and the water movement during hydration are decisive for the properties of 
the developing ITZ. This is not easily reconstructed in a simple test geom-
etry where, for example, a small block of cement is cast against an aggregate 
surface. Although such a test may at least give a rough indication (see e.g., 
the experiments by Zimbelmann 1985), doubt will remain about the validity 
of using properties obtained from such tests for real concrete simulations. 
Also, sawing specimens from larger blocks of real concrete is not a solution 
because microcracks may be introduced due to the sawing and grinding pro-
cess. Inverse analysis or back-analysis of the ITZ stiffness and strength may 
be an option, where, however, the uniqueness of the obtained result remains 
an important issue.

In addition, sensitivity studies, such as the one demonstrated in Figure 4.15 
may help to narrow down the regime in which specific values of interface 
strength may lie. Figure  4.15 shows the results from two simulations of a 
single particle embedded in a rectangular plate of cement. The particle has 
the same diameter through the thickness of the plate. The aggregate may be 
a low-strength porous aggregate as may be found in lightweight concrete or 
the aggregate particles may be made from dense strong granite, resembling 
the material found in commonly used river gravel. The effect of changing 
the aggregate may affect the ratio between aggregate/matrix/ITZ strength, 
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and with that the mechanical/fracture response of the concrete as a whole. 
Relative to the aggregate strength the interface proved to be very weak for 
the smooth granite particles, whereas the ratio changed for the more porous 
sandstone where the ITZ proved to be relatively stronger than the aggregate 
particle. The corresponding experimentally observed fracture mechanisms 
are shown in the inset of Figure 4.15a.

For the granite, after starting from the tip of the saw-cut the main 
crack grows toward the aggregate particle. During crack growth the load 
decreases (after the first peak). Upon reaching the aggregate particle the 
crack may either continue to grow along the upper or lower ITZ, or it may 
extend through the aggregate particle. In the particular example shown the 
crack extended along the upper ITZ zone after the load was increased a little. 
The second load drop in Figure 4.15a is caused by crack growth along the 
interface. The situation is quite different when the strength contrast among 
aggregate, matrix, and ITZ is changed, as will be the case for a porous sand-
stone particle. The first crack growth toward the aggregate grain is identical 
as in the previous example. After the drop the load must now increase sub-
stantially until the crack continues to grow through the aggregate particle. 
The aggregate particle is thus the weakest element and no longer the ITZ.

As mentioned, the exact values of ITZ strength and stiffness are hard to 
measure from such experiments. Instead, a sensitivity study, for example, on 
EM/EITZ and on ft,M/ft,ITZ may help to narrow down the range of relevant val-
ues for a given concrete mixture. In general it appears that the strength ratio 
ft,M/ft,ITZ is more important than differences in the stiffness between matrix 
and interface phases; see Vervuurt (1997).
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FIGURE 4.15
(a) Fracture behavior observed in single particle configurations in a plate subjected to hori-
zontal splitting forces. (After Vervuurt and Van Mier. 1995. Proc. 2nd Int’l. Conf. on Fracture 
Mechanics of Concrete and Concrete Structures (FraMCoS-2).) Results for a Bentheimer sandstone 
particle and a granite aggregate are shown in the same diagram. Results of lattice simulations 
by Vervuurt (1997) are shown in (b)–(c) for a sandstone model and granite model, respectively. 
(From Vervuurt. 1997. Interface Fracture in Concrete. With kind permission of Dr. Adri Vevuurt.)
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Suggested model parameters for normal strength concrete containing hard 
dense aggregates with a larger stiffness than the surrounding cement matrix 
are given in Table 4.1. Note that the lattice model can be used for any type of 
material, and that the same procedure of material structure overlay can be 
adopted. Examples are known where lattice models have been applied for 
masonry, wood, ceramics, and various types of rock, among others.

TABLE 4.1

Suggested Model Parameters for Normal Concrete

Tensile	Strength	
[MPa]

Young’s	Modulus	
[GPa]

Aggregate (A) 10 70
Matrix (M) 5 25
Interfacial Transition Zone (ITZ) 1.25 25
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5
Elastic Properties of Lattice 
with Particle Overlay

5.1	 	Upper	and	Lower	Bounds	for	the	
Young’s	Modulus	of	Composites

The simplest approach for calculating the Young’s modulus of a composite is 
to revert to analytical models. Quite basic are the parallel and series models. 
In the parallel model two layers of material are loaded in the direction of the 
layers. Assuming that the two layers have different Young’s moduli (i.e., Ea 
for the aggregate layer and Em for the matrix layer), the Young’s modulus of 
the composite can be computed with

 = +E E V E Vm m a a
 (5.1)

where Vm and Va refer to the matrix and aggregate volume fractions, respec-
tively. In the series model the two layers are loaded perpendicular to the 
main layer direction, and we obtain

 = +
E

V
E

V
E

1 m

m

a

a

 (5.2)

In Figure 5.1 the parallel model is a straight line connecting Ey for 0% and 
100% aggregate fraction; the series model comes near the lowest curvilinear 
line, which is the lower Hashin bound. The upper curved line is the upper 
Hashin bound that is explained below. Experimental results, for example, 
those obtained by Wittmann, Sadouki, and Steiger (1993) on mortar, are well 
in between these extremes, which are considered as the absolute upper and 
lower bounds for the Young’s modulus of a 2-phase composite. Deviations 
appear when the aggregate volume fraction exceeds 50%. We return to these 
deviations in Section 5.2.
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Of course there are many refinements possible. Newman (1968) mentions 
several variations on the parallel and series models. Well known, and also 
extensively used are the bounds developed by Hashin and coworkers: see 
Hashin (1965), Hashin and Shtrikman (1963), and Hashin (1983).

For a 2D-model, the lattice approach resembles a transverse section of a 
fiber composite with circular cross-section having diameters extending from 
infinite to finite size. Each cylinder can be thought to consist of a circular 
fiber enveloped by a concentric matrix shell. Given a wide distribution of 
fiber sizes, a plane can be assumed to be completely filled. The bounds on 
the transverse properties of such an assemblage of fibers was determined 
by Hashin (1965), namely the transverse plane–strain modulus bounds K(–) 
and K(+), and the upper and lower bounds for the transverse shear modulus. 
For analyzing the elastic modulus of the 2D-particle composite, where the 
particles are actually cylinders of different diameters (see also Chapter 4), 
the Hashin bounds can be used as a comparison to the outcome of numerical 
simulations. Only the bulk modulus needs to be considered.

Hashin (1965) gives the following upper and lower bound for the plane–
strain bulk modulus K as
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FIGURE 5.1
Bounds on Young’s modulus for a two-phase concrete consisting of spherical aggregate parti-
cles embedded in a continuous cement-matrix with w/c-ratio = 0.38. (The experimental results 
shown were obtained by Wittmann, Sadouki, and Steiger. 1993. Micromechanics of Concrete and 
Cementitious Composites.) The upper-bound (straight line) is the parallel model; the two lower 
curves are the Hashin bounds, which are a refinement of Equations (5.1) and (5.2).



79Elastic Properties of Lattice with Particle Overlay

 
= +

−
+

+

+K K V

K K
V

K G
1a

m

m a

a

a a

( )

 (5.3b)

K and G are the bulk and shear modulus of the aggregate and matrix phases, 
respectively, and are equal to

 =
− ν

=
+ ν

K E G E
3(1 2 )

and
2(1 )

 (5.4)

with, of course, the respective indices (a and m) for aggregate and matrix phases. 
The Vi stand for volume fractions. The Poisson ratio ν has been set equal to 
0.2 in all the numerical simulations for both the aggregate and matrix mate-
rial, which simplifies the equations. Using Equation (5.4) the upper and lower 
bounds of the Young’s modulus of the composites can be expressed in terms of 
the Young’s moduli of the composite phases and their volume fractions:

 = − ν + + ν + − ν ⋅ −
− ν + + ν −









−E E E V V E E
E V E E

(5 4 ) [2 (1 ) (5 4 )] ( )
(5 4 ) 2 (1 )( )m
m m a a m

m m a m

( )  (5.5a)

and

 = − ν + + ν + − ν ⋅ −
− ν + + ν −









+E E E V V E E
E V E E

(5 4 ) [2 (1 ) (5 4 )] ( )
(5 4 ) 2 (1 )( )a
a a m m a

a a m a

( )  (5.5b)

For the three-dimensional case the aggregates are spherical, and not the 
cylinders that appear in a 2D simulation. The 2D simulation can therefore at 
best be a rough approximation of the real behavior of a 3D particle compos-
ite. For a composite of spherical inclusions “a” embedded in a matrix phase 
“m,” Hashin and Shtrikman (1963) derived the bounds for the bulk modulus 
as follows:
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In Hashin and Shtrikman (1963) the bounds for the shear modulus are 
also given, expressed in terms of the volume fractions and the elastic prop-
erties of the two phases. Here we refrain from giving those because only 
limited analyses for E and K are available, which are summarized in the 
next section.

5.2	 	Effective	Young’s	Modulus	of	a	Two-Phase	
Aggregate-Matrix	Composite

As mentioned, the elastic properties of a lattice should best be determined 
by means of a simple numerical linear elastic framework analysis. Any finite 
element code supporting beam elements with 3 dof per node can be used. 
The numerical simulations are particularly useful when a particle composite 
such as concrete is analyzed. The effect of the material structure on the elastic 
properties can be determined, like the effect of particle volume on effective 
elastic modulus and the Poisson ratio, as was done by Van Vliet (2000) and 
Lilliu (2007) for 2D and 3D lattices, respectively. One important prerequisite 
is that the analyzed structure is larger than the representative volume of the 
material. For a coarse-grained material such as concrete and several types of 
rock the RVE can be quite large and often the characteristic dimension of the 
specimen to be analyzed exceeds 100 mm. For a single elastic analysis this is 
not really problematic, even when the number of elements would be over 105 
or larger, however, for fracture analyses where many consecutive load-steps 
must be applied this may often lead to computational problems and one has 
to revert to the largest available computers (see also Appendix 1).

Figure 5.2 shows some examples of material structures analyzed by Van 
Vliet (2000). In Case I a continuous particle distribution has been used (Fuller 
distribution; see Section 4.3) and the total volume of particles has been var-
ied. Case II is based on the same particle distribution, but the particle volume 
has been reduced by systematically removing the particles of the smallest 
size fraction. Thus, in Figure  5.2d (Case II) all particles are present (2 ≤ d 
≤ 16 mm); in the other structures in the same row, going from right to left 
the smallest particle fractions are omitted thereby reducing the total particle 
volume. In Case III (bottom row) a random mix of aggregate and particle 
elements has simply been used, and the amount of particle beams increases 
from left to right.

Note that particle volume in these 2D analyses must be interpreted as par-
ticle area. In all cases the thickness of the structures is constant and equal to 
t = 1 mm. Along the top boundary of the structure a uniform displacement 
is applied in the vertical direction; the lower row of nodes is fixed also in the 
vertical direction, and the middle node of the bottom and top row in the hor-
izontal direction. The length of the lattice beams is 1 mm, which is smaller 
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than the smallest aggregate particle introduced, but still large enough to 
cause distortion of the particle shape (see Figure 4.13c). The regular trian-
gular lattice has a size of 80 × 92 cells to form a structure of approximately 
80 × 80 mm2 (note that in a regular triangular lattice =y l 3 /2

 
when x = l, 

which explains the larger number of cells in the y-direction). In Figure 5.2 Pk 
denotes the aggregate fraction, as defined in Equation (4.4).

Due to the lattice overlay and the way the aggregate distribution is gener-
ated (neglecting the smallest particles) there are some losses and the effective 
value of Pk is always smaller than the value indicated. Thus, for example, for 

Case I

Case II

Case III

(a) Pk = 0.10 (b) Pk = 0.40 (c) Pk = 0.70 (d) Pk = 1.00

(a) 14 ≤ d ≤ 16 mm (b) 10 ≤ d ≤ 16 mm (c) 6 ≤ d ≤ 16 mm (d) 2 ≤ d ≤ 16 mm

(a) 10% aggr. (b) 30% aggr. (c) 60% aggr. (d) 90% aggr.

FIGURE 5.2
Case I (upper row): continuous (Fuller) distribution with Pk varying between 10% and 100% (for 
an explanation of Pk, see main text). The effective aggregate content Pk.latt is 0.03, 0.19, 0.34, and 
0.47, respectively. Case II (middle row): Continuous Fuller distribution where the variation in 
particle content has been achieved by removing the smallest particle fractions (from right to 
left; middle row). The effective aggregate content Pk.latt is 0.02, 0.11, 0.22, and 0.35, respectively. 
Case III (lower row): Random mixture of aggregate and matrix beams; the fraction of aggregate 
beams increases from 10% (left) to 90% (right). The effective aggregate content after lattice over-
lay is not affected in this case. (After Van Vliet. 2000. Size Effect in Tensile Fracture of Concrete and 
Rock. With kind permission of Dr. Marcel van Vliet.)
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Case I with Pk = 1, the effective value Pk,eff = 0.80. After lattice overlay, with a 
1-mm triangular lattice in the end only Pk,latt = 0.48 remains. There is in practi-
cal mixtures also a good reason why an aggregate content of 100% can never 
be reached. As a matter of fact, the maximum possible amount lies around 
50%, but this value is to some extent dependent on the aggregate size. In 
experiments Wittmann, Sadouki, and Steiger (1993) showed that with increas-
ing sand fractions (d < 4 mm), at a particle content of 50% or higher suddenly 
a higher porosity developed, which can be explained from the simple fact 
that not enough cement matrix is left to enclose all particles. The cement rib-
bons around the grains become thinner than the smallest cement grain and 
the composite structure is destroyed. As a result there is a clear effect on the 
global Young’s modulus of the composite as was already shown in Figure 5.1. 
It is always nice to see confirmed that many aspects of material behavior sim-
ply relate directly to geometrical constraints in the material structure.

Now let us discuss some of the numerical outcomes. We limit ourselves 
to loading applied in the vertical (y-) direction; Van Vliet also considered 
loading in the horizontal (x-) direction, which makes sense because a regu-
lar triangular lattice has threefold symmetry that is broken in a Cartesian 
coordinate system. In Figure 5.3 results of two sets of numerical analyses are 
shown. In Figures 5.3a and 5.3c the Young’s modulus of the aggregates is 25 
GPa, of the matrix 10 GPa; in Figures 5.3b and 5.3d the situation is reversed 
and the Young’s modulus of the aggregates is smaller than the matrix. The 
latter situation resembles, for example, lightweight concrete.

In all figures the open and closed symbols are the results of the numerical 
analyses. For the continuous particle distributions (Figure 5.3a,b) the maxi-
mum achieved Pk after lattice overlay does not exceed 48%. However, for the 
random mixtures of aggregate and matrix elements (Case III, Figures 5.3c,d), 
as expected, the whole aggregate fraction range (from 0–100%) is possible. 
The continuous lines in Figure 5.3 are the bounds calculated with simple ana-
lytical models such as the series and the parallel models and Hashin bounds 
(Equation (5.5); see Section 5.1). All numerical results are well between the 
upper and lower bounds predicted by these analytical models, which shows 
that elastic properties are correctly “predicted” from these relatively simple 
lattice models.

At a 0% aggregate fraction, the Young’s modulus of the matrix material is 
found; at a 100% aggregate fraction the modulus of the aggregate grains is 
found. In between, the numerical results follow the trend of the analytical 
models. Note that it is not very important how the aggregate content is var-
ied in particle structures (compare Cases I and II, Figures 5.3a,b). The results 
of random material structures of Case III are consistently higher than those 
of the other two cases. It should be mentioned that the results shown here are 
valid for the chosen lattice geometry only, that is, the threefold symmetric 
regular triangular lattice. For other lattice geometries, for example, a random 
lattice (Vervuurt et al. 1995), the same analyses have to be repeated for cali-
brating the model.
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5.3	 Effective	Elastic	Properties	in	Three	Dimensions

For a 3D lattice Lilliu (2007) made similar analyses as those shown in the 
previous section for two dimensions. Again a complete set of new analyses 
is required, but now in three dimensions. Lilliu used a three-dimensional 
lattice, with randomness A/s = 0.5 (with s = 1 mm). The 3D random lattice is 
an extension of Vervuurt’s methods based on the Mourkazel and Herrmann 
(1992) random lattice. The analyses were done for a Fuller distribution, with 
2 mm ≤ d ≤ 14 mm. The maximum aggregate density that could be reached 
after lattice overlay (Pk, latt) is equal to 0.30. Again, as in the previous sec-
tion, the effect of the ITZ was neglected, and basically a two-phase material 
was considered. Of course, refinements are possible, and one could decide 
to include the ITZ, which means that the entire series of analyses must be 
repeated once more. It should be mentioned again that depending on how 
the ITZ is handled in the lattice, an enormous refinement of the model may 
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FIGURE 5.3
Effective Young’s modulus for a regular triangular lattice with varying aggregate content: (a) 
and (c) aggregate modulus larger than the surrounding matrix; (b) and (d) low modulus aggre-
gates in a high modulus matrix. (After Van Vliet. 2000. Size Effect in Tensile Fracture of Concrete 
and Rock. With kind permission of Dr. Marcel van Vliet.)



84 Concrete Fracture: A Multiscale Approach

be required, but for a single analysis needed to determine the global elastic 
properties this may not prove to be an insurmountable problem, at least, not 
in comparison to fracture analyses (see Chapter 6).

Figure 5.4 shows the results obtained by Lilliu. The basic properties of the 
matrix and aggregate particles were selected such that a comparison was 
possible with experimental data obtained by Anson and Newman (1966), 
namely Em = 28.3 MPa and Ea = 69 GPa. The same Poisson ratio, ν = 0.218, 
was assigned to both the aggregate and matrix phases. It will be obvious 
that such a comparison would be useless for the two-dimensional case of 
Section 4.2. The two diagrams in Figure 5.4 are for the effective global shear 
modulus G* (Figure 5.4a) and effective global bulk modulus K* (Figure 5.4b). 
As mentioned, a comparison is made with the Anson–Newman data, as well 
as with the Hashin–Shtrikman bounds, which are mentioned in Equation 
(5.6) for the bulk modulus only.

The comparison among the numerical lattice analyses, the experimental 
data, and the Hashin–Shtrikman bounds is quite satisfactory, which may 
indicate that the lattice may turn out to be a viable tool for analyzing the 
behavior of disordered materials such as concrete and rock. In the following 
chapters we return to fracture.
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FIGURE 5.4
Effective global shear modulus G* (a) and effective global bulk modulus K* (b) for a three-
dimensional random lattice (A/s = 0.5, s = 1 mm) with different aggregate density (spheri-
cal particles with a Fuller distribution). (After Lilliu. 2007. 3D Analysis of Fracture Processes in 
Concrete. With kind permission of Dr. Giovanna Lilliu.)
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6
Fracture of Concrete in Tension

The tensile strength of concrete is about 8–10 times lower than its compres-
sive strength and tensile cracks are present in almost every reinforced con-
crete structure. Mode I fracture of concrete is therefore considered most 
important. For the fictitious crack model the tensile stress–strain curve and 
the softening diagram are the essential input parameters. As mentioned in 
Section 2.4 direct tests are preferable, but due to several experimental difficul-
ties are considered among the most difficult to perform (see also Appendix 
3 on test stability). In Section 6.1 we analyze the behavior of uniaxial tension 
tests, and explain the fracture process from 2D and 3D analyses. Next, we 
elucidate the effect of a number of experimental issues including the use 
of notches and the effect of the rotational freedom of the loading platens. 
Subsequently, in Section 6.2 two types of indirect tension tests are discussed, 
namely the Brazilian splitting test and the 3-point bending test. Although 
these experiments are easier to conduct, the softening parameters can only 
be determined via an inverse analysis, where the uniqueness of the param-
eters remains an issue.

6.1	 Analysis	of	Uniaxial	Tension	Experiments

In Figure 2.10 the classical results of Evans and Marathe (1968) were shown. 
Their results suggest that microcracking starts well before the maximum ten-
sile stress is reached, in the prepeak regime, whereas the words by the devel-
opers of the fictitious crack model (mentioned in the beginning of Section 
2.4) appear to suggest that microcracks develop in the postpeak regime. 
The confusion is not helped with the excellent overview paper by Mindess 
(1991), which shows there is no consensus regarding the size of the cohesive 
zone. The size of the process zone depends on the adopted measurement 
technique, the loading situation at the crack-tip and the specimen layout. 
Consensus is, however, quite essential for the FCM. Thus, it makes sense to 
study the fracture process in concrete specimens subjected to uniaxial ten-
sion in some detail, in an attempt to resolve the confusion. Since the intro-
duction of the lattice model in 1990 simulations of tensile fracture have been 
carried out repeatedly, with or without accompanying tensile experiments. 
These tensile experiments were always aimed at the specific phenomenon 
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studied. In the very beginning the experiments were carried out before the 
simulations were done, but occasionally the situation has been successfully 
reversed, which may indicate that the lattice has some predictive qualities. 
Of course there are weaknesses, and also in a number of cases there are obvi-
ous problems. These are always identified, and where possible, solutions for 
repair are suggested.

6.1.1 Fracture Process in Tension

One of the first simulations with particle overlay is shown in Figure  6.1 
(Schlangen and Van Mier 1992a). Equation (4.4) was used to generate the par-
ticle distribution. The specimen geometry exactly resembles that of experi-
ments done at the same time (see Van Mier 1991a). The specimen length is 
200 mm, the width 100 mm, and the notch is 15-mm deep and 3-mm wide. 
Figure 6.1 contains two results, namely the σ–w diagram for normal concrete 
and the result for lightweight concrete (the dashed line). The stress is the (nom-
inal) axial stress applied to the far ends of the specimen, the displacement w is 
taken over the same measurement length as used in the experiment, namely 
35 mm. This means that w is not the pure crack opening, but some (minimal) 
elastic unloading is included. Only the part of the specimens where cracks are 
expected to develop is modeled by means of a regular triangular lattice (see 
inset of Figure 6.1); the length of the individual lattice elements is 1 mm.

The lightweight concrete shows a steeper postpeak stress drop immediately 
after peak than the normal concrete, which is in agreement with experimen-
tal observations, where in general larger brittleness for lightweight concrete 
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weight concrete. The respective crack stages are shown in Figure 6.2. The ratios of the matrix to 
aggregate to ITZ strength for both simulations are indicated in the inset. (From Schlangen and 
Van Mier. 1992a. Cem. Conc. Comp., 14(2): 105–118. With permission from Elsevier.)
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is found (Van Mier 1991b). The particle distribution in both specimens is iden-
tical; only the local properties have been changed. The lightweight concrete 
contains aggregates that are weaker compared to the grains in the normal 
concrete, and also the interfacial transition zone (ITZ) strength is increased. 
The argument for this is that the lightweight aggregates are generally quite 
porous, and in addition to the normal bonding mechanisms of adhesion 
and frictional restraint, one can rely on larger interlock between the rough 
aggregate surface and the cement matrix; see, for example, Zhang and Gjørv 
(1990). Clearly the use of identical particle distributions is an advantage in 
such numerical simulations in comparison to real experiments where this 
cannot possibly be achieved. At peak stress in both concretes some limited 
microcracking is observed (see Figures 6.2a and 6.2e). In normal concrete the 
prepeak cracking is distributed over the specimen width, whereas for the 
lightweight concrete just a single crack appears near the notch. The “starter 
crack” in the lightweight concrete appears to be within the weak aggregate 
particle just above the notch.

After the peak larger cracks start to grow. For normal concrete the main 
crack starts at the unnotched side of the specimen. By coincidence four larger 
aggregates were located there, close to one another, and the resulting stress 
concentrations must have favored macrocrack initiation at this specific loca-
tion (see Figure 6.2b). Obviously the local stress concentration was larger near 
those four large aggregates and not at the notch. In the lightweight concrete 
sample the initial crack near the notch starts to grow, but clearly the crack 
is not continuous but contains smaller bridges (see Figure 6.2f). These may 
have been the result of the lattice geometry, where the crack jumps from one 
row of elements to the next, but may also represent the bridging observed 
in experiments, which takes the form of handshake cracks; see Appendix 4 
(Figure A4.2) and Van Mier (1991a,b).

(a) 8 μm

(b) 12 μm

(c) 21 μm

(d) 128 μm

FIGURE 6.2(a)–(d)
Crack growth in single-edge notched (SEN) tensile specimen subjected to uniaxial tension; 
normal concrete is modeled. The tensile stress is applied in the vertical direction. Only the area 
where cracks were expected to grow is modeled as a regular triangular beam lattice (see inset 
of Figure 6.1). The total specimen width of 100 mm is shown. (From Schlangen and Van Mier. 
1992a. Cem. Conc. Comp., 14(2): 105–118. With permission from Elsevier.)
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Upon further loading, the main cracks extend and have more or less 
crossed the entire specimen width (Figure 6.2c for normal weight concrete 
and Figure 6.2g for lightweight concrete). Looking to the stress crack open-
ing diagram in Figure 6.1 one can see that the major stress drop occurred 
in the softening diagram at this stage of the fracture process. The results 
suggest that a direct relationship exists between the aggregate size and the 
remaining load-carrying capacity (see Figure 10.5 in Chapter 10 where the 
four-stage fracture model is presented).

The final stage of the fracture process is then characterized by a long tail 
of the softening diagram; see Figure  6.1. In those final stages, the macro-
crack is fully developed, but so-called crack-face bridges remain, which are 
capable of carrying some limited load. In experiments the same phenomena 
have been observed (see Van Mier 1991a,b), and the tail part of the softening 
diagram appeared to be quite stable. As a matter of fact the crack opening 
was increased manually and no instabilities occurred in the control loop of 
a displacement-controlled experiment. Moreover, it was possible to correlate 
the size of the bridges, as well as the bridging stress, to the size of the coarse 
aggregates used in the concrete mixture; see Van Mier (1991b). In Section 
A4.1 and Section 10.1.4 a more detailed account of the bridging phenomenon 
is given. Note that heterogeneity of the material is a prerequisite to obtain 
crack-face bridging. Several micromechanical models have shown the mech-
anism; see for instance, Vonk (1992), Wang (1994), Bolander and Kobayashi 
(1995), and Tijssens (2001), as well as a very early example from 1986, which 
was included in Van Mier and Man (2009).

As mentioned, in these analyses, which date back to 1991–1992, only the 
part of the specimen where cracks were expected to grow was modeled 
as a lattice. The remainder of the specimen and the loading platens were 
modeled using normal isoparametric shell elements available in the finite 
element package DIANA that was used. It was expected that microcracks 

(e) 6 μm (g) 13 μm

(f ) 8 μm (h) 80 μm

FIGURE 6.2(e)–(h)
Crack growth process in lightweight concrete. The specimen is loaded in the vertical direc-
tion, all conditions being identical to those for the normal concrete simulation in Figure 6.2a–
d. (From Schlangen and Van Mier. 1992a. Cem. Conc. Comp., 14(2): 105–118. With permission 
from Elsevier.)
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would be concentrated near the notch area. Later analyses have shown that 
this assumption is not always correct, and generally it is better to model the 
entire structure as a lattice. Obviously this has an important consequence for 
the computational cost of a simulation (see Appendix 1).

6.1.2 Effect of Particle Density on Tensile Fracture

Equations (4.3) and (4.4) have frequently been used in the past to produce a 
computer generated particle distribution for “numerical concrete,” in par-
ticular for 2D analyses. Equation (4.3) can also be the basis for a 3D particle 
structure where random placement of the more advanced method “space” 
(developed by Stroeven 1999) can be used. One of the parameters is the par-
ticle content, which is also an important starting point when real concretes 
are produced. With that in mind it is of interest to see how the lattice model 
performs when the particle content is varied. Due to the specific way the 
material structure is built up, an interesting transition occurs in the mechan-
ical behavior. The ITZ plays an important role in all this. The effect of particle 
density on tensile fracture was investigated in the doctoral theses of Van 
Vliet, Prado, and Lilliu. The first two deal with 2D fracture only, whereas 
Lilliu developed a completely 3D model. In Figure 6.3 results are shown for 
several 2D analyses carried out by Prado and Van Mier (2003). Comparing 
the results of Figures  6.1–6.2 with those in Figure  6.3 is indicative of the 
progress made over the years. In 12 years the number of beam elements in 
a lattice analysis increased by a factor of 100–1,000, allowing for more detail 
in the particle structure, shorter beams, and more important, modeling the 
entire test specimen (in three dimensions if deemed necessary).

 In the earlier simulations only the parts where cracks were expected to 
grow were modeled as a lattice; see, for example, Figure 6.2. The specimen 
analyzed is a square 60 × 60 mm2 plate of unit thickness. The length of the 
beams in the regular triangular lattice is 0.25 mm; particle sizes vary between 
1.0 to 11.55 mm. In Figure 6.3 for each particle density (Pk = 35, 51, and 83% 
before particle overlay) the load displacement diagram is plotted, with to the 
right, two crack patterns: stage A is at the peak load, stage B represents the 
crack pattern after the steep drop of load in the descending branch. The two 
stages are always indicated in the load displacement diagrams. The colors in 
the crack diagrams have meaning: they indicate the deviation from average 
stress at the specific loading stage. The stresses cannot be compared between 
the different loading stages because the average stress depends on the exter-
nal load. Nevertheless the color coding (light yellow/green/blue indicates 
stresses lower than average, toward orange/red indicate higher than aver-
age tensile stress concentrations) is helpful for a better understanding of the 
fracture process. The color coding is identical to the image appearing on the 
book cover. In Figure 6.3 the yellow appears as light gray, red in dark gray.

The difference in behavior between the two extremes, that is, Pk = 35% 
and 83%, is quite telling. At 35% the crack pattern at peak, stage A shows 
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FIGURE 6.3
Effect of particle density on the fracture process in uniaxial tension. The particle density is 
given by the parameter Pk in each load-deformation diagram, and varies between 35, 51, and 
83% (before lattice overlay). The load-deformation diagrams are shown in original zigzag for-
mat which is the result of subsequent loading cycles after each beam removal. To the right of 
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color codes are qualitative only, but are helpful to identify various stages in the fracture pro-
cess. The color coding is visible on the cover image. Yellow translates here to light gray, red to 
dark gray. (From Prado and Van Mier. 2003. Engng. Fract. Mech., 70(14): 1793–1807. With permis-
sion from Elsevier.)
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considerable prepeak microcracking, which is absent in the 83% sample. 
The reason is rather straightforward: the first microcracks appear in the 
weakest zone, that is, the ITZ. In the sample with 35% aggregates the ITZ 
around the various aggregates are separated from each other by the stron-
ger matrix phase. When the particle content increases to 83% all ITZ zones 
are interconnected, and percolating paths of weak elements are present in 
the specimen. As a result the first ITZ crack is also the critical one leading 
to softening and complete rupture of the specimen. The load-displacement 
curves show the difference in the prepeak regime. For an aggregate con-
tent of 35% there is a small, but quite recognizable “hardening regime” just 
before the maximum load is reached, whereas this does not appear in the 
83% analysis. The intermediate case with 51% also shows some prepeak 
cracking, but it is significantly less compared to the 35% analysis. Note that 
the percolation of the ITZ can also be achieved by increasing the lattice 
beam length; even at sparse particle content, a thicker ITZ may cause perco-
lation, see Lilliu and Van Mier (2007).

In the postpeak regime the behavior is quite comparable and there are 
hardly any differences. A single catastrophic macrocrack propagates through 
the specimen’s cross-section and separates each specimen in two parts. In the 
35% specimen the main crack clearly initiated at the left side, and propagated 
toward the right side. Stresses are lower than average where the main crack 
first developed, that is, at the left side as indicated by the light yellow/green-
ish color. The right side of the sample shows redder and is therefore more 
stressed. It is interesting to see that in all three cases the main crack is rather 
red along the entire length. This indicates bridging: intact pieces of material 
remain in the wake of the propagating macrocrack. The so-called crack-face 
bridges have been observed in experiments as well, especially near large stiff 
aggregates (see Appendix 4, Figure A4.2, and Van Mier (1991a,b)). The size of 
the aggregates appears to decide the size of crack-face bridges, and with that 
the carrying capacity of a cracked sample in the tail of the load displacement 
diagram. We further elaborate on these matters in Chapter 10.

The load-displacement curves are quite “spiky” and are in fact more brit-
tle than the curves obtained from physical experiments; see, for example, 
Figure  6.4 where a direct comparison is made between a lattice analysis 
and a tensile experiment. In the computed diagram, the spikes have been 
smoothed by simply connecting the subsequent maximum stress levels. By 
doing so a higher fracture energy results; one should be cautious not to draw 
quick conclusions about fracture energy in this case. The initial stiffness and 
the maximum stress are in good agreement, but the postpeak curve is more 
brittle in the lattice simulation. Several reasons for the extreme brittle behav-
ior of the lattice model have been put forward as follows:

 1. The fracture law used in the lattice is an elastic, purely brittle 
fracture law, leading to immediate load-drop after the maximum 
strength of a lattice beam is exceeded. It has been argued that 
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the cement matrix between the large aggregates behaves far from 
brittle, and resembles the softening behavior of mortar. This has 
led some researchers to include a softening fracture law in lattice, 
for example, Ince et al. (2003). This is actually a curious decision 
because the lattice model was there in the first place to explain the 
effect of a material structure on softening, and to come to a bet-
ter understanding of fracture phenomena in concrete and similar 
materials (Van Mier 2004b).

 2. Related to the above comment is the simplification in the particle 
structure. Small aggregates are for computational reasons removed 
from the lattice structure. This allows an increase in the lattice beam 
length and a reduction of computational effort. This becomes less 
of an obstacle with advances in computer technology, both hard-
ware and software. In the next subsection a simplified analysis is 
included that shows the effect of removing small particles.

 3. The above analyses were all 2D simulations of fracture behavior. 
Laboratory-scale specimens are usually on the order of 50 × 50 ×100 
mm, and are truly 3D experiments. Crack propagation is a three-
dimensional phenomenon, and this is clearly not well captured in a 
2D analysis. The lattice is easy to extend to full 3D, and this has been 
done in recent years; see Lilliu (2007). The effects of choosing a 2D 
simplified simulation can therefore be estimated. Some results are 
shown in the next section as well.
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Comparison of experimental stress–displacement diagram from a uniaxial tension test on a 
double-edge notched concrete prism and from a lattice simulation. (After Schlangen and Van 
Mier. 1992b. In Proceedings of the 1st International Conference on Fracture Mechanics of Concrete 
Structures (FraMCoS-1),



93Fracture of Concrete in Tension

6.1.3 Small-Particle Effect

Including every small detail of the material structure into a lattice simulation 
is impossible with current computational facilities. If the structure of cement 
were included, lattice beams would have to be μm size or even smaller and 
only very small specimens can be analyzed, for example, the tiny cylinders 
used in the microtensile test of Figure 11.9. Therefore a simulation is always 
a trade-off between computational possibilities and resolution. If the analy-
sis becomes 3D the problems are even larger. In order to estimate the effect 
of small material structural elements in lattice simulation different types 
of idealized simulations were carried out. One of these was the so-called 
small-particle effect. In Figure 6.5 the small particle effect is shown in 2D. In 
one example a large centrally placed aggregate is embedded in an otherwise 
homogeneous and brittle matrix, whereas in the second example many small 
particles have been included around the centrally placed large aggregates. 
The absolute size of the particles is not of interest; rather the relative effect of 
the small particles is the focus of these analyses.

The load-displacement diagram clearly shows a much increased post-
peak ductility as soon as the small particles are present. The reason for the 
increased ductility is now quite obvious: bridging of cracks becomes more 
important as soon as the small particles are included, which can be seen 
from the respective crack patterns. Note also that due to the use of a regular 
triangular lattice cracks become rather straight when no small particles are 
included. Such straight cracks usually do not appear in experiments: mate-
rials such as cement and concrete are heterogeneous to the smallest size/
scales, and the cracks show a corresponding roughness at all size/scales.
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FIGURE 6.5
Effect of adding small particles to an otherwise homogeneous and brittle cement matrix sur-
rounding a large centrally placed aggregate particle: (a) crack patterns at the end of the simula-
tions; (b) load-displacement diagrams (After Schlangen and Van Mier. 1992c. In Proceedings of 
the 1st Bolomey Workshop on Numerical Models in Fracture Mechanics of Concrete.)
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In 3D the same analysis was repeated by Van Mier and Lilliu (2001) using 
a random lattice in a prismatic sample of 24 × 24 × 12 mm. The average beam 
length in the lattice was 1.27 mm, which set a limitation on the size of the 
particles. The central aggregate had a diameter of 8 mm, whereas the small 
grains, 39 in total, each had a diameter of 4 mm. The load-displacement dia-
grams are shown in Figure 6.6a, and an exploded view of the crack patterns, 
at peak load and at 20-μm axial displacement is shown in Figure 6.6b. The 
conclusion is almost similar to that from the 2D simulations. The postpeak 
behavior is less brittle. One important difference appears though, namely, 
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FIGURE 6.6
Load-displacement curves for two 3D simulations with different particle distribution (a). In 
one analysis a centrally placed particle is embedded in a homogeneous matrix, whereas in 
the second analysis the large particle is surrounded by many small grains. (b) Exploded view 
of the 3D crack patterns at peak and at 20-μm crack opening. (After Van Mier and Lilliu. 
2001. In Proceedings of the 4th International Conference on Analysis of Discontinuous Deformation, 
ICADD-4.)
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the analysis with small particles included shows a lower peak strength, 
which may have been caused by small-scale microcracking also in the ITZs 
surrounding the smaller particles. As a result macrocrack propagation may 
have started at an earlier stage compared to the one-particle analysis where 
microcracks would only grow along the ITZ of the single particle.

It is difficult to make a direct comparison between a 2D and 3D analy-
sis, because the crack process is truly three-dimensional. In a 2D simulation 
out-of-plane crack growth is not captured, but this may have a substantial 
influence on postpeak behavior as well. Comparison of the relative post-
peak diagrams from 2D and 3D simulations shows less brittle behavior in 
the 3D case; see Van Mier and Lilliu (2001). Thus it appears that not only 
ignoring the small-scale material structure leads to increased brittleness in 
lattice analyses, but also changing from 2D to 3D has some (limited) effect. 
In general, for multiscale heterogeneous materials such as concrete, a full 3D 
analysis would be required, but then of course a great deal of computational 
effort is required.

6.1.4 Boundary Rotation Effects and Notches

In physical experiments one always has to consider specimens of finite 
size. Periodic boundary conditions do not exist; the only remedy would be 
reverting to extremely large specimens. If the size of a specimen becomes 
too large, one may experience stability problems in fracture experiments; 
see, for example, Carpinteri and Ferro (1994) and Van Vliet and Van Mier 
(2000). The specimen size is therefore often chosen to be relatively small, that 
is, on the order of about 100 mm for concrete and mortar, which not only 
limits the use of maximum aggregate sizes up to 16 mm, but also results 
in noticeable boundary condition effects. In some of the macroscopic frac-
ture models for concrete, tensile tests carried out between nonrotating load-
ing platens are required (see Section 2.4, the fictitious crack model). Because 
some peculiar behavior is observed in tensile tests between fixed (nonrotat-
ing) loading platens, namely the development of two major cracks in the 
postpeak regime, a variation of the boundary conditions in a tensile test is 
a fine example for the lattice model. Not only is this a fine example, but the 
analysis may help to understand and interpret the result from displacement-
controlled experiments.

An additional experimental requirement for obtaining stable softening 
curves is making one or more notches in a concrete specimen. The stress 
concentration around the notches confines the macrocrack development to a 
certain region of limited size in the tensile specimen, provided the stress con-
centration is more important compared to that around single aggregate par-
ticles, or clusters of large aggregates (see, e.g., Figure 6.2). Notches are for the 
same reason used in bending experiments, that is, to avoid snap-back behav-
ior that would occur when the length of the control extensometer becomes 
too large and too much elastic energy is released in the postpeak regime 



96 Concrete Fracture: A Multiscale Approach

(see Appendix 3 on test stability, and the more elaborate text in Van Mier 
1997). The notches are quite often cut by means of a rotating diamond saw 
in a block of concrete. The notch has to be cut quite precisely, with accuracy 
comparable to that used for manufacturing the entire specimen. It pays to 
use a very accurate specimen preparation, even though this may sometimes 
be quite difficult to achieve for concrete specimens. The lattice may also in 
those cases be quite helpful because the effect of misaligned notches may 
be studied. These are two among many experimental issues that must be 
considered in doing fracture experiments on concrete, rock, and other quasi-
brittle materials. In this section we discuss the effect of boundary rotations 
on the tensile load-deformation diagram and the ensuing fracture patterns. 
Next, the influence of misalignment of notches is presented.

6.1.4.1  Boundary Rotation Effect

In linear elastic fracture mechanics theory the specimen geometry and 
the boundary conditions both have an effect on the stress intensity factor. 
Corrections to the general equation for the stress intensity factor for a crack 
in an infinite plate subjected to farfield tension are needed when finite size 
samples are considered. When nonlinear fracture models were introduced 
for concrete, specifically the cohesive crack model, also referred to as the 
fictitious crack model, it was suggested that the closing pressure over the 
crack-tips should be derived from stable (displacement-controlled) uniaxial 
tension tests between fixed-end conditions (see Section 2.4). This means that 
it should be prohibited for rotations of the loading platens to occur during 
the entire experiment. Considering therefore the effect of boundary condi-
tions on fracture response seems of eminent importance in judging whether 
cohesive crack models should be accepted. In Figure  2.11 we showed the 
effect of the rotational stiffness of the loading platen on the stress–deforma-
tion behavior of cylindrical concrete specimens. Fixing the platen has a sig-
nificant effect on the shape of the softening curve and a pronounced bump 
is observed. In the test with freely rotating platens a very smooth soften-
ing curve is measured in contrast. The bump can be predicted using simple 
LEFM, as shown in Appendix 1. The flexural stiffness of the specimen itself 
plays a role, and enters the solution through the specimen slenderness L/W 
(see Figure A2.2)

Let us now focus our attention on the fracture mechanisms. In Figure 6.7 
the crack patterns obtained from three analyses of the Carpinteri and Ferro 
(1994) dog-bone-shaped test specimen are shown. Loading is always tensile, 
in the vertical direction. The boundary conditions were varied in the three 
analyses, namely, (A) freely rotating loading platens, (B) fixed (nonrotating) 
loading platens, and (C) uniform deformation over a measuring length of 50 
mm over the central part of the specimen. Uniform displacements should 
be interpreted as the same displacements at the left and right side of the 
specimen while cracking proceeds. In theory this is easy to achieve, but in 
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laboratory experiments the heterogeneity of the material, the specimen man-
ufacturing, as well as alignment of a specimen in the loading frame are not 
always 100% controlled.

Cases B and C are quite similar in that the cracks appear more distrib-
uted over the entire specimen length, at least there where the cross-sectional 
area is reduced. In the case of freely rotating platens, Case A, the main crack 
almost immediately develops from the weakest side of the specimen (note 
that the material is heterogeneous and a statistical strength distribution is 
present as in real concrete specimens), and then propagates unhindered to 
the other side. As a result a relatively sharp crack zone develops, with much 
less side cracking as observed in Cases B and C. The analyses were done 
using two different grain structures, and in Table 6.1 the fracture energies for 
the three boundary conditions A, B, and C are listed. The fracture energy, or 
actually the work of the fracture, resembles the area under the load-displace-
ment diagram up till a deformation of 100 μm. The lower fracture energy for 
the hinged boundary condition (Case A) is obvious in comparison to the two 
other boundary conditions. The result can be related to the lesser amount of 
cracks in Case A, that is, when fewer cracks are formed likewise a decrease 
of fracture energy is observed.

In Figure  6.8 the fracture mechanism is explained schematically for all 
three boundary conditions. For an understanding of the observed phenom-
ena it is absolutely essential to recognize that the heterogeneous material 
structure plays an important role. The specimens are certainly not uniformly 

Case A
Rotating Platens

Case B
Fixed Platens

Case C
Fixed;/meas = 50 mm

FIGURE 6.7
Effect of boundary rotations on the fracture behavior of dog-bone-shaped tensile specimens. 
In Case A the far ends of the specimen can freely rotate around a center point on the respective 
end surfaces; in Case B the top and bottom edges are kept parallel throughout the analysis; and 
in Case C the deformations are kept uniform over a zone of 50-mm length in the center of the 
specimen. (After Van Mier, Schlangen, and Vervuurt. 1995. In Continuum Models for Materials 
with Microstructure.)
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built up in reality, and this is reflected in the heterogeneous particle struc-
ture that was adopted in the lattice analyses. In Figure 6.8 the heterogeneous 
particle structures and the related statistical strength distributions in the 
samples have not been drawn. It is easy to see, however, that crack nucleation 
will start at a location where the weakest material strength is found; see, for 
example, also the tensile simulation of Figure 6.2a–d. In that specific case it 
was not where the notch was made, but at the other side where a concentra-
tion of large aggregate particles existed.

If the loading platens can rotate freely (Figure 6.8a), the main crack can 
simply propagate immediately after it nucleates. There is no restraint, no 
mechanism that can stop the crack from propagating. Consequently the 
load-displacement curve shows a very smooth and gradual load-drop in 
the softening regime. At the side where the main crack opens large posi-
tive deformations are measured, whereas at the other side of the specimen 
compressive displacements are found to occur. Clearly the hinges operate 
as they should and the crack is not restrained to open from the side where 
it started. This situation changes considerably when the end platens cannot 
rotate; see Figure 6.8b. The nucleation of an initial crack at the left side of the 
specimen, for example, triggers the development of a bending moment as 
sketched in Figure 6.8b. The moment develops because the end-platens are 
forced to remain parallel. As the axial deformation keeps increasing, a sec-
ond crack may nucleate from the right side of the specimen. The first crack 
is thus temporarily arrested by the bending moments, which results in a 
plateau (often referred to as a “bump”) in the softening curve. The individual 
displacements at the left and right sides of the sample have been included in 
the stress–displacement diagram of Figure 6.8b, and clearly indicate that first 
the left crack opens, showing large positive deformations, and later, after the 
plateau the right-side crack opens thereby partly closing the left crack.

TABLE 6.1

Fracture Energies for the Three Analyses of Figure 6.7, 
Carried Out for Two Different Grain Distributions

Grain	Structure	
[–]

Fracture	Energy	
[N/m]

Case A: Rotating platens 1 29.8
2 11.6

Case B: Fixed platens 1 35.3
2 32.5

Case C: lmeas = 50 mm 1 40.6
2 43.8

Source: After Van Mier, Schlangen, and Vervuurt. 1995. Lattice 
type fracture models for concrete. In H.-B. Mühlhaus 
(Ed.), Continuum Models for Materials with Microstructure, 
John Wiley & Sons, Chichester, UK, 341–377.
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FIGURE 6.8
Effect of boundary rotations on the stress–displacement behavior and fracture mechanism 
under uniaxial tension: (a) the situation sketched for freely rotating end platens; (b) crack devel-
opment for fixed end platens; (c) for active control. Crack stages A, B, and C in the diagrams to 
the right are at the locations indicated along the curves. (After Van Mier. 2004a. In Proceedings 
of the 5th International Conference on Fracture of Concrete and Concrete Structures (FraMCoS-V).)
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The third case is of interest inasmuch as the debate about boundary rota-
tions triggered some researchers to develop a tensile experiment with uni-
form deformations around a crack zone, as was required in the fictitious 
crack model. For experiments with active control three axial actuators are 
needed: one for the axial load, and the two others for controlling the in-
plane and out-of-plane bending when nonuniform crack growth develops in 
either of these directions. Tensile tests with active control were, for example, 
carried out by Carpinteri and Ferro (1994), and more recently with a manu-
ally operated device by Akita et al. (2003). In active control it is tried to keep 
uniform deformations around the specimens’ circumference by constantly 
adjusting the control actuators for the bending moments. The axial deforma-
tions along the two specimen sides in the 2D example shown in Figure 6.8c 
are almost identical in such an experiment. The corresponding numeri-
cal analysis (Table  6.1) shows that more microcracks develop under these 
boundary conditions and that the fracture energy is correspondingly higher 
(in comparison to Case A).

It is quite clear that when the fracture process can be influenced so easily 
by changes in the boundary rotations, one can hardly hope to interpret the 
outcome of tensile fracture tests as real material properties. Yet, this is done 
by those favoring applications of the fictitious crack model. On the basis of 
the above it is rather obvious that predicting fracture behavior of structures 
by means of the fictitious crack model must be cumbersome. Indeed, a good 
example that showed the problems was the international round-robin analy-
sis of anchor pull-out; see Elfgren (1992). In Section 7.1 we show how well the 
lattice model performs for the anchor pull-out problem.

6.1.4.2  Notches

Notches are a not very pleasant consequence of the demand to perform a sta-
ble displacement-controlled fracture experiment (see Appendix 3). By using 
notches, the location of the fracture zone is more-or-less fixed. The terminol-
ogy “more-or-less” is used because the material structure may be reason for 
crack growth in different places in a specimen; see, for example, the extreme 
case of the large grain concentration in the analysis of Figures  6.2a–d. It 
would be more realistic to perform fracture experiments using unnotched 
samples, and in that case dog-bone-shaped specimens would be the obvi-
ous choice in uniaxial tension tests. In Figure  6.7 dog-bone-shaped speci-
mens used by Carpinteri and Ferro (1994) were shown. In their experiments 
it proved to be difficult to achieve stable results for 400-mm large specimens. 
The test method was substantially improved by Van Vliet (2000), who devel-
oped a method where the electronic system, that is, the regulation amplifier 
in the closed-loop test control system, would automatically switch to another 
LVDT as soon as it recorded larger deformations (see Appendix 3 on the 
stability of fracture experiments). This so-called max-control proved to be 
very effective, and large dog-bone-shaped specimens with a total length of 
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2,400 mm could be controlled in this way. This would then require a total of 
16 LVDTs, so the experiments were not really cheap.

The shape of the dog-bone is very important, and over the years it has been 
observed that the smallest tensile stress concentrations may lead to quite 
unsolicited responses. In Figure 6.9 the stress distributions from simple lin-
ear elastic finite element analyses are shown for three different dog-bone-
shaped specimens. The obvious advantage of the geometry to the left is that 
the central section has straight sides and thus a constant cross-sectional 
area. This is not the case in the other two geometries, both with curved bays, 
which of course result in a varying cross-sectional area over the length of 
the specimen. One of the reasons for favoring dog-bone-shaped specimens 
is that the area for gluing the specimens to the (steel or aluminum) loading 
platens of the test machine is increased. With that stresses are lower in the 
contact zone and chances for glue failure decrease substantially. In particu-
lar for very large test specimens ([m]-size) this is quite desirable.

The specimen geometries with curved bays are most suited, because of 
one small, but quite important disadvantage of the dog-bone geometry with 
straight sides. As can be seen from the results in Figure 6.9a, small tensile 
stress concentrations appear where the curved neck changes to the straight 
sides of the specimen. This would suggest that cracking may occur there 
first, and when experiments with this geometry are performed, indeed, over 
90% of the samples will fracture at the location of these small stress con-
centrations. The other dog-bone geometry, with curved bays (Figures 6.9b-c), 
does not show this disadvantage: the specimen will fracture there where the 
material strength is most critical (lowest). When the curvature of the bays 

(a)   (b)   (c)

FIGURE 6.9
Stress distributions in dog-bone-shaped specimens subjected to vertical tension from linear-
elastic FEM. The geometry changes between straight bays (left, (a)) to curved bays with vary-
ing radius (b) and (c). The highest tensile stress concentrations appear in the neck region and 
are black. Note that the specimen with straight bays at the left (a) shows stress concentrations 
where the straight part connects to the curved ends. If tests are conducted using such speci-
mens, cracks mostly appear at this transition. (From Rieger. 2010. Micro-Fiber Cement: Pullout 
Tests, Uniaxial Tensile Tests and Material Scaling. With kind permission of the author.)
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is increased the variation in cross-sectional area in the central part of the 
specimen becomes less. The geometry at the right side has proven to be quite 
useful for testing fiber-reinforced concrete and phenomena such as multiple 
cracking can be observed. It is obvious that with a variation of the curva-
ture of the bays, the part of the specimen where cracks may develop can be 
regulated. Thus, the influence of the specimen shape cannot be ignored, and 
the outcome of a fracture experiment necessarily must be judged against the 
experimental boundary conditions.

In the limit case a notch is sawn (or cast) into a concrete sample, and the 
location of a crack is with that more or less fixed, unless the material shows 
large-scale heterogeneity. Most common is to produce prismatic specimens 
with two notches at the same height. Basically, one notch would suffice, 
because the heterogeneity of cement or concrete tested usually leads to crack 
propagation from one of the notches anyway. The idea that a symmetric load-
ing situation is created by sawing two identical notches at the same height 
is an illusion because of the materials’ heterogeneity. The lattice model has 
been used in the past to judge the error that is allowed in the alignment of 
the notches (Shi et al. 2000).

In Figure 6.10 results of four different analyses with the same grain struc-
ture, but with varying notch offsets are shown. The notch offset is defined 
as the vertical distance between the center lines of the left and right notches. 
The loading is tension in the vertical direction. The specimen width is 60 
mm; with two notches each 10-mm deep a central area of 40 mm remains. 
The results can be summarized as follows:

 1. With 0-mm offset the crack forms in the plane between the left and 
right notch.

 2. At 5-mm and 10-mm offset, the crack initiates from the left notch 
and does not connect to the right notch.

 3. At 15-mm offset many microcracks develop between the two 
notches, as can be seen from the three load-steps in Figure 6.11, but 
eventually two larger cracks are found. The particle structure in the 
concrete has some influence; see Figure 6.12.

(a) 0 mm (b) 5 mm (c) 10 mm (d) 15 mm

FIGURE 6.10
Effect of notch offset on the fracture patterns in uniaxial tension simulations with the lattice 
model. Note that in these analyses the bond strength was set to 1.7 MPa.
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Experiments by Shi and Van Mier (2000) show similar behavior. There is a 
tendency to develop two cracks when the notch offset is large, whereas for a 
notch offset smaller than 10 mm a single crack zone is always observed. The 
experiments were carried out on a mortar with 2-mm max aggregate size, and 
a concrete with 8-mm max aggregate. The experimental results were quite 
comparable. The conclusion is that a relatively large error can be made in saw-
ing the notches in concrete specimens. For creating an unwanted/uncontrolled 
offset of 15 mm one has to work rather sloppily. From these results it could be 
concluded that the greater heterogeneity would allow for less accurate speci-
men manufacturing. However, experience shows that in general this is not 
quite true and it will pay to work with the highest possible accuracy.

6.2	 Indirect	Tensile	Tests

For practical purposes one often reverts to indirect determination of tensile 
properties of concrete. The main reasons cited are that gluing a specimen 

100 load steps 300 load steps 600 load steps

FIGURE 6.11
Crack growth in a specimen with 15-mm notch offset; particle structure #2 (Figure 6.12). At 
stage 300 numerous microcracks have developed in a wide zone between the notches. At 600 
steps the main crack has propagated from the left notch and a secondary crack appears to grow 
diagonally upwards from the right notch. The same behavior was found in tests by Shi and 
Van Mier (2000).

Particle structure #1 Particle structure #2 Particle structure #3

FIGURE 6.12
Three analyses with different particle structure; notch offset is 15 mm. In these analyses 
the bond strength was set at 1.25 MPa. (After Shi and Van Mier. 2000. In Proceedings of Meso-
Mechanics 2000.)
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in a tensile loading frame is tedious; aligning the specimen is difficult, and 
frequently the test will fail in the glue connection and much time and money 
are lost without obtaining useful results. In some cases a proper tensile load-
ing frame is also lacking and one is forced to determine the tensile proper-
ties in another way. Two tests spring to mind, namely the Brazilian splitting 
test and the simple (3-point or 4-point) bending test. In all cases the loading 
on the specimen is far from uniform, but through careful analysis it is pos-
sible to derive values close to the tensile strength obtained in uniaxial ten-
sion tests. What the “true” value is will likely always be unknown, but for 
structural engineers it is normally sufficient to rely on approximate values. 
In this section a more detailed analysis is made of a splitting experiment on 
cylindrical discs and a 3-point bending beam.

6.2.1 Brazilian Splitting Test

When only a simple compression machine is available the tensile strength 
of (quasi-) brittle materials can be estimated using the so-called Brazilian 
splitting test. Nilsson (1961) mentions that the test was originally proposed 
in 1943 by the Japanese Akazawa, and later by the Brazilian Carneiro in 1949. 
A cylindrical specimen is loaded to failure via the sides between load-dis-
tributing strips. Model codes exactly prescribe what the size of the load-dis-
tributing strips should be, as well as the material (often triplex). The state of 
stress in a cylinder loaded between two opposite line loads can be calculated 
from the theory of elasticity; see, for example, Timoshenko and Goodier 
(1970). Figure 6.13 shows the stress distribution between the line loads from 
the theory of elasticity for three different widths of the load-distributing 
strips. The plotted stresses act perpendicular to the line connecting the two 
line loads P. In the center part of the cylinder horizontal tension (σh) prevails; 
just below the loading strips a confined compressive state of stress develops, 
quite similar to the stress-distribution under the loading platen below rigid 
steel loading platens in a cube compression test; see Chapter 8. The width 
of the loading strips has some limited effect on the stress distribution. Note 
that when cubes are used instead of cylinders and the loading strip width 
increases, the failure mode gradually moves toward the compressive failure 
modes discussed in Chapter 8. Here we concentrate on the loading on cylin-
drical specimens over a narrow loading strip. The horizontal tensile stresses 
between the loading strips are almost evenly distributed and can be approxi-
mated through

 σ =
π

≈P
Dd

P
Dd

2 0.64h
 (6.1)

where D is the diameter of the cylinder, d is the depth, and P is the line load. 
In Figure 6.13 the vertical stress σv is also plotted. This is a compressive stress, 
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and the resulting state of stress in the crack plane is biaxial tension com-
pression, which becomes important in later stages of the fracture process. 
With the development of the fictitious crack model (see Section 2.4) some 
researchers were tempted to use the Brazilian splitting test for determin-
ing the fracture energy of concrete and rock, as well as for concrete–rock or 
old-concrete/new-concrete interfaces (Hassanzadeh 1995). The latter appli-
cations may likely lead to useful approximations of the interfacial fracture 
energy, yet, the application on solid concrete or rock may be debatable when 
the experiment is run in displacement-control because more than one crack 
surface may develop, which must be accounted for somehow.

Note that displacement control is essential because the complete stress-crack-
opening diagram is required for the determination of the fracture energy as 
defined by Hillerborg et al. (1976) (see also Section 2.4). Detailed analyses of 
Rocco et al. (1999a,b,c) and Olesen, Ostergaard, and Stang (2006) indicate that 
when the diameter of the cylinder increases, or the width of the loading strips 
decreases, a better estimate of the tensile strength is obtained (see Figure 6.14). 
Also it was concluded that cylinders perform better than cubes for estimat-
ing tensile strength; compare Figures 6.14a and 6.14b. These conclusions are 
true for intermediate concrete qualities. If the material has a deviating ratio 
between tensile and compressive strength, that is, deviating from the common 
value of roughly ft ≈ 0.10 |fc|, different behavior may emerge. When tensile and 
compressive strength of the material are more or less equal, crushing of the 
material below the loading strips may prevail. Moreover, for plastic materi-
als, for example, when fibers are added to the cement-based matrix, the split-
cylinder test is not suited for determining the tensile strength, not even in an 
approximate manner (see, for example, Olesen et al. 2006).

D

b
+ –

P

σh

σv σh σv (b = 0 till 0.05 D)

σv (b = 0.10 D)

P
Load-line

FIGURE 6.13
Stresses between the two line loads in a Brazilian splitting test for two different widths b of 
the load-bearing strips. (From Nillson. 1961. RILEM Bull., 2(11): 63–67. With permission from 
RILEM.)
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Several years ago we attempted to get some idea of the influence of the stiff-
ness of the loading strips (restraint) on the failure of a concrete disk subjected 
to vertical splitting loads (Lilliu and Van Mier 1999). Another reason to run 
displacement-controlled experiments and to perform lattice analyses was to 
see whether some way could be found to adapt the fracture law in the lat-
tice model in such a way that compressive failure could be handled in just 
the same simple and straightforward manner used in tension. Changing the 
restraint between the loading strips and the concrete disks leads to an impor-
tant change of the failure of the disks. Some results are shown in Figure 6.15. 
These experiments were conducted on concrete disks (dmax = 8 mm) of two dif-
ferent sizes (D = 75 and 150 mm) loaded between plywood strips (b = D/6) or 
simply attached to steel platens of the same width by means of a two-compo-
nent epoxy adhesive. The thickness of the disks was small: d = 10 mm for both 
specimen sizes. The tests were performed in displacement-control using the 
average horizontal displacement (perpendicular to the loading direction) mea-
sured at the front and back sides of the disk as a feedback signal. Figure 6.15 
clearly shows that stable load-displacement diagrams are obtained. The crack 
opening refers to the crack width of the central section of the splitting crack.

The failure process was in all cases more or less similar with a small but 
significant difference between plywood platens and glued steel platens. In 
all experiments a central splitting crack developed, which gradually opened 
beyond peak. During opening of the main crack, the regions of the specimen 
close to the crack were loaded in vertical compression as mentioned before. 
The lattice analysis of Figure 6.16a clearly shows that the magnitude of these 
compressive stresses is about eight times larger than the tensile stresses that 
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develop along the outside of the specimen. The tensile stresses along the out-
side lead to the growth of radial cracks, which will go undetected when the 
test is done in load control because of the sudden collapse of the specimen 
in that case. This underlines the importance of performing stable tests when 
dealing with fracture. Dynamic failure, as would occur under load control, 
may result in several secondary cracks that might be missed in the analysis 
of the results.
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FIGURE 6.15
Load-crack opening diagrams for Brazilian splitting tests on concrete disks of two different 
sizes (a) loaded between plywood strips or (b) between glued steel loading platens having 
the same width as the plywood insert. (Results after Lilliu and Van Mier. 1999. In Construction 
Materials: Theory and Application.)
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The differences between the failures of the two different specimen sizes 
are small, if nonexistent. The difference between plywood and glued steel 
platens is that in the latter case small wedge-shaped elements develop 
near the loading platen, whereas when plywood inserts are used the split-
ting crack extends toward the center of the loading strips. Obviously, the 
restraint friction leads to the wedges, quite similar to the mechanisms 
observed under uniaxial compression (see Chapter 8). In Figure 6.16b some 
results from microscopic observations of the specimen surface during load-
ing are shown. Using a long-distance microscope part of the specimen 
surface near the lower loading platen was scanned, and the images where 
cracks appeared are gathered in the diagrams. In the example shown in 
Figure 6.16b the loading platens were glued to the specimen. Clearly vis-
ible is that the inclined cracks (numbered with “2”) develop in the second 
rise in the softening regime. In the larger samples two more-or-less paral-
lel cracks developed just at the edge of the loading platen, but ultimately 
a wedge-shaped part developed there as well. In the larger specimens the 
second rise in the load-crack opening diagrams was more pronounced (see 
also Figure 6.15).

Finally, in Figure 6.17 the failure sequence from a simple lattice analysis is 
shown. The failure mechanism as observed in the experiments with glued 
platens is simulated, thus no relative movements between the loading plat-
ens and the concrete disks are allowed. At 450 steps the main splitting crack 
is more or less complete, and gradually widens until the bottom of the post-
peak valley is reached (point (c)). The splitting crack stops a short distance 
away from the loading platen. Next a widening of the fracture zone near 
the loading platen occurs, slightly resembling the wedges observed in the 
experiments with glued platen, but not good enough as was also observed in 
simulations of compressive fracture (Chapter 8). The failure criterion used is 
Equation (3.36), with α = 0.005. Thus, the flexural component in the fracture 
law has been switched off almost completely. When another failure crite-
rion is selected, for example, one based on the Mohr–Coulomb criterion, the 
wedge can develop, but as soon as it is fully detached from the remainder of 
the structure, the computation will stop for obvious reasons. A friction crite-
rion in the crack is what seems to be lacking, and one of the main questions 
is whether a simple mechanism, as proposed here for tensile failure of the 
lattice beams (simple removal of a beam when a stress criterion is exceeded), 
can be found to model frictional sliding, or whether perhaps a completely 
different type of model would be needed.

It is interesting to note that the splitting mechanism evolves quite natu-
rally from the lattice analysis, in particular when plywood inserts are used. 
This gives further confidence that, at least for tensile fracture, the lattice 
model is capable of capturing true failure mechanisms, and as such the 
model can be used to “predict” certain situations, such as those where no 
restraint applies.
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6.2.2 Bending

Flexural tests are also performed to avoid (presumed) difficulties in a uniax-
ial tensile test. Sometimes a flexural test is chosen because only a compressive 
machine is at hand, and an estimate for the tensile strength must be available. 
The splitting tensile test on relatively large specimens with narrow loading 
strips is then probably the best choice, but somehow people keep reverting 
to the so-called bending tensile strength of concrete. The bending strength 
is simply determined from the maximum bending moment divided by the 
section modulus. For a simple 3-point bending test this results in

 σ = Pl
bh

6
4fl

2

2
 (6.2)

where P is the maximum load the specimen can sustain, l is the span between 
the supports, and A = b × h is the sectional area. It is quite obvious that 
this can only be an indication of the tensile strength. The same problems 
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Failure process in a Brazilian splitting test from a lattice simulation: after the peak in the load-
crack opening diagram (a) a vertical splitting crack develops (stage b, 450 elements removed). 
Subsequently a secondary mechanism develops comprising a number of radial splitting cracks 
(stage c, 700 elements removed and stage d, 890 elements removed). The crack patterns shown 
in Figures (b)–(d) correspond to these three stages. (From Lilliu. 2007. 3D Analysis of Fracture 
Processes in Concrete. With permission.)
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with boundaries occur as in the four-point shear beam discussed in detail in 
Section 7.1.2. If frictional restraint becomes too large, this may probably still 
be all right at peak load, but when it progresses one step further to deter-
mine the fracture energy following the fictitious crack model (Hillerborg 
1985; RILEM TC 50-FMC 1985) the supports and load-point need to be free 
of restraint. The pendulum bar system will work (Figure 7.7), although this 
will require the construction of a special loading frame. Specially designed 
frictionless roller-systems might also be used. In a recommendation for the 
determination of the fracture energy from 3-point bend tests Planas et al. 
(2007) proposed the use of normal steel roller supports, but the slightest plas-
tic deformation at the point contacts of such roller bearings may significantly 
affect the frictional restraint and with that the postpeak regime of the load-
deformation diagram.

When the 3-point bending test is used for determination of the flexural 
tensile strength only, the support conditions are less critical. Because the test 
is only indicative (notably the stress and strain gradients during the entire 
loading history are not quite convenient), deviations on the order of 5–10% 
can be considered negligible. If the idea is to extract more advanced informa-
tion, such as the fracture energy, the test is quite unreliable. The prisms used 
in standard 3-point bending tests are quite stubby: dimensions varying from 
100 × 100 × 600 mm3 to 150 × 150 × 700 mm3 (b × h × l) are found in model 
codes. Obviously, such beams do not meet requirements from Bernoulli 
beam theory. In spite of all these drawbacks the test made it to become a 
standard, but it is clear that, as mentioned before, the results are indicative 
only and can only be used in comparison to results obtained with the same 
test method. The main reason for using a 3-point beam test is for sheer con-
venience; the test can be classified as quick and dirty, but as a comparative 
means can suit some goals.

It is interesting to use the same tools as before to examine in a bit more 
detail what would happen in a 3-point bending test if the aggregates were 
modeled realistically. Realistic aggregate shapes and aggregate size distribu-
tions from CT scans at University Hospital in Zurich were included in the 
lattice model (see Figure 4.7, where two different aggregate structures from 
CT scans are shown). For the exact procedure the reader is referred to Man 
(2009) and Man and Van Mier (2008b). Figure 6.18 shows the particle struc-
ture in a two-dimensional section of a scanned prism and the structure after 
lattice overlay, where a distinction is made between three phases: matrix, 
aggregate, and interfacial transition zone as explained in Section 4.5.

The lattice is completely three-dimensional; the lattice beam length is 0.25 
mm. The resulting material structure is quite realistic, but obviously the 
price to pay is the extended computer time (see also Appendix 1). From a 
scanned prism, specimens of different size were cut and numerical simula-
tions were carried out. In Figure 6.19 an example is shown of a simulation of 
a so-called C-type specimen (containing 1,155,549 elements; prism dimen-
sions 9.3 × 9.5 × 24.88 mm3 and crushed aggregate size between 1.5 and 3 
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(a)

(b)

FIGURE 6.18
(a) 2D section from a three-dimensional CT scan of a concrete prism containing basalt aggre-
gates (light gray) in a porous cement matrix (dark gray), and (b) the same structure after 
lattice overlay. (From Man and Van Mier. 2008b. Int. J. Fract., 154(1–2): 61–72. With permission 
from Springer.)
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FIGURE 6.19
Example of fracture process in a numerical concrete prism containing crushed aggregates (1.5–
3-mm aggregate size). The three fracture stages are shown at the indicated locations along the 
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mm). The analysis shows that (micro-) cracking is not limited to the final 
fracture plane, but appears distributed along the lower side of the beam, 
in particular in the ITZ as this was defined as the weakest part of the con-
crete. At peak (stage (a) in Figure 6.19) a localized (macro-) crack starts to 
grow in the central part of the specimen, and thereafter gradually grows 
toward the central load point (stages (b) and (c)). In the circled area the main 
crack hits upon a larger aggregate, but because of the irregular shape (and 
thus the high stress concentrations) the crack grows straight through the 
aggregate particle, in spite of its much higher strength. When rounded or 
oval-shaped aggregates are modeled, aggregate fracture seldom occurs. In 
concrete containing crushed aggregates with quite irregular forms aggre-
gate fracture is more common, also in real physical experiments. The main 
issue here is that the amount of cracks, that is, the total crack area, is much 
larger than the area of the main localized crack. Thus, if it is assumed that 
the fracture energy of the main crack can be calculated from the area under 
the load-displacement diagram (RILEM TC 50-FMC 1985) it is quite impor-
tant to check whether in the postpeak regime the main (macro-) crack is the 
only propagating crack. Using a notch may have a positive effect, and this 
is actually proposed in many of the suggested standard tests for measuring 
the fracture energy of concrete. Yet, real structures have no notch, and will 
always show multiple cracking.

One final remark should be made at this point. In the scanning and lattice 
overlay technique sometimes it is found that aggregates are so close together 
that real separation is difficult to detect; compare, for instance, Figures 6.19a 
and 6.19b. Consequently some of the aggregates appear as rather irregular 
lumps which may then actually represent a cluster of two or more separate 
particles. If the resolution of the scanners improves it becomes easier to dis-
tinguish between separate aggregates.
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7
Combined Tensile and Shear 
Fracture of Concrete

So far attention has been given to mode I, or tensile, fracture of concrete. 
This is undoubtedly the most important fracture mode, but shear can have 
influence as well. Consider, for example, the case of bending, where along 
the tensile part of the beam shear forces must be active too. For a material 
such as concrete, and many similar materials such as rock, one could easily 
argue that tensile fracture will always prevail. The tensile strength of normal 
strength concrete is no more than 10% of its compressive strength. Because 
shear can be interpreted as equal-biaxial tension-compression (i.e., σ1 = –σ2), 
the enormous imbalance between tensile and compressive fracture strength 
will inevitably lead to premature tensile fracture. Shear, or mode II or III frac-
ture, would only be possible if through some means the imbalance between 
the tensile and compressive strength is restored, as argued in Van Mier (1997, 
2004c). In this chapter we explore fracture of concrete subjected to combined 
tension and shear. We distinguish two shear modes (see Figure 2.3), namely 
mode II or in-plane shear and mode III or out-of-plane shear, therefore we 
discuss both modes. In both sections, Section 7.1 devoted to in-plane shear 
and tension, which, in fracture mechanics terminology would be referred to 
as mixed mode I and II fracture, and in Section 7.2 debating torsion, or mode 
III fracture, the loading combination refers to the externally applied stress. 
The pure fracture mechanics modes, as well as the mixed-modes refer to the 
crack-tip loading, which may differ substantially from the external loading 
on the specimen or structure. This normally may lead to confusion, so, once 
more: the loading cases mentioned always refer to the external loading on 
the considered structure.

7.1	 Tension	and	In-Plane	Shear

In this section we present three different experiments: one for measuring 
the mixed-mode I and II fracture properties of concrete, one for elucidating 
whether mode II fracture is possible, and a third more practical example 
where combined tension and shear fracture might prevail.
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The first experiment concerns plates subjected to biaxial tension and 
shear. An interesting device to study fracture of concrete under these cir-
cumstances was developed by Reinhardt, Cornelissen, and Hordijk (1989) at 
Delft University of Technology. In the developed apparatus it was possible 
to subject platelike specimens to any possible combination of biaxial ten-
sion/shear. Using this device various experiments were carried out by my 
doctoral student Nooru-Mohamed (1992). It was decided to adopt a slightly 
modified specimen shape as was originally foreseen by Reinhardt and 
coworkers. The specimen was simplified to a double-edge notched plate as 
shown in Figure 7.1.

The second example is the well-known 4-point shear beam, which leads to 
more or less the same loading situation as shown in Figure 7.1. This example 
is of importance because several researchers have claimed that by using a 
double-edge notched version of the 4-point shear beam pure mode II frac-
ture can be achieved. Others have argued against that, and we show here 
that it is easy to misinterpret the results. Basically the 4-point shear beam 
fails in tension, and pure mode II fracture can only be achieved under rather 
extreme circumstances that are normally not encountered in reinforced con-
crete structures.

The third example is the pull-out of a steel anchor from a concrete sub-
strate. In this case one might suspect that a combination of tension and shear 
may lead to failure. Using both experiments and numerical simulations the 
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FIGURE 7.1
Double-edge notched plate (200 × 200 × 50 mm) subjected to axial tension (P) and lateral shear 
(Ps). The loading platens for applying axial tension can hardly rotate, which leads to the devel-
opment of bending moments as soon as asymmetric crack propagation occurs, similar to the 
phenomenon discussed in Section 6.2.1. The shear displacement δs is the relative displacement 
between the two separate loading frames A and B. (After Van Mier and Nooru-Mohamed. 1989. 
In Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock.)
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case is explained. The pull-out problem formed the basis of an extensive 
round-robin analysis to show the validity of numerical simulation tools for 
concrete fracture, which makes this example of more general interest. So, let 
us first explore the structure of Figure 7.1 and see what the effect can be of 
changing the external loading on the plate.

7.1.1 Biaxial Tension Shear Experiments

Two examples from the various experimental series are included here: (1) 
shear after tensile loading up till a prescribed crack width, and (2) propor-
tional tension/shear displacement path (viz. constant δt/δs). Figure 7.2 con-
tains results from the first series that shows the development of secondary 
tensile cracks inclined to the shear direction (i.e., the horizontal direction 
in Figure 7.1) when the crack width after tensile load is small enough (viz. 
smaller than 225–250 μm). The results indicate that sliding occurs at an 
approximately constant shear-load of 2–2.5 kN when δt > 225–250 μm, and 
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Shear resistance of precracked mortar (dmax = 2mm). The failure mode changes from second-
ary inclined cracking to shear sliding at a normal crack width of approximately 225–250 μm. 
(Result after Van Mier and Nooru-Mohamed. 1989. In Fracture Toughness and Fracture Energy: 
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that a higher fracture load Ps > 5 kN is required to create the diagonal cracks 
for δt < 225–250 μm. The material tested here was a 2-mm cement mortar. It 
is very likely that for coarser grained materials the transition crack width 
and shear-load will have different values. The roughness of the crack will 
certainly affect the crack width at which substantial shear transfer is still 
possible. The second example concerns constant displacement-ratio paths 
δt/δs. In addition to the tests in Delft, similar experiments were performed 
by Hassanzadeh (1992) at Lund University in Sweden, employing a device 
with manual gears for applying shear and using circumferentially notched 
specimens of rather small size (Hassanzadeh used 70-mm cubes with a cir-
cumferential 15-mm deep notch resulting in a (too) small effective specimen 
cross-section of 40 × 40 mm; the effective cross-section in the Delft experi-
ments was 50 × 200 mm as shown in Figure  7.1). Direct comparison with 
Hassanzadeh’s results is not without problems because linear and parabolic 
displacement paths were investigated with slightly different displacement 
ratios from those tested by Nooru-Mohamed. Some results from displace-
ment paths δt = tan α ∙ δs with α = 45 degrees are shown in Figure 7.3.

For this δt/δs-ratio the axial stress changes from tensile to compressive as 
can be clearly seen in Figure 7.3a. This means that initial cracking develops 
due to the relatively large tensile component, which has to change to com-
pressive stress at relatively small crack openings (δt < 50 μm) in order to 
keep crack propagation during the remainder of the experiment stable. Note 
that at higher ratios of δt/δs tensile failure seems to prevail and the effect of 
shear is minimal; see Nooru-Mohamed (1992). The behavioral trends of the 
tests by Hassanzadeh were the same as shown in Figure 7.3. It is interest-
ing to look at the failure patterns. This was quite difficult in the tests from 
Lund because the circumferential notch did not allow for an unrestricted 
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view of the fracture zone. In this respect the geometry chosen in the Delft 
experiments appears to be more useful. Results of constant displacement-
ratio paths of specimens of three different sizes are included in Figure 7.4. 
The smallest size of 50 × 50 mm is quite close to the specimen size used 
by Hassanzadeh; the two others (100 × 100 and 200 × 200 mm) are large in 
comparison. It is interesting to note that a transition from diffuse cracking to 
a few localized cracks occurs when the specimen size increases. The conse-
quence of this transition in failure modes is that the size effect model devel-
oped by Bažant (1984; see Chapter 9) cannot be unrestrictedly applied under 
biaxial tension-shear loading. Namely, one of the basic assumptions in the 
size effect model is that the failure mode is the same for all considered sizes. 
Another interesting observation is that for one of the two largest specimens 
a diagonal splitting crack developed between the two inclined cracks that 
nucleated from the left and right notch. Such behavior is reminiscent of the 
fracture observed in 4-point shear beams when fixed boundary supports are 
used; see Section 7.1.2.
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Crack patterns for the constant displacement-ratio tests (δt/δs = 1.0) of Figure 7.3. (From Nooru-
Mohamed, Schlangen, and Van Mier. 1993. Adv. Cem. Based Mater., 1(1): 22–37. With permission 
from Elsevier.)
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The biaxial tension-shear experiments can be simulated by means of 
a lattice and a simple tensile strength criterion. The role of friction in all 
the experiments appears to be rather minimal, and the main role of the 
(horizontal) shear load is to drive the cracks away from the plane between 
the notches; hence the inclinations of the cracks as shown, for example, in 
Figure 7.4. For the smallest specimen sizes shown in Figure 7.4 the role of 
the material structure appears to be more significant than in the larger sizes. 
Various results of simulations have been published in the past, for example, 
in Nooru-Mohamed, Schlangen, and Van Mier (1993).

In Figure 7.5 two different results are shown, namely the shape of the cracks 
that develop when the shear-load Ps = constant = –10 kN throughout the test 
while the axial deformation increases, and when Ps = Ps,max = constant (i.e., 
the maximum shear-load the specimen could sustain). Preliminary experi-
ments showed that a small crack would sometimes develop close to the ver-
tical loading platens that was interpreted as “glue-failure,” as can be seen 
in Figure 7.5b (top-right corner). This crack would disappear when at loca-
tions A and B additional steel platens of sufficient thickness were attached 
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FIGURE 7.5
Simulated crack patterns in biaxial tension-shear with Ps = constant = –10 kN (a,d) and Ps = 
Ps,max = constant (b,c,e). The axial deformation is increased up till complete failure after the 
shear load has reached the level of –10 kN (a,d) or its maximum value (b,c,e). (a,b) A single row 
of steel elements was modeled at locations A and B as indicated; (c) a double row of steel ele-
ments was modeled; (d,e) the crack pattern observed in experiments is shown and compares 
well to the simulated patterns. (From Nooru-Mohamed, Schlangen, and Van Mier. 1993. Adv. 
Cem. Based Mater., 1(1): 22–37. With permission from Elsevier.)
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to the specimens’ sides (compare the top-right corner of the simulations in 
Figures 7.5b and 7.5c, which are both at maximum shear-load. The differ-
ence is in the additional row of steel elements attached at locations A and B 
in Figure 7.5c). Two large curved cracks develop in the specimens, one from 
each notch, which is similar to the experimentally observed crack patterns. 
The curvatures become larger when the shear-load increases from –10 kN 
to its maximum value (Figures 7.5d and 7.5e). The simulations also show an 
increase of curvature with increasing shear; compare Figures 7.5a and 7.5c. 
An important point is actually the curvature of the two main cracks, which 
may help to identify values of some of the parameters in the lattice simula-
tion. As can be seen, a random lattice was used in the simulations, which is 
quite essential to avoid alignment of the cracks along the mesh lines. This 
would occur when a lattice with regular geometry (triangular or square, for 
instance) was used; see Schlangen and Garboczi (1996). As an alternative a 
regular lattice with material structure overlay could be used. However, in 
that case the problem of mesh alignment would be overcome only partially.

The simulations of Figure 7.5 are carried out with a simple tensile strength 
criterion, and the commonly adopted complicated mixed-mode fracture 
laws are quite unnecessary. The same is true for the 4-point-shear beam test 
discussed in the next section. That loading situation was claimed to generate 
pure mode II cracks by Bažant and Pfeiffer (1986), but as shown, reality is 
somewhat different.

7.1.2 4-Point-Shear Beam Test

The loading situation in a 4-point-shear beam resembles the DEN biaxial 
tension/shear plates discussed in the previous section. Figure  7.6a shows 
the loading scheme in the biaxial tension/shear tests, and in Figure  7.6b 
the loading situation in a double-edge notched 4-point-shear beam is indi-
cated. The biaxial loading rig used by Nooru-Mohamed was quite stiff in 
order to suppress possible rotations of the loading platens. Although infi-
nite rotation stiffness is hard to achieve, the tests showed quite satisfactory 
stiffness (see Nooru-Mohamed 1992). As soon as asymmetric crack growth 
occurred (which is the rule rather than exception in coarse-grained hetero-
geneous materials like concrete) a bending moment developed as sketched 
in Figure 7.6a. This bending moment restrains the crack from growing; as 
we have seen in uniaxial tension this leads to the aforementioned bump in 
the softening diagram (see Figure 6.8, Case B). The moment distribution and 
shear-load distribution in the 4-point-shear beam of Figure 7.6b lead to simi-
lar loading of the midsection of the beam. Note that the situation is rotated 
90 degrees in comparison to Figure 7.6a.

Bažant and Pfeiffer (1986) claimed that between the two notches of the 
4-point shear beam a vertical “shear” crack develops, which is built up from 
small inclined tensile cracks. Although their test setup was quite question-
able, and no real proof was provided that stable crack propagation was 
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assured, they strongly defended their conclusion. In fracture experiments it 
is quite essential that stability of crack propagation is assured; if crack propa-
gation is not stable dynamic effects may become important and disturb the 
crack path that would otherwise be found under quasi-static conditions. 
Thus, quite inevitably Bažant and Pfeiffer’s claim was questioned by many. 
The first indication that there might be something wrong came from numeri-
cal simulations carried out by Ingraffea and Panthaki (1986). They showed 
that after the formation of two short curved cracks from the two notches, a 
diagonal splitting crack would develop in between these two curved cracks. 
Therefore, the conclusion should be that the behavior observed by Bažant 
and Pfeiffer had nothing to do with shear, but again, was merely governed 
by local tensile crack growth. Because the outcome of simulations can never 
be conclusive, new experiments were carried out by Schlangen and Van Mier 
(1992b, 1995). The identical specimen geometry was used as proposed by 
Bažant and Pfeiffer.

One improvement was that the test was now controlled over the average 
value of crack mouth opening displacement (CMOD) and the crack mouth 
sliding displacement (CMSD). The CMOD and CMSD were measured at the 
tip of the lower and top notch, both at the front and back sides of the speci-
men. The average value of the CMOD and CMSD resulted in a continuously 
increasing displacement throughout an experiment, and thus stability was 
guaranteed when the test was done in closed-loop displacement control. A 
second improvement was that in the test setup used by Van Mier, Schlangen, 
and Nooru-Mohamed (1992) the supports could either rotate freely, or could 
be fixed. A sketch of the test setup is shown in Figure 7.7. Through the addi-
tion of diagonal bars (shown as dashed lines in Figure 7.7a) the free rotation 
of the pendulum bars is prevented and the supports act as fixed supports, 
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Similarity in loading between (a) biaxial tension/shear tests and (b) 4-point-shear beams. 
(After Van Mier. 1997. Fracture Processes of Concrete: Assessment of Material Parameters for 
Fracture Models.)
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which resembles the experimental boundary condition used by Bažant and 
Pfeiffer in their tests. The difference between loading a DEN beam between 
freely rotating supports and between fixed supports can be seen in Figure 7.8. 
Two sizes of beams were tested; the larger ones had twice the dimensions of 
the smaller ones, except for the thickness t. For the large beams the differ-
ence in behavior is not very large when either of the support conditions is 
used. The small beams show a longer plastic plateau for the fixed support 
condition, whereas the peak load is not affected. Also included in Figure 7.8 
are results from 4-point shear tests on Felser sandstone (Schlangen and Van 
Mier 1995), but now only for d = 150 mm. The initial stiffness of the sand-
stone is a factor 1/3 smaller than the concrete, as can be clearly seen from 
the load-deformation diagrams. The sandstone diagrams follow the same 
trend as observed in the concrete tests: approximately the same peak-load is 
measured, but postpeak ductility increases when rotations at the supports 
are fixed. Note that the diagrams show a continuously increasing CMOD + 
CMSD, which is a prerequisite for stable crack growth; that is, there is abso-
lutely no doubt about the stability of these experiments.

The crack patterns initially show the development of two curved cracks, as 
predicted by Ingraffea and Panthaki (1986). When fixed supports are used an 
inclined splitting crack develops between the two curved cracks in the case 
of 8-mm concrete; when freely rotating supports are used one of the curved 
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FIGURE 7.7
(a) Loading frame for 4-point shear tests on SEN of DEN beams. The beams are loaded verti-
cally, in tension. Depending on the specimen dimensions a certain load distribution develops. 
For the DEN beam geometry used by Bažant and Pfeiffer (1986) the load at the outermost sup-
ports is P/15 when a load P is applied at the supports that are close to the notch. In the test 
set-up of (a) the pendulum bars that allow for rotation of the supports can be fixed by adding 
the diagonal bars; (b) measurement of CMOD and CMSD. (From Van Mier et al. 1992.)
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cracks keeps growing until it reaches the opposite side of the beam (see 
Figure 7.9a). The large beams did not show the growth of the inclined split-
ting crack as clearly as the 150-mm beams. Also the sandstone behaved a bit 
differently: the inclined splitting crack did not develop when fixed supports 
were used. Instead the sandstone seemed to fail under the support platens, 
which may be related to the lower compressive strength of the sandstone 
in comparison to the concrete (33.4 MPa and 46.6 MPa for Felser sandstone 
and 8-mm concrete, respectively). The lattice model is capable of simulat-
ing the two crack patterns using a simple tensile fracture criterion, Equation 
(3.36). In Figure 7.10 the computed failure modes are shown, which compare 
very favorably to the experimental results (at least for concrete). It should be 
mentioned that the load-deformation response calculated using the lattice 
model is too brittle, as observed before in the tensile simulations (compare to 
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Figure 6.4). The general impression is that this is caused by a lack of detail in 
the simulations; clearly more research is needed at this point.

One final remark should be made. Swartz and Taha (1990) also performed 
quite a number of 4-point-shear tests. In some experiments axial compres-
sion was applied in the direction of the beam axis, which led to a closer spac-
ing between the two curved cracks. This observation is in agreement with 
the biaxial tension/shear experiments mentioned before (see Section 7.1.1), 
where in some cases during a constant displacement-ratio path compressive 
constraint would also develop perpendicular to the crack plane; see Nooru-
Mohamed (1992).

From the results shown to this point, shear failure seems to be nothing more 
than lower-scale tensile failure, which does not make the situation easier. Scale 
dependency may be quite important as, for example, is visible in the failure 
modes observed in the constant displacement-ratio experiments of Figure 7.4. 
Shear failure may develop under confined compression (shear bands; see Van 
Mier (1984), Van Geel (1998), and others), in fiber-reinforced concrete (Van 
Mier 2004c), and perhaps under dynamic loading (high strain-rate regime). 
The uncontrolled 4-point-shear beam tests of Bažant and Pfeiffer (1986) might 
actually be seen as an indication that under dynamic loading shear failure 
may occur. Contrary to the claim of the authors they are certainly not proof 
for the existence of mode-II failure under quasi-static conditions.

7.1.3 Anchor Pull-Out

The pull-out of a steel anchor from a concrete substrate is a rather practice-
oriented example. One would suspect that shear plays an important role 
under these conditions. To demonstrate the effectiveness of the Fictitious 
Crack Model by Hillerborg and co-workers in 1976 it was decided to organize 
a round-robin analysis of a two-dimensional pullout problem. A 2D prob-
lem was chosen because in those days not everyone had a fully operative 
3-dimensional nonlinear finite element code available; a 2D analysis would 
likely attract more contenders. We speak of the years around 1990. For those 
willing to perform a 3D analysis an axial-symmetric version of the same 
pull-out problem was suggested as well.

(a) (b)

FIGURE 7.10
Crack patterns from lattice model simulations: (a) freely rotating supports, and (b) fixed 
supports. (After Schlangen. 1993. Experimental and Numerical Analysis of Fracture Processes in 
Concrete. With permission of Dr. Erik Schlangen.)
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About 20 groups submitted a solution to the 2D pull-out problem; the 
variation of predicted failure loads varied by a factor of 200. No experiments 
were available at the time of most analyses, but were later conducted at ETH 
Zurich (Helbing, Alvaredo, and Wittmann 1991) and at TU Delft (Vervuurt, 
Schlangen, and Van Mier 1993a; Vervuurt, Van Mier, and Schlangen 1994). 
The test setup used in Delft is shown in Figure 7.11. The loading device is 
built in the same frame where the DEN 4-point-shear beams were tested. 
The support conditions in the anchor pull-out tests could also be varied by 
adjusting diagonal bars between the pendulum bar supports. In Figure 7.12 
the result from a number of lattice analyses is compared to experimental 
results. In the experiments the stiffness of the horizontal confinement was 
either k = 0 or k = 500 MPa. The support span was a = 2d = 300 mm, where 
d = 150 mm is the embedded depth of the anchor. When confinement is 
applied the softening part of the load-displacement curves rises in compari-
son to the unconfined situation. Moreover, the crack pattern changes: when 
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FIGURE 7.11
Experimental setup for the two-dimensional anchor pull-out problem. A T-shaped steel 
anchor is pulled-out from a concrete slab with the same thickness (100 mm). The support-loads 
are carried via pendulum bars that can either rotate or be fixed against rotations. In addition 
horizontal confinement can be applied via three horizontal confinement bars attached to steel 
beams that are glued to the sides of the concrete plate as sketched. (After Vervuurt et al. 1993a. 
In Fracture and Damage of Concrete and Rock (FDCR-2).)



125Combined Tensile and Shear Fracture of Concrete

confinement is applied the crack is forced to grow in a horizontal plane, 
whereas without confinement the crack can “escape” in different directions 
(see Figure 7.12b,c). The influence of horizontal confinement is reflected in 
the same way in the outcome of simulations, as can be seen in Figures 7.12d. 
In this figure the load crack-opening diagram is plotted for support span 
a = 2d. Although the confinement effect is the same in the simulations, the 
comparison with the experimental curves (Figure 7.12a) shows that the lat-
tice analyses are too brittle. Some reasons for the brittleness of the lattice 
analyses were mentioned before in Sections 6.1.2 and 6.1.3, and relate to too-
limited detail in the material structure and the 2D representation of (basi-
cally) a 3D fracture problem (among others, in 2D aggregates are simulated 
as cylinders instead of spheres in full 3D). Note that the analyses were done 
using a random lattice, but here the same objection of a 2D analysis of a 
3D situation can be made because under the removal of a lattice beam the 
structure actually fractures over the entire concrete slab thickness, which 
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is not realistic. A simulated crack patterns for a = 2d is finally shown in 
Figure 7.12e. The comparison with the experimental pattern in Figure 7.12c 
is quite favorable.

The round-robin analysis (Elfgren 1992) showed that the application of 
advanced fracture models in combination with any type of numerical pro-
gram is not quite straightforward. A thorough understanding of fracture 
processes in concrete is essential, and estimating the various parameters in 
the models in combination with good engineering judgment is very impor-
tant in order to make useful predictions. Often the best check is still in per-
forming the physical experiment, even for the seemingly simple example of 
the two-dimensional anchor pull-out problem.

7.2	 Torsion	(Mode	III	Fracture)

Out-of-plane shear can best be studied in torsion experiments. The third frac-
ture mode can also be important for concrete, especially when a premature 
tensile fracture is suppressed through the application of confinement. This 
was mentioned in the introduction to this chapter, and the matter is further 
debated in Chapter 8 (compressive fracture). In the case of torsion, confine-
ment can easily be applied by simply preventing elongation along the lon-
gitudinal axis of the specimen subjected to torque. The axial constraint can 
be (a) free axial deformations, (b) active loading in the axial direction, or (c) 
suppressed axial deformation of the cylinder. The failure mode changes from 
a clearly mode-I-controlled process (tensile fracture) for free axial deforma-
tions (Case (a)) to a confined shear mode (Cases (b) and (c)). The latter may be 
helped by machining a circumferential notch in the test cylinder at the place 
where the shear fracture should develop (see Figure 7.13b). Mostly, however, 
the failure mode takes all kinds of twists and tilts, which actually refer to 
mixed-mode situations (Hull 1993). Torsion tests on plain concrete were car-
ried out, among others, by Xu and Reinhardt (1989), Yacoub-Tokatly, Barr, and 
Norris (1989), Bažant, Prat, and Tabbara (1990), and Van Mier and Lilliu (2002).

Mt

Mt

Mt

Mt
Potential fracture plane

(a) (b)

FIGURE 7.13
Fracture in concrete cylinders subjected to torsion: (a) spiral crack in a solid cylinder and 
(b) predefined crack plane in a notched cylinder. (After Van Mier. 1997. Fracture Processes of 
Concrete: Assessment of Material Parameters for Fracture Models.)
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Various examples of the three mentioned loading cases (a) through (c) are 
shown in Figures 7.14 and 7.15 for 2-mm cement mortar (results are almost 
identical for 8-mm concrete). When axial deformations are free (note: the end 
surfaces of the cylinder are always glued to a stiff steel platen and are forced 
to remain planar) and the axial force is constant zero, a spiral crack develops 
as shown in Figure 7.13a. The torque rotation diagram shows a smooth soft-
ening branch when this crack develops (Figure 7.14a). Eventually a secondary 
crack may grow, perpendicular to the main spiral as shown in Figure 7.14b 
for the mortar specimen (dmax = 2 mm). The secondary crack is caused by 
bending when the two parts of the specimen separated through the spiral 
crack touch again in an advanced stage of the fracture process; see Van Mier 
and Lilliu (2002).

When a small axial load is applied basically a similar failure mode is 
observed (Figure 7.15). The difference with zero axial loading is mainly in 
the tail of the torque-rotation diagram: the load remains constant, yet small, 
and does not reduce to zero (compare Figures 7.14a and 7.15a). The reason 
is that the axial load causes frictional restraint in the spiral crack and thus 
leads to a higher residual stress in the softening branch. In the third case, 
when the axial deformation is kept constant and equal to zero, an extended 
hardening behavior is observed (Figure  7.15b). The axial load (upper dia-
gram of Figure 7.15b) starts from zero at the beginning of the experiment but 
as restraint builds up a maximum axial stress of approximately –4 MPa is 
reached. This is almost the same as in the second loading case, although here 
because of the different boundary condition it is not constant. In the last case, 
zero axial displacement (Figure 7.15b), the failure mode is identical to failure 
of a specimen loaded under constant axial load (Figure 7.15a). There are two 
important differences between unconfined and confined tests, namely, first, 
the spiral crack is fully completed and makes a complete path around the 
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specimens’ perimeter when no confinement is applied. Second, the inclina-
tion of the spiral crack changes from 35–40 degrees for no confinement to a 
steeper >45 degrees for confined torsion. Under axial confinement, the spiral 
crack is not complete and a vertical splitting crack appears where the spiral 
is not complete. Basically this would hint at compressive failure of the last 
intact part of the cylinder after partial development of a spiral crack. Perhaps 
this should be expected to occur: after the cross-sectional area of the speci-
men has been reduced by the developing spiral crack, the last remaining 
intact part may turn out to be too small to carry the confining axial stress. 
In Figure  7.15c,d the various images for confined tests are gathered: both 
the front and back sides of 2-mm mortar and 8-mm concrete specimens are 
shown. They clearly show the above-mentioned mechanisms.

All results seem to indicate that local mode I fracture is mostly respon-
sible for the observed failure modes. When the axial confinement increases 
the residual stress level in the softening regime increases, but in order to 
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avoid softening altogether and have a fully plastic response the confinement 
would need to increase by a factor of 6–7 (and likely even more). According 
to the criterion mentioned in the first paragraph of this chapter, the expected 
behavior for antiplane (mode III) fracture would basically be the same as the 
conditions for pure mode II fracture to occur.

In Figure 7.16 the results are shown in a slightly different way. Now the spec-
imen has been impregnated after loading, and carefully sawn in thin slices 
perpendicular to the cylinder axis to reveal the interior cracks. For a confined 
test on 2-mm mortar cracking is visualized just after the maximum stress level 
in the first part of the softening curve. The fracture pattern is not yet fully 
developed, but clearly shows how the main crack(s) take a different orientation 
in the various sections, and thus how the spiral crack (visible along the speci-
mens’ perimeter from the outside) is built up. When images of all sections are 
placed sequentially in a simple movie the spiral shape is clearly visible.

As mentioned, without axial constraint (σax = 0), or with just minor axial 
stress, the fracture process seems to be dominated by local mode I crack-
ing. This is confirmed in analyses by Lilliu (2007) who performed a lat-
tice analysis of the unconfined situation, which actually is a nice example 
of an analysis with the three-dimensional version of the lattice model. In 
Figure 7.17 some results are shown. The parameters in the 3D random lat-
tice were: lavg = 1.24 mm, randomness A/s = 0.001, cell size s = 1 mm (see 
Figure 4.11b), EA/EM/EITZ = 70/25/25 and ft,A/ft,M = 2 and ft,ITZ/ft,M = 0.25 (i.e., 
the suggested parameters from Table 4.1). The 3D lattice contained a total of 
449,179 elements. A particle distribution following Equation (4.4) was used 
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with particle diameters between 2 and 8 mm. The effective particle density, 
after lattice overlay, was equal to Pk,latt = 0.22 (thus, a very sparse particle 
content was used). In Figure 7.17a the torque-rotation diagram is depicted; 
in Figure 7.17b are four stages of postpeak cracking. These stages are identi-
fied in the torque-rotation diagram. The formation of the spiral crack is very 
clear from this analysis. The crack starts from the perimeter of the specimen, 
where stresses are highest, and gradually grows toward the center of the 
cylinder. Lilliu (2007) also presented the results as planar cuts, like those 
shown from the experiment in Figure 7.16. The (qualitative) resemblance is 
extremely good. The shape of the torque-rotation diagram in the simulation 
resembles those from experiments with unconfined torque (Figure 7.14a), but 
the values of the torsion moment and the rotation are much smaller. The 
setting of the parameters in the 3D lattice, and likely also the chosen frac-
ture law are the cause for these deviations. Nevertheless, the lattice again is 
capable of capturing qualitatively the correct failure mode, which is actually 
by far the most important aspect here, namely understanding fracture under 
a variety of loading conditions.

All examples of lattice analyses shown to this point are qualitatively 
correct (tension, bending, splitting, biaxial tension/shear, anchor pullout, 
and torsion) and in good agreement with experimentally observed failure 
modes. Moreover there is a size effect, and there appears no need for a sepa-
rate size-effect law. The main difficulty now arises, namely modeling of frac-
ture involving frictional restraint in cracks. For that purpose, before turning 
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to fracture in compression, a last, but quite interesting result from the tor-
sion experiments is discussed. Failure of a notched specimen subjected to 
confined torsion showed differences compared to the unnotched specimens. 
This case was explored earlier by Bažant et al. (1990). In the present experi-
ments the focus was on understanding the failure mode, and not trying to 
“prove” that mode III fracture of concrete exists (which seems a waste of 
time anyway in view of the simple theoretical consideration presented in the 
introduction to this chapter).

In Figure 7.18a the torque-rotation diagrams are shown for confined tor-
sion (δax = 0 = constant) on notched specimens (L = 68 mm, D = 34 mm, 
8-mm deep notch at half height) made of 2-mm mortar. The global shapes of 
the diagrams are identical to those shown in Figure 7.15b, except that maxi-
mum torque is smaller, caused by the reduced cross-section at the notch. The 
torque-rotation diagram shows hardening behavior and the confining axial 
stress increases. All specimens failed in an asymmetric mode; that is, mostly 
only one half of the cylinder, for example, above the notch, showed clear 
signs of cracking, whereas the bottom part remained seemingly intact. The 
asymmetric failure mode must be related to the heterogeneity of the speci-
men, and perhaps to some asymmetry in the loading device, for example, 
caused by stiffness distribution in the loading frame. The part of the cylinder 
that failed gave the impression that compressive failure occurred. Two coni-
cal parts, which remained more or less intact, were found in the cylinder as 
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can be seen from Figure 7.18b. There were no differences when the maximum 
grain in the mixture was increased to 8-mm; see Van Mier and Lilliu (2002).

Using again vacuum impregnation of a fluorescent epoxy dye after the 
specimen was cracked, more detail about the failure mode was found. 
Figure 7.19 shows two sections from a cracked specimen, that is, loaded into 
the softening regime. The slices are located close to the notch (the notch 
appears at half height, viz. at z = 34 mm). The conical central part can clearly 
be identified; in addition a number of radial cracks can be recognized. These 
radial cracks are arranged in a spiral pattern. It seems that after the weak-
ening of one part of the specimen conditions are favorable for compressive 
fracture to occur. The compressive fracture mode resembles that when high-
friction loading platens are used, such as dry steel platens (see Figures 8.5a 
and 8.8 in Chapter 8). The observed “conical” failure mode in these notched 
specimens clearly involved quite some mode I cracking, but friction very 
likely plays an important role as well. In compressive fracture the role of 
friction can be systematically studied by simply changing the loading condi-
tions of the specimen, that is, by changing the frictional restraint caused by 
the loading platens. We turn our attention now to compressive fracture.

z = 36 mm z = 39 mm

FIGURE 7.19
Internal cracking in two slices from an impregnated notched cylinder after loading into the 
softening regime. The slices are close to the plane of the notch, which is at z = 34 mm. The coor-
dinate z is measured from the bottom of the cylinder as indicated in Figure 7.16a. (After Van 
Mier and Lilliu. 2002. In Structural Integrity and Fracture.)
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8
Compressive Fracture

In comparison to tensile failure, compressive fracture is at least one step up 
in the degree of complexity. Shear, and probably also buckling instabilities 
close to the surface of specimens/structures subjected to compression are 
two additional mechanisms that cannot be neglected. The lattice model used 
thus far has shown excellent capability of simulating the fracture process in 
concrete subjected to external tension or combined tension/shear, as shown 
in Chapters 6 and 7. Always, it seems the cracks tend to follow the direc-
tion of the major principal stresses. When cracks are confined to grow in a 
certain direction they will escape in another direction where the specimen/
structure allows for that. Shear fracture (pure mode II or mode II according 
to the classical fracture mechanics definition) may occur under some pecu-
liar conditions that are not regularly met in ordinary (reinforced) concrete 
structures. In Section 7.1.2 we alluded to possible circumstances under which 
shear failure might occur.

When shear fracture occurs (modes II and III) and confinement is large 
enough to prevent local tensile fracture, frictional restraint in cracks starts to 
become more important and may eventually have an effect on the fracture 
process. One might hope that by modeling the mechanical behavior at the 
meso-level the local mechanism can again be reduced to mode I fracture, 
and friction can be neglected. Unfortunately this appears not to be the case. 
In lattice type models it is difficult—if not impossible—to incorporate fric-
tion; particle models such as those developed by Cundall and Strack (1979), 
Iwashita and Oda (2000), Thornton and Antony (2000), and Luding (2004) 
might be a more useful alternative concept to include friction. This chapter 
has been subdivided into five parts. First a variety of possible mesomecha-
nisms underlying fracture in compression are discussed. These mechanisms 
have been proposed mainly on the basis of experimental observations, and 
to some extent from theoretical considerations. Next, the focus is on macro-
scopic fracture, in particular the observed influences from boundary condi-
tions (frictional restraint) and specimen geometry (slenderness, size), with 
a limitation on uniaxial compression. In the third section attention turns to 
softening as a crack propagation phenomenon and the effect of (external or 
active) confinement. Next, it is shown what can be achieved with a simple 
lattice approach. Some limitations have been observed, and extending the 
model by including some additional local failure mechanisms appears to 
be unavoidable. Inasmuch as for engineering applications these meso-level 
models are hardly applicable, there is a need for macroscopic approaches for 
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dealing with compressive fracture. In Section 8.5 we review some of the pro-
posed models. Unfortunately there remain some constraints in these macro-
models that might be resolved by returning to classical fracture mechanics, 
which are, however, delayed till Chapter 10. It will be important to consider 
a compression test as a small-scale structural test, which, as a matter of fact 
indicates that for fracture we cannot design an experiment free of boundary 
effects and geometry (size and shape) influences. So, let us now first consider 
fracture of concrete at the scale of the aggregate particles, the mesoscale.

8.1	 Mesomechanisms	in	Compressive	Fracture

In Figure 8.1 various mesomechanisms of fracture in concrete under com-
pression are summarized. Most simple is perhaps to represent concrete as a 
stack of equal-sized balls that are in contact, as shown in Figure 8.1a. Under 
compression the force lines are not vertical any more but take a certain incli-
nation following the contact points between the balls. As a consequence hor-
izontal splitting forces must develop to ensure equilibrium. When external 
confinement is applied (biaxial and triaxial compression), the internal split-
ting forces may be partly counteracted and microcracking along the weak 
ITZ may be delayed as depicted in Figure 8.1b. As a result the material can 
undergo larger deformations and sustain higher stresses (as shown in Section 
8.3). The particles in real concrete do not have equal size, and although the 
mechanism of Figure 8.1a also will develop in a stack of particles of differ-
ent size, alternatively concrete can also be envisioned as being built up from 
large aggregate particles embedded in a more or less homogeneous cement 
matrix, as discussed in Section 4.1, more specifically Figure 4.1b (meso-level).

The cement matrix, which is assumed to contain small sand particles, 
has a lower stiffness than the large solid aggregates (EM/EA ≈ 20/75 GPa). 
Because the lateral expansion of the cement matrix will eventually exceed 
that of the aggregate particle, restraint develops at the top and bottom of the 
particle. As a consequence two triaxially compressed matrix cones develop 
above and below the aggregate particle. After the formation of tensile inter-
face cracks along the side of the particle, shearlike cracks, in the form of 
“en-echelon” tensile cracks, will develop along the uncracked matrix cones 
as indicated in Figure 8.1c. This mechanism was first put forward by Vile 
(1968), and later supported through observations by Stroeven (1973). The typ-
ical mortar cones were actually found among the rubble left behind after a 
compression test on a concrete specimen was carried out. Once the idea has 
taken root, one becomes suddenly aware of the shape of the rest of the pieces. 
The mechanism proposed by Vile can only develop when the cones have a 
chance to develop, which implies that the stiffness of the grains should be 
larger than that of the surrounding cement matrix. If the aggregate stiffness 
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Fracture Mechanics of Concrete Structures: Proceedings FraMCoS-3.)
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is substantially smaller than the cement matrix (Figure 8.1d), or if the aggre-
gate is replaced by a large void (Figure 8.1e), splitting cracks will develop. 
The shear mechanism (i.e., similar to Figure 8.1c), at the level of the aggregate 
particles, will not occur.

The first case (Figure 8.1d) leads to intraparticle fracture as, for example, 
observed in lightweight concrete (see Figure A4.2b in Appendix 4 where an 
example is shown of particle fracture in lytag concrete; although this example 
relates to tensile fracture, particle fracture will also occur in compression). 
The mechanism is quite similar to the Brazilian splitting tests discussed in 
Section 6.2.1. The second case (Figure 8.1e) leads to splitting cracks in the 
matrix above and below the void. The latter can easily be seen from a simple 
elastic analysis of the stresses around a circular pore in a plate of unit thick-
ness, as can be found in Timoshenko and Goodier (1970); see also Van Mier 
(1997, pp. 272–274).

In a compressive stress field, a crack oriented parallel to the compressive 
loading direction will only grow when the external load is increased (con-
trary to cracks in a tensile stress field that tend to be unstable). This is the 
basis of many models that try to capture compressive fracture, for example, 
the model developed by Sammis and Ashby (1986). Note that as early as 1924 
Griffith pointed out that tensile stress concentrations around cracks may 
cause premature failure of solids. Using a simple fracture-mechanics-based 
analysis he argued that in tension and torsion the failure strength would 
be approximately the same, whereas for compression the strength would be 
eight times higher than the tensile fracture strength (Griffith 1924). It is inter-
esting to compare this to the fracture laws for the lattice model presented in 
Section 3.5. But let us not digress too much and return to the Sammis and 
Ashby (1986) analysis. The starting point for the analysis is the observation 
that tensile stress concentrations occur around the perimeter of holes (pores). 
Cracks develop in a vertical direction, which is, as mentioned, the outcome 
of the Timoshenko and Goodier (1970) analysis assuming perfect linear-elas-
tic behavior. After an initial pop-in these vertical cracks are stable and can 
only grow when the external load increases.

Using the model of Figure 8.2 Sammis and Ashby continue and include 
interactions between neighboring pores and cracks. The deformation of the 
ligaments (one has been shaded in Figure 8.2) between neighboring cracks, 
and summing up various contributions to the stress-intensity factor they 
manage to calculate the shape of the compressive stress–strain curve of 
porous solids. The mesoscale tensile cracks and the presence of the pores 
appear to be a sufficient mechanism for energy dissipation before the maxi-
mum compressive load is reached, and thus lead to a curved relationship 
between external stress and global strain just before peak.

When the initial cracks are inclined to the compressive stress wing cracks 
develop from the crack-tips as sketched in Figure 8.1f (see, for example, Horii 
and Nemat Nasser (1986), Kemeny and Cook (1991), Ashby and Hallam (1986), 
and Bobet and Einstein (1998) in two dimensions and Dyskin, Germanovich, 
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and Ustinov (1999) for analysis of wing crack growth from elliptical cracks 
in three dimensions). Sliding along the inclined initial cracks leads to the 
growth of curved wing cracks from the tips. This mechanism is observed for 
cracks growing in a homogeneous material; most of these experiments were 
carried out using PMMA, which is brittle at low temperatures. Machining 
the initial cracks is most difficult, in particular in 3D. Ashby and Hallam 
(1986) show in a series of photographs the progression of wing cracks. The 
external load must be increased continuously to keep the cracks growing, 
which makes it a very stable mechanism. Sometimes secondary cracking is 
reported, as, for example, the “comb-cracks” reported to occur in the fracture 
of ice (like PMMA also translucent, which allows us to visualize internal 
cracking more easily than in concrete) by Schulson and Gratz (1999) and in 
rock-type materials by Bobet and Einstein (1998). One may wonder whether 
the wing-crack model makes much sense in materials with a coarse micro-
structure. In Figure 8.3 the wing-crack model is shown again, but now add-
ing the possible effects of a regular or more random material structure. In 
a homogeneous solid, such as the PMMA so often used to demonstrate the 
mechanism, wing cracks developed as shown in Figure 8.3a. When the mate-
rial consists of a regular packing of hexagons, and the interfaces are weaker 
than the elements, the same fracture shapes may appear. However, when the 
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FIGURE 8.2
Model based on the growth and interaction of vertical splitting cracks. (From Sammis and 
Ashby. 1986. Acta Metall., 34(3): 511–526. With permission from Elsevier.)
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grains become distorted, that is, have a random geometry, and on top of that 
random properties, the wing crack mechanisms may be seriously hindered 
and not appear at all (Figure 8.3b–d).

It all seems related to the scale of the material microstructure in com-
parison to the scale of the cracks. Thus, grain boundaries may affect crack 
growth, and they are not always neatly arranged to allow for an undisturbed 
growth of the wing cracks, which usually have a slightly curved shape (see 
Figure 8.1f, right sketch). The growth of wing cracks is delayed even more 
when lateral confinement is applied, as was clearly shown in the analysis of 
Horii and Nemat-Nasser (1986). In all, it is quite questionable whether the 
wing-crack model applies to concrete, at least at the scale of the specimens 
discussed here, and the mechanisms depicted in Figures 8.1a,c–e and 8.1g 
seem to be more appropriate, although the result of crack arrest in the com-
pressive stress field certainly applies to concrete as well. The last possible 
mechanism depicted in Figure 8.1g concerns the compaction of the porous 
interfacial transition zone above and below aggregates in the major compres-
sive direction. This mechanism was proposed by Van Geel (1998).

What emerges is a rather complex crack mechanism, dictated very likely 
by the complex microstructure of concrete. Both the geometry (size and 
shape) of the microstructural elements and the distribution of strength and 
stiffness will affect the overall result. If the lattice model were successful in 
coping with all the above mechanisms, it seems obvious that friction should 
play some role, but let us first take a closer look at the final stage of fracture 
during softening in (uniaxial and triaxial) compression in the next section.

8.2	 Softening	in	Compression

After the peak stress has been reached, a softening regime is found in com-
pression tests quite similar to tensile softening (see Figure 2.10), providing, of 
course, the test is run in displacement-control (see Appendix 3 “Stability of 

(a) (b) (c) (d)

FIGURE 8.3
Growth of wing cracks in (a) a homogeneous isotropic continuum and in (b)–(d) granular mate-
rials with increasing randomness of the materials’ particle structure and local material proper-
ties. (From Van Mier. 2008. Engng. Fract. Mech., 75: 5072–5086. With permission from Elsevier.)
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Fracture Experiments”). In Figure 8.4 results from uniaxial compression tests 
between different types of loading platens are shown. In Figure 8.4a experi-
mental results of Kotsovos (1983) are presented, who performed experiments 
on cylinders with an aspect ratio h/d = 2.5. Van Mier and Vonk (1991) repeated 
the experiments of Kotsovos, using 100-mm cubes (h/d = 1.0) instead, which 
confirmed the earlier findings. The cube results are included in Figure 8.4b. 
The results of Kotsovos are shown in dimensionless form; those by Van Mier 
and Vonk in absolute values of stress and strain. In both representations it is 
clear that the frictional restraint of the loading system has a significant influ-
ence on the softening behavior. The softening curve tends to become steeper 
as frictional restraint decreases.

For uniaxial compression tests the restraint is usually not considered as an 
important factor because by simply using more slender specimens the end-
zone effects are reduced and it is generally assumed that the middle part of 
the specimen is under a true uniaxial compressive state of stress. Reducing 
the friction, for example, by using lubricants or friction-reducing pads (such 
as aluminum or PFTE-foil (Teflon)), the frictional restraint can be reduced 
from an inaccurately defined 15–49% (see discussion in Ottosen 1984) when 
solid steel platens are used to a mere 1–2%. The development of triaxially 
compressed end-zones in the specimen parts in contact with the loading 
platens is prevented, and the failure mode of the specimen changes. This 
is clarified in Figure 8.5, where two impregnated specimens after loading 
into the softening branch are shown. Figures 8.5a and b represent two verti-
cal cuts of a specimen loaded between rigid steel platens and between steel 
platens with a Teflon (PFTE) -grease insert between the platen and the speci-
men, respectively. Quite clear is the development of the restrained triaxially 
compressed end-zones in Figure 8.5a. When friction-reducing pads are used, 
the cracks are more vertical as depicted in Figure  8.5b, although at some 
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locations cracks show some inclination, which may have been caused by 
the internal stress distribution from the heterogeneous material structure. 
Note that in the latter case, with Teflon, cracks are distributed throughout 
the specimen’s volume, whereas when dry steel platens are used, the conical 
end-parts are virtually uncracked.

Using a quite different crack detection technique, namely, digital image 
correlation, similar results are obtained; see Figure A4.8 in Appendix 4. The 
difference is that the crack process can be monitored continuously during 
loading with the latter technique, whereas with impregnation we can only 
show cracking at a single loading stage. On the other hand, Figure 8.5 shows 
the internal crack growth; the images from digital image correlation are lim-
ited to showing surface cracks only. In Figure 8.4a the change of the final crack 
plane observed in Kotsovos’s experiments is depicted. The slope of the final 
“shearlike” crack changes from approximately 20 degrees to approximately 
zero degrees (vertical splitting crack) with decreasing boundary restraint 
(the crack angles were measured from photographs of fracture specimens 
that appeared in the original paper by Kotsovos). The loading systems used 
by Kotsovos are indicated in the inset of Figure 8.4a, and range from a rather 
large restraint (referred to as “active restraint” when a steel ring is enclosing 
the outer parts of a specimen,) via plain steel platens, brushes, to rubber and 
MGA-pads.

When different deformation measurements are taken on a concrete cube 
under uniaxial compression it appears that failure occurs from outside to 
inside (very much like peeling an onion). This means that the first outer sur-
face layers are split off from the core of the specimen, and later the core will 
fail; see Van Mier (1984). In Figure 8.6a the stress–strain diagrams are shown 
from strain gauges glued to the surface of the specimen and an overall mea-
surement with LVDTs between the loading platens (in this case brushes, 
similar to those originally developed by Hilsdorf (1965); brushes are an effec-
tive medium to reduce frictional restraint). The difference between overall 

(a) (b)

FIGURE 8.5
Cracking in two specimens after loading in uniaxial compression (loading direction is verti-
cal) between (a) rigid steel platens and (b) rigid steel platens with friction-reducing Teflon 
grease pads. Cracking is visualized by means of fluorescent epoxy impregnation. (After Vonk 
et al. 1989. In Fracture of Concrete and Rock: Recent Developments.)
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strains and surface strains is quite clear; beyond peak the surface strains stay 
significantly behind the overall strains. The experiments were controlled 
using the overall strain as control parameter, and would have failed when 
the surface strains were chosen instead. What happens becomes clear when 
the fracture pattern is considered.

Figure 8.6b shows the top surface of one of the cubes after the test was 
terminated. Cracks are visible on the surface, also in the interior parts, indi-
cating that the brushes indeed allowed a failure mode similar to the experi-
ment with Teflon-grease pads shown in Figure 8.5b. The width of the cracks 
is largest toward the edges of the specimen, indicating that first the surface 
layers are split off and subsequently the core material will fail. More recently, 
Meyer (2009) showed by means of x-ray tomography of foamed cement speci-
mens loaded in uniaxial compression that surface cracking already starts far 
before peak stress is reached. Figure 8.6 shows that the process has become 
quite dominant in the postpeak regime. Figure 8.5 also shows that the crack 
widths are larger toward the sides of the specimen. Additional results by 
Vonk (1992) clearly confirm this trend. In a way this mode of failure is no 
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surprise. The surfaces are the easiest to move sideways; there is no lateral 
support. One might even expect that after the vertical cracks developed 
buckling instabilities cause the outer layers to fail completely. For the core 
material the situation is quite different and in order to have cracks in the core 
sufficient lateral deformations must have occurred, which implies surface 
cracks to appear first.

The straightforward conclusion might be that the loading on the speci-
men is not as uniform as one would prefer. The question is whether uni-
formity can be achieved at all. When steel platens are used, one may apply 
uniform boundary displacements, but the stress distribution is, due to the 
frictional restraint between platen and specimen, not quite uniform, as is 
clearly observed from finite element analyses by Ottosen (1984). He showed 
the effect of boundary restraint on the normal and shear stress distribution 
along the surface of cylinders (h/d = 2) in contact with the (steel) loading 
platens. The analyses predicted a rather nonuniform normal stress distri-
bution (σz/σnom in Figure  8.7) and shear stress distribution (τrz/σnom, where 
σnom is the nominal axial stress). A linear analysis shows the largest stress 
concentrations in the corner, which diminishes somewhat when nonlinear 
material behavior is assumed. The analyses also indicated, similar to the 
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above-mentioned experimental results, that failure started from the outside. 
The heterogeneous structure of the concrete has some additional effect on the 
stress distribution. It appears therefore that the specimen/material behavior 
cannot be completely separated from the used boundary conditions, and 
that the stress–strain diagram could perhaps better be formulated in terms 
of load and displacement: the P–δ curve shows the failure of a small-scale 
structure (at lab-scale) rather than a material property (as was concluded in 
Van Mier 1984 and 1986a). Figure 8.4 shows how the P–δ (or σ–ε) diagram is 
affected by variations in boundary restraint; Figure 8.6 shows clearly how 
the core fails later than the surface layers. These two observations are suf-
ficient to dismiss the result of such (routinely performed) compression tests 
as a “true property” of the material. One solution might be to use prismatic 
specimens with a slenderness h/d > 2. In higher specimens one might expect 
that the effect of the triaxially constrained parts of the specimens becomes 
increasingly less important, as sketched in Figure 8.8. However, the situation 
is actually even more complicated as the following results underscore.

When experiments are carried out on specimens of varying slenderness 
it appears that large differences in postpeak behavior occur. The prepeak 
curves are quite similar, but the postpeak behavior becomes gradually more 
brittle when the slenderness increases (Van Mier 1984), and gradually even 
may develop into a snap-back situation, especially for high-strength concrete 
at very high slenderness (h/d > 5.0; see Jansen and Shah 1997). In Figure 8.9 the 
results by Van Mier are shown, who was the first to show that deformations 
localize under uniaxial compression, indicating that a fracture mechanics 
approach might be needed to explain the softening behavior in compres-
sion. As a matter of fact, such a solution may be quite similar to the model 
developed by Hillerborg, Modéer, and Petersson (1976) for tensile fracture, 

FIGURE 8.8
Triaxially constrained end-zones (gray) in specimens of different slenderness loaded between 
rigid steel platens. Especially for the shorter specimens the triaxial constraint may eventually 
extend over the largest part of a specimen’s volume. (Reprinted from Van Vliet and Van Mier. 
1996. Mech. Coh.-Frict. Mater., 1(1): 115–127. With permission from Wiley.)
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although some changes are needed; see Section 8.5. The compressive variant 
of FCM still assumes continuumlike behavior in the softening regime (stress 
is used as a state variable), which is in contradiction to many observations, 
and an alternative approach has been proposed in Van Mier (2009). These 
matters are discussed in detail in Chapter 10.

Figure 8.9 shows stress–strain curves for compression tests between brushes 
for specimens with three different slendernesses, h/d = 0.5, 1.0, and 2.0. The 
stress-axis has been normalized to the maximum stress in each experiment. 
This eliminates minor differences between the tests (note that the tests gave 
about the same maximum strength because brushes were used; see Van Mier 
1984). Presenting results in terms of strain shows an almost identical prepeak 
behavior but in the postpeak regime the softening curve becomes gradually 
steeper when slenderness increases.
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This result has been confirmed by many others, in particular by the work 
of the RILEM Technical Committee 148-SSC; see Van Mier, Shah et al. (1997). 
Tests at both ends of the slenderness spectrum were carried out by Van Vliet 
and Van Mier (1996) for h/d = 0.25 to 2.0, and by Jansen and Shah (1997) who 
considered h/d = 2.0 to 5.5. The results basically all give the same result, that 
is, similar to the results shown in Figure  8.9b. Here the postpeak stress–
displacement curves are shown of the same three experiments of Figure 8.9a. 
The postpeak displacement is calculated following:

 lsoft pp ppδ = δ − δ = δ − ε  (8.1)

where δsoft, δ, and δpp are the softening displacement, the total displace-
ment, and the prepeak displacement, respectively, and l is the measurement 
length which is in these tests is equal to the specimen length. Quite clearly 
the curves now fall in a narrow band, and a unique response is observed. 
Basically the same displacement prevails, which points toward a localized 
fracture mode.v

The conclusion is clear: a fracture mechanics solution must be applied in 
order to describe softening in compression realistically. This finding was a 
drawback for continuum-based models in the 1980s. Actually it should not 
have been a surprise but the desire to model everything in continuum the-
ory appeared to be stronger than simply accepting the observation that after 
peak the specimen fractures and separates into several parts. In Chapter 10 
we return to these matters; here we continue and show some further experi-
mental results.

Equation (8.1) is a simple first-order approximation and some further improve-
ments can be made. For example, deducting the elastic deformation following

 
E
lsoft totδ = δ − σ  (8.2)

leads to a small clockwise rotation of the three curves and the similarity is 
slightly improved. We return to these matters in Section 8.5.

Figure 8.9b also indicates the failure modes: an inclined shear crack (shear 
band) appears to develop. In specimens of large slenderness this localized 
mode is clearly visible (see, e.g., Schickert 1980 and Jansen and Shah 1997); in 
specimens with small slenderness the localized crack seems to “fold up” as 
sketched in Figure 8.9b. Van Mier (1984) shows a clear photograph of a fold-
up (zigzag) crack in a low prism. Similar observations were reported for soils 
(see, e.g., Desrues 1998, viz. Figure 10.4 in his paper shows results obtained 
by Mokni 1992).

The question is now whether this localized failure mode would appear 
only for situations/tests where low-friction loading platens are used. The 
answer to this question appears to be negative as indicated with the results 
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shown in Figure 8.10. The localized failure mode appears irrespective of the 
frictional restraint of the loading system. This means that there is an effect 
of the loading system, in particular when relatively small specimens are 
tested, but the material characteristic, that is, the localized failure mode, is 
preserved. The tests carried out by Kotsovos also were reported to give local-
ized cracks as indicated in Figure 8.4, and many examples can be found in 
Schickert (1980) as well; just the inclination of the localized crack seems to 
vary with frictional restraint

8.3	 Softening	as	Mode	II	Crack-Growth	Phenomenon

The end-restraint due to friction at the interface between specimen and 
loading platen is a type of confinement, albeit of the outer parts of a speci-
men only. When confinement is applied over the full length of a specimen 
the stress–strain diagrams change dramatically. How much they change 
depends on the actual level of the lateral stress applied, whether the lateral 
stress is applied symmetrically or asymmetrically in the second and third 
principal loading direction. By adding confinement, we enter the realm of 
multiaxial loading, which is very important, especially when considering 
fracture. Under sufficiently high confinement the quasi-brittle failure mode 
that we have seen thus far for concrete subjected to uniaxial compression 
may change to show much more ductility. Under hydrostatic loading it may 
turn out that a material specimen cannot be failed; pressure may increase 
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so much that phase transformation of the material will become possible (see 
also Section 3.5 in Van Mier 1997). We do not enter into that aspect of multi-
axial compressive behavior, and restrict our attention to the low-confinement 
regime, up to the brittle-to-ductile transition.

So, let us first start with symmetric confinement. We apply a lateral stress 
of –1 MPa to the side surfaces of a prism or cube subjected to uniaxial com-
pression. This simple measure allows an increase of the axial compressive 
failure load with approx. 4–5 MPa; see Van Mier (1984). As early as 1929 
Richardt et al. concluded that the strength of (symmetrically confined) 
concrete is equal to the uniaxial compressive strength plus four times the 
confining stress. This is valid for tests with constant confinement, but more 
recently it has been shown that the same is true for proportional loading 
paths, that is, where the ratio of axial and lateral stress increase is kept con-
stant throughout the test. More elaborate equations have been developed, for 
example, by Newman (1979), but the result is about the same as the original 
result by Richardt, Brandtzaeg, and Brown (1929). In Figure 8.11 the nominal 
stress (σ1 – σ3) versus axial strain (ε1) curves from triaxial compression tests 
on cylinders (σ2 = σ3) by Jamet, Millard, and Nahas (1984) are shown.

When the confinement increases we clearly see an increase of the nomi-
nal axial failure stress. The unconfined concrete, which is actually a coarse 
mortar with 5-mm maximum aggregate size, has strength of approx 35 
MPa. Under uniaxial compression the behavior is quasi-brittle, comparable 
to the results shown in the previous section. With increasing confinement 
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we observe a gradually increasing residual stress level, and the quasi-brittle 
behavior appears to change into ductile behavior at 50 MPa confining stress. 
This so-called brittle-to-ductile transition takes place probably between –25 
and –50 MPa confinement, that is, at relative stress-levels of σ3/σ1 ≈ 0.2–0.25. 
So, what mechanisms are at play? In Figure 8.1b it was suggested that the 
wedging stresses due to particle interactions in the concrete are relieved by 
the confinement; consequently the axial stress must increase to achieve fail-
ure. Another mechanism is the delay of surface instabilities. In the tests by 
Van Mier (1984), loading was applied in a true multiaxial machine, that is, 
with three actuators any stress combination in stress space could be handled. 
The load was applied through steel brushes, which forces the surfaces to 
remain (more or less) flat, and the large surface cracks shown in Figure 8.6 
can simply not develop.

In the triaxial tests of Jamet et al. (1984) cylinders were tested using oil 
pressure to achieve the lateral pressure (thus σ2 = σ3); the same effect must 
occur, even though the flexible membrane and the oil fluid allow differential 
deformations along the length of the cylinder. These large splitting cracks 
will likely develop at and beyond peak, and simply delaying the reduction 
of the cross-sectional area through the splitting off of surface layers (like 
an onion) causes the material specimen to act in a more ductile manner. In 
addition, because crack widths are smaller, friction between the crack faces 
may become increasingly more important, also enhancing the postpeak car-
rying capacity and improving the postpeak ductility. The various mecha-
nisms and their probable interactions can perhaps best be studied using 
mesomechanics models such as the lattice model used for analyzing tensile 
fractures in Chapter 6. We return to these matters in Section 8.4. One last 
remark should be made. Figure 8.1b suggests that the splitting cracks derive 
from the interactions between large aggregates. In the tests by Jamet et al. 
no real large aggregate particles were present, therefore the results suggest 
that other sources of heterogeneity are the cause of the microcracks, such as 
pores and pre-existing flaws, which may have developed during casting and 
curing the specimens. As mentioned before, any flaw inclined to the major 
loading direction will grow under increasing external compression, and the 
tips will rotate in the direction of the principal compressive stress; see also 
Horii and Nemat-Nasser (1986).

If the confinement is no longer symmetric, the majority of cracks will 
develop in planes perpendicular to the minor principal stress. Actually these 
are the majority of stress situations; what can be achieved in a classical triaxial 
cell is rather limited (mostly tests such as those shown in Figure 8.11 are done). 
In Figures 8.12 and 8.13 two examples of asymmetrically confined tests are 
shown. Both sets of tests are performed on cubical specimens in a true triaxial 
machine fitted with servohydraulic actuators to allow for full measurement 
of the softening behavior. Contrary to the tests shown in Figure 8.11 the load-
paths are proportional; that is, σ2 = α ∙ σ1 and σ3 = β ∙ σ1, from the very beginning 
of an experiment. In Figure 8.12 we see the effect of varying the magnitude of 
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the minor principle stress while ε2 = 0 (plane strain). In Figure 8.13 the effect 
of varying σ2 is shown keeping in all experiments σ3 = 0.05 ∙ σ1. The maxi-
mum strength points all seem to relate to the same failure envelope; see Van 
Mier (1984), thus with these moderate changes in load-paths, in particular the 
plane–strain tests deviate from the linear stress-ratio tests in all other cases, 
no stress-path dependency seems to occur. In order to achieve that some quite 
bold variations are needed (see Chapter 7 in Van Mier 1984).

But, let us not deviate too much from the main issue at hand. The results 
in Figure 8.12 show that the σ1–ε1 curves increase in size: the first bend-over 
points (marked “A” for the highest curve only) occur at a higher level of 
σ1 when the confinement in the minor direction increases. Again, because 
cracks will open in the direction of the smallest compressive stress, this indi-
cates that the level of confinement regulates when these cracks can nucleate 
and widen. The shape of the curves is approximately identical; the slope of 
the softening curves just after peak stress is approximately the same in all 
three tests. The main difference lies in the level of the residual stress, which 
is substantially higher for the highest confinement level σ3 = 0.10 ∙ σ1. The 
cubical specimens will fail as shown in Figure 8.14a for a comparable experi-
ment, namely a linear stress-ratio test with σ2 = 0.33 ∙ σ1 and σ3 = 0.05 ∙ σ1. This 
proportional stress-path leads to approximately the same failure stress as a 
plane–strain test with the same confinement σ3 because ε2 fluctuates just a 
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Consequently σ2 fluctuates with the variation of σ1. (After Van Mier. 1984. Strain-Softening of 
Concrete under Multiaxial Loading Conditions.)
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FIGURE 8.14
Examples of planar (a) and cylindrical (b) failure modes in cubes subjected to multiaxial com-
pression. Stress–strain curves of the two tests were shown in Figure 8.13. These images were 
obtained after the test was completed, and after carefully grinding down the capping that 
was applied to the surface of the cubes. (After Van Mier. 1984. Strain-Softening of Concrete under 
Multiaxial Loading Conditions.)
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little around zero; see also Figure 8.13. The different cases are shown here on 
purpose in this way to provide the widest possible view of failure of concrete 
under multiaxial compression. Thus, it appears that all these specimens fail 
through the development of cracks that open in the direction of the minor 
principal stress. As long as the intermediate principal stress is larger, fewer 
or even no cracks will develop in that direction. Thus, in spite of the fact that 
we are dealing with a complex three-dimensional state of stress, the failure 
mode is relatively simple. So-called shear bands form in the plane formed by 
the major and minor principal stress as indicated in Figure 8.14a.

Before drawing some conclusions and discussing the failure mechanisms, 
let us have a brief look at Figure 8.13. In this case the minor confining stress 
is the same: σ3 = 0.05 ∙ σ1, whereas the intermediate stress σ2 = α ∙ σ1 varies, 
with α = 0, 0.10 and 0.33, respectively. We now immediately notice the differ-
ence between the softening curves (σ1–ε1 curves, right top diagram). When 
the intermediate and minor principal stresses are almost the same (test with 
σ2 = 0.10 ∙ σ1 and σ3 = 0.05 ∙ σ1, solid line in Figure 8.13) we see that the soften-
ing curve indicates more ductile behavior compared to the two other, more 
asymmetric cases. The largest deformations occur in the direction of the 
minor principal stress (σ3) and the intermediate principal stress (σ2), with 
the strains in the intermediate direction just a bit smaller than those in the 
smallest stressed direction. Thus, the failure mode is almost symmetric, as 
can also be seen in the photo of the fractured sample in Figure 8.14b. Short 
inclined cracks are found in all directions, and, in comparison in the fail-
ure mode of the tests in Figure 8.12 a fully three-dimensional crack pattern 
now emerges. The terms “cylindrical” and “planar” mode have been coined 
for these two crack modes, respectively; see Van Mier (1984). The cylindrical 
mode appears to be a form of distributed cracking, yet as we show, localized 
cracks are clearly visible when longer prisms are used instead of cubes.

The experiment with the distributed crack pattern of Figure  8.14b has 
approximately the same (positive) deformations in the intermediate and 
minor loading directions. This then makes the test comparable to classical tri-
axial tests in a Hoek cell. The tests by Jamet et al. (1984) shown in Figure 8.11 
indicate a brittle-to-ductile transition at confinement levels between 20 and 
25% of the major principal stress. In the test of Figure 8.13 and 8.14b we are 
at 5–10% confinement level. The shapes of the curves are similar to those 
obtained by Jamet et al. (1984) using cylinders. So, what could explain the 
clear shear band observed in the cylinder tests, also at the confinement levels 
applied in Figure 8.14b? It might be speculated that the specimen length has 
some influence too, as a matter of fact quite similar to what was shown in 
Figure 8.9 for uniaxial compression.

The localized failure modes are most clearly visible when a classical tri-
axial test is done using cylinders with a slenderness ratio of 2, or when asym-
metric stress combinations in a true multiaxial machine are tested. Under 
such loading regimes the development of shear bands and compaction 
bands has been extensively documented, for many different materials. For 
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example, Nádai (1924) reports on the development of shear bands in iron. 
Also in this classic paper there appear examples on shear bands in wax and 
marble. For the group of materials usually referred to as “geomaterials,” for 
which marble is just one example, it is now generally accepted that under low 
confining stress clear localized failure modes appear (Hallbauer, Wagner, 
and Cook 1973; Lockner and Byerlee 1992; Moore and Lockner 1995, for rock; 
Desrues and Viggiani 2004, for soils; Van Mier 1984 and Van Geel 1998, for 
concrete; and Fortt and Schulson 2007, for ice). The localization zone can be 
visualized by means of different techniques, for example, stereophotogram-
metry, impregnation, acoustic emission monitoring, and so on.

In Figure 8.15 some further results are shown, obtained by Van Geel (1998) 
on the same multiaxial machine used by Van Mier (1984). The tests are plane–
strain tests, comparable to those shown in Figure 8.12, except that prismatic 
specimens with a slenderness ratio h/d = 2 (d = 100 mm) were used. Using 
the fluorescent-epoxy impregnation technique explained in Appendix 4, six 
specimens loaded to different levels of axial deformation were treated after 
unloading and cut open. The crack patterns are shown in Figure 8.15a–f; the 
different stress–deformation curves can be identified in the diagram next 
to the crack patterns. With the applied crack detection technique, in stage 
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(a), in the prepeak regime, hardly any cracks are found. In the next stage 
(b) three small cracks emanate from the corners of the specimen. This is in 
agreement with the numerical analyses shown in Figure 8.7 that predict a 
stress concentration in the corners of a specimen. In stage (c) it appears there 
is a preferential direction, and a single larger inclined crack develops from 
the lower-right corner. In stage (d) the main inclined cracks extend from the 
lower-right corner and the upper-left corner, almost completely traversing 
the specimen. Stage (d) is almost at the end of the steep part of the soft-
ening curve as can be seen from the σ1–δ1 diagram. Stages (e) and (f) then 
show a “widening” of the shear zone, which may occur due to frictional 
restraint in the main cracks as well as aggregate interlock. Large aggregates 
often obstruct the path of the inclined cracks, which somehow will have to 
go around such stiff obstacles (see also Figure 8.14a: two large aggregates 
disturb the left lower portion of the V-shaped crack). In stage (f) it appears 
that two inclined cracks overlap in the center of the specimen. Similar obser-
vations were reported by Desrues (1998), who observed the growth of local-
ization zone(s) including overlapping of multiple zones in sand samples. The 
results would actually point toward initiation of the inclined localization 
zone (or shear band) at a location where the highest stress concentrations are 
found (in these specimens obviously the corners), and a subsequent propaga-
tion process. The similarity to observations during tensile fracturing is quite 
striking; see, for example, Figure A2.1 in the Appendix 2. In that case also 
crack growth seems the dominating mechanism during the steep part of the 
softening curve. In the tail regime different mechanisms then take over, like 
the crack-face bridging in tension (see Section 6.1, and Appendix 4, Figure 
A4.2), and most likely Coulomb friction in compression.

So, what can be concluded from the results presented in this section? First 
of all, fracture of concrete under triaxial compression is a localized phenom-
enon: shear bands grow through a specimen’s cross-section during the steep 
part of the softening curve. The shear band appears to remain straight while 
it is propagating; locally widening of the band may occur due to the presence 
of obstacles such as large aggregate particles (see, for instance, Figure 8.14a), 
but the main direction seems unaffected. Thus, the shear band growth can 
likely be interpreted as a mode II crack growth phenomenon, which would 
hint toward a classical fracture mechanics approach as the best theoretical 
solution. We return to this result in Chapter 10 where the 4-stage fracture 
model is presented. Toward the brittle-to-ductile transition the clear shear 
band disappears and instead a more distributed crack pattern is observed; 
see, for example, Newman (1979). So-called barreling of the specimens 
occurs: the middle part of the cylinder expands more than the end parts that 
are in contact with the stiff steel loading platens. Deformations in experi-
ments over the brittle-to-ductile transition are so large, up to 40–60% that the 
nonuniformity of the loading situation becomes clearly visible to the naked 
eye. We do not further discuss stress states above the brittle-to-ductile tran-
sition and limit the discussion to stress states within the quasi-brittle field. 
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Just one last remark, however. For extensile loading (σ1 < σ2 = σ3) the brittle-
to-ductile transition occurs at higher confinement levels; see Paterson (1978) 
and Van Mier (1997). The higher transition is the result of the fact that crack 
growth occurs in the plane perpendicular to the lowest compressive stress 
(now σ1), and the driving force is substantially larger (σ2 and σ3, against σ1 
only for triaxial compression).

Plane–strain tests, such as those shown in Figures 8.12 and 8.15 are exam-
ples of passive confinement tests. Keeping the deformation in one direction 
equal to zero and applying compression in the other two loading directions 
leads to an increase of stress also in the direction with zero-deformation. 
Restraint appears under many different situations, for example, the aggre-
gate restraint during drying shrinkage cracking; see Section A4.4. The pas-
sive confinement mechanism is frequently used in practice, albeit not always 
consciously; see Appendix 5 for some further background information.

8.4	 Lattice	Approximations

It is interesting to see whether a lattice simulation, similar to the one used for 
tensile fracture in Chapters 6 and 9, is capable of generating realistic behavior 
in compression, that is, in agreement with the experimental results summa-
rized in Sections 8.2 and 8.3. It is obvious that several of the aforementioned 
mechanisms are not included in the simple lattice model, but looking to the 
model by Sammis and Ashby (1986) in Figure 8.2, we might come quite close. 
This model is characterized by modeling crack growth from pores in a com-
pressive stress field and interactions between neighboring cracks as shown 
in Figure 8.2. These elements also are included in a lattice simulation. When 
modeling foamed cement, as we discuss below, lattice simulations indicate 
crack growth from the top and bottom of the pores in the direction of the 
compressive load.

In the past we have made several attempts to model compressive fractures 
in the lattice model; see, for example, Schlangen and Van Mier (1994) and 
Margoldová and Van Mier (1994). The fracture law used is the normal force/
bending rule, Equation (3.36), with α varying between 0 and 1.5. We can 
summarize the results from these early (1994) simulations as follows. Using 
a random beam-length lattice (3D, 5 × 5 × 5 cells), in which all beams have the 
same tensile threshold strength of 1 MPa, an increase of α in Equation (3.36) 
from 0.1 to 1.5 leads to an improvement of the softening behavior in compres-
sion. Yet, the ratio between overall uniaxial compressive to uniaxial tensile 
strength decreases rapidly. At α = 0.1 the ratio is about 20, for α = 1.5, sym-
metry in tensile and compressive response is found, that is, almost the same 
global failure strength is found, except for the sign, of course. In an attempt 
to model the material more realistically 2D analyses were carried out, also 



155Compressive Fracture

with a beam lattice model, using the particle overlay method of Figure 4.13. 
When uniaxial compression was applied, the failure mode changed from 
vertical splitting when α = 0.5 to inclined cracking for α = 1.0. In a similar 
approach, but trying to model various phases and interfaces in cemented 
particle composites in a slightly different manner, Topin et al. (2007) ran into 
the same difficulties.

A 2D lattice is perhaps not the best choice for modeling compressive frac-
ture, which is a truly three-dimensional phenomenon. Modeling the material 
structure realistically in three dimensions has recently become possible with 
the doctoral work of Man (2009). Using data from CT scans, the real particle 
or pore structure of concrete can be included in a lattice; see Figures 4.6 and 
4.7. A step back from the complicated structure of normal aggregate concrete 
is to leave out all the large and small aggregate particles, use cement only, 
and provide heterogeneity through including a large amount of foam. The 
foam will dissolve in time, after the cement has hardened, leaving highly 
porous cement stone. The material is simpler than normal concrete: the inter-
facial transition zone has been excluded by removing the aggregates, and 
the behavior now is completely dependent on the stress concentrations from 
the large amount of air bubbles and the strength of the cement matrix. The 
results were disappointing in the sense that no real improvement over the 
1994 simulations was achieved. Although there is now much more detail in 
material structure, as well as in the calculated crack patterns, the maximum 
loads are still highly dependent of α: For α = 0.0, the largest maximum load 
was calculated as 38.6 N for the foamed cement containing 70% porosity. 
When α increased to 1.0, the maximum load was just 3.9 N. Note that from 
the experiments of Meyer (2009) an average maximum compressive load of 
3.46 N was achieved for foamed cement with 70% porosity, using exactly the 
same specimen geometry and boundary conditions as in the simulations. 
Thus, for α = 1.0 the computed peak load comes close to the average maxi-
mum load measured in the physical experiments; yet in this case the crack 
pattern is not correct. Smaller α leads to vertical splitting cracks, as in the 
experiments (see Meyer 2009); larger values of α lead to inclined cracks, as 
shown in Figure 8.16 for α = 1.0. The presented results are representative for 
different initial porosities of the foamed cement, ranging from 30–70%; see 
Man (2009).

The conclusion drawn at this moment is that the fracture law in the lattice 
model must be wrong, or at best incomplete. The criterion used for simulat-
ing tensile fracture doesn’t seem to matter much and excellent results have 
been obtained (see Chapter 6, 7, and 9), but for compression it seems either 
necessary to include friction, for example, through the use of Equation (3.37) 
as an alternative fracture law, or to move to a completely different type of 
model, for example, the particle models alluded to in the introduction to 
this chapter. At this moment such analyses are not considered very useful 
for further understanding, therefore we close this chapter by summarizing 
a macroscopic model. The model may be used for analyzing the rotational 
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capacity of reinforced concrete structures failing in compression (viz. over-
reinforced beams subjected to bending).

8.5	 Macroscopic	Models

Model codes are tools for practice engineers. Most of them, such as the 
CEB-FIP 1990 model code give formulas for the tensile and compressive 
stress–strain behavior of concrete. In the CEB-FIP model code the following 
compressive stress–strain relation is given, valid up to a certain maximum 
strain in the softening diagram. In the comment in the draft model code 
reference was made to Van Mier (1986a) (see Figure 8.9a,b), who showed the 

(a) Pmax (b) 0.8 Pmax

(c) 0.5 Pmax (d) 0.2 Pmax

FIGURE 8.16
Crack patterns at peak load and at three different stages in the softening regime of foamed 
cement with foam content of 70%. Stages (b)–(d) are postpeak at 80%, 50%, and 20% of peak 
load Pmax. The model has 0.1-mm long beams; see also Figure 4.6b. The Young’s modulus 
and tensile strength of the cement matrix were equal to 25 GPa and 5 MPa, respectively. The 
removed elements are colored black. Only a few elements are removed at peak load; at 20% of 
Pmax in the softening regime a large inclined crack developed. (After Meyer et al. 2009.)
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specimen-length dependency of the softening slope, which, similar to the 
Fictitious Crack Model, indicates that continuum solutions are no longer 
valid in the postpeak regime.

The CEB-FIP equation is purely phenomenological:
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where Eci is the tangent modulus and Ec1 = fcm/0.0022 is the secant modulus 
from the origin to the peak compressive stress fcm as shown in Figure 8.17. 
Furthermore, σc and εc are the compressive stress and strain, εc1 = 0.0022. 
Such quadratic equations are the most used forms and fit well to experimen-
tal data, for example, those by Wischers (1978). If confinement is added the 
equation changes; see, for example, Attard and Setunge (1996) and Samani 
and Attard (2010). The only possible solution is to revert to a localized model 
for the postpeak regime, as suggested in Equations (8.1) and (8.2). These 
equations are the compressive equivalent to the fictitious crack model pre-
sented in Section 2.4 for tensile fracture. There is one important difference, 
however. The prepeak stress–strain behavior is much more pronounced in 
compression, and the simple approximation of a linear prepeak stress–strain 
diagram does not apply to compression. When confinement is applied even 
larger prepeak deformations are found, and deviations from linear behav-
ior increase. Therefore an issue is whether the simple unloading behavior 
assumed in Equations (8.1)–(8.2) is correct. In that approach zero recovery 
is assumed (see Figure 8.18), whereas it seems more appropriate to expect 

Co
m

pr
es

siv
e S

tr
es

s σ
c fcm

Eci

Ec1

εc1 εc,lim

σc,lim

Compressive Strain εc

FIGURE 8.17
Stress–strain diagram for concrete subjected to uniaxial compression following the CEB-FIP 
Equation (8.3).
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elastic unloading or even nonlinear unloading. Figure 8.9 certainly gives the 
impression that at least a linear unloading must be assumed.

The localization phenomenon in compression has been addressed by sev-
eral researchers, including Bažant (1989), Hillerborg (1990), and Markeset 
(1993). The new problem, after the various equations have been worked out, 
is the definition of a localization length, which forms an integral part of the 
solution. In analyzing rotational capacity of beams one might assume that 
simply the height of the compression zone in the considered beam might 
be taken, but this length scale continuously changes as loading progresses 
along the softening branch. The most complete model to date is without 
doubt the model proposed by Markeset (1993).

Central to Markeset’s model is the notion of a damage zone with length Ld. 
In this damage zone axial splitting cracks develop distributed over the vol-
ume (allowing the use of strains), and later on in the softening branch a local-
ized shear crack appears (demanding the use of displacements). Outside the 
damage zone the material behavior is assumed to behave (nonlinear) elastic. 
The model is depicted in Figure 8.19. The three contributions to the over-
all specimen behavior are clearly distinguished and lead to the following 
expression for the average compressive strain εm:

 L
L

w
Lm d

dε = ε + ε +  (8.4)

that is, the elastic, damage, and localization deformations, respectively. The 
composite stress–strain curve, distinguishing the three contributions to the 
axial strain is shown in Figure 8.19b. The various cracks contribute to the 
compressive fracture energy. The two main contributions are the energy 
consumed in the damage zone and in the inclined shear band. The main 
problem with the model is the estimate for the damage zone length Ld. 
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Furthermore, there are several ongoing discussions as to whether the com-
pressive fracture energy is a material property, and whether localization is as 
perfect as assumed in this chapter. For example, experiments by Vonk (1992) 
and Hurlbut (1985) show less perfect localization than those by Van Mier 
(1984) and Jansen and Shah (1997). The issue is not easy to resolve because 
boundary restraint changes from experiment to experiment. Boundary 
restraint has a significant influence on the compressive stress-deformation 
curve, and, as shown in Figure  8.4, affects the slope of the shear band as 
well. To my opinion the solution should not be sought in a model equiva-
lent to the Fictitious Crack Model, perhaps augmented with a volume energy 
dissipating mechanisms such as the axial splitting cracking which is part 
of Markeset’s CDZ-model. Rather a model based on classical linear elastic 
fracture mechanics seems close to reality. Such an approach would support 
the view that softening is a structural property, and in addition includes 
the notion of shear-band propagation in the postpeak regime as discussed 
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Compressive Strain Gradients. With kind permission from Dr. Gro Markeset.)
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in Section 8.3. Also one can refrain from adding further length parameters, 
such as Ld, which are hard to determine. We return to the resulting 4-stage 
fracture model in Chapter 10.

For the time being a macroscopic and phenomenological approach seems 
the best solution for dealing with compressive fracture. Research is under 
way to unravel the complex fracture mechanism of concrete under (con-
fined) compression. Improved mesomodels are needed, capturing the essen-
tial mechanisms of mode I and mode II crack (growth), frictional restraint in 
cracks, and likely also buckling instabilities of (laterally) unsupported sur-
face layers of a concrete structure/specimen.
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9
Size Effects

Size effect is one of the salient characteristics of fracture mechanics. Classical 
linear elastic fracture mechanics exhibit a size effect on strength, which was 
mentioned in Chapter 2 and worked out in Appendix 1. For a long time there 
has been interest in size effects. In their days Leonardo da Vinci and Galileo 
Galilei studied the effect of structural size on strength. The issue is of consider-
able importance, namely, can the strength of real-size structures be predicted 
from small-scale laboratory experiments? It turns out that larger structures 
are generally weaker and their behavior is more brittle than structures that are 
geometrically scaled down. Testing full-scale structures in the laboratory is, 
however, rather impracticable and expensive. Often sufficiently large loading 
equipment is simply not available. Only a few exceptional labs are fitted to do 
really large-scale work, for example, the large structural labs at the University 
of San Diego. The rule is, however, that most laboratories are limited to test 
structures up to the 10-[m] scale (this means, for instance, beams with a depth 
up to 1 [m]). Figure 9.1, from Bažant and Yavari (2005), quite clearly illustrates 
the lack of large-scale data. The largest existing tests measuring the shear 
capacity of reinforced concrete beams are likely those carried out by Shioya et 
al. (1989) with a depth of 3,000 mm for the largest beams. Once in a while it is 
possible to test a full-scale structure, prior to demolishing, but in those cases 
one obviously has no influence on the composition of the materials used, or on 
the structural design and all the relevant details.

Structural disasters, such as the collapse of the Koror Babelthaup Bridge 
in Palau (see Burgoyne and Scantlebury 2006) are, at least partially, ascribed 
to misunderstanding of the size effect. The best way to cope with size effects 
appears to be to develop a theory, based on correct physical mechanisms of 
quasi-brittle fracture. In this book we have focused on full understanding of 
quasi-brittle fracture, and so far this has led to very good insight in tensile 
failure, whereas for (confined) compression further research appears to be 
essential to come to the required in-depth understanding of those complex 
failure modes. In this chapter on size effects the limitation is again on tensile 
fracture. We first discuss classical models for size effect on strength. Because 
the tensile strength is the weakest property of concrete (as well as for several 
other materials), it seems more than appropriate to focus on tensile fracture 
first. Classical approaches include Weibull’s weakest link theory, and the 
more recent models developed for concrete fracture in particular: the “size 
effect law” (SEL) by Bažant (1984) and the “multifractal scaling law” (MFSL) 
developed by Carpinteri (1994), Carpinteri, Chiaia, and Ferro (1995), and 
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Carpinteri, Chiaia, and Cornetti (2003). Although both models are labeled 
“laws,” they hardly deserve that credential because in both cases curve-fit-
ting forms an essential part of the exercise. The implication is that, in spite 
of the claims made, the range of applicability does not exceed the range of 
test data used to make the “fit.” As mentioned, in Section 9.1 we review these 
models. In Section 9.2 recent experiments on the size effect for tensile fracture 
of plain concrete are analyzed. These tests are among the largest tensile tests 
ever conducted on plain concrete, which is partly explained by the fact that 
test control is quite difficult for large specimens, which, as mentioned, tend to 
have more brittle behavior than the usual laboratory-size specimens (with a 
size range up to 100 mm). Lattice approximations of size effect in tension and 
bending are presented next in Sections 9.3 and 9.4. Two-dimensional analyses 
are of course easier to perform than fully three-dimensional simulations; yet, 
it turns out that in the case of 2D scaling the transition from plane–strain to 
plane–stress is missed in most models. The lattice analyses allow the calcu-
lation of the distribution of crack sizes, which is essential input for theories 
with a much improved physical background such as the Weibull weakest link 
theory and the 4-stage fracture model outlined in Chapter 10.

9.1	 Classical	Models	Describing	Size	Effect	on	Strength

Let us start this section by noting that a viable fracture theory should cor-
rectly predict the size effect on strength and no separate rule should be 
devised for just that. The Fictitious Crack Model presented in Chapter 2 is 
a general fracture theory that predicts size effects; see Hillerborg, Modeér, 
and Peterson (1976) and Hillerborg (1985). The size effect was calculated for 
notched and unnotched beams, and depends on the choice of the softening 
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diagram (linear, bilinear, or any other shape). There is uncertainty about the 
assumption that softening is a material property. Because a valid general 
theory for the fracture of concrete is still lacking we have been using sepa-
rate rules, such as, for example, the one for the size effect on (tensile) strength. 
Almost every size-effect model (theory) developed to date is phenomeno-
logical in nature and a clear physical argument is lacking. One important 
exception is the Weibull weakest link theory, which considers that largest 
volumes of the same material have a larger probability of containing a weak 
element and would thus have lower failure strength.

The strength of a structure of given size depends on the probability that 
the structure contains a weak spot. The easiest way to visualize this is a 
structure subdivided into small unit cells (e.g., cubes). The larger the number 
of unit cells contained in a structure, the larger the probability that one of the 
unit cells has a low strength. The weakest link concept developed by Weibull 
(1939, 1951) predicts the probability of failure Pf(σ,V) as

 P V V
V

( , ) 1 expf
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0 0
σ = − − σ

σ

















 (9.1)

where σ is the applied external stress, V is the structure’s volume, V0 is 
the normalizing volume (unit cell), and σ0 is a characteristic (or normaliz-
ing) strength. The exponent m is the so-called Weibull modulus, which is 
considered a characteristic property of the material under consideration. 
Sometimes a lower strength limit σu is included for which the probability of 
failure is equal to zero. Equation (9.1) changes into:
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 (9.2).

The classical approach assumes that as soon as the first element fails the 
entire structure will fail (i.e., fracture is purely brittle), which is not the case 
for concrete, but, as we show, the size/scale of the structure has an effect on 
the apparent brittleness. As a matter of fact there are just a few materials that 
at a given size/scale will behave in a purely brittle manner. Glass is often 
mentioned as a material exhibiting purely brittle behavior, but recently some 
evidence at the nanoscale for precritical crack growth was found (Célarie et 
al. 2003), implying that at very small scales glass may behave as quasi-brittle 
or even plastic. The reason is likely that the amorphous structure of glass 
has an effect on the fracture process, actually quite like what we have seen 
up till now for concrete at the scale of the aggregate particles (mm scale). We 
will return to these matters in Chapter 11. Thus, one might conclude that the 
Weibull theory cannot be applied to concrete and several related materials. 
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Yet, a way around may be to consider the microcrack distribution just before 
reaching peak load as, for example, done by Jayatilaka and Trustum (1977) 
and Danzer et al. (2007). We do not debate these matters here but delay that 
to the last section of this chapter after presenting some experimental results 
and insights derived from numerical (lattice) simulations.

Two phenomenological size-effect models have been extensively debated 
over the past decade, namely the “size–effect law” and the “multifractal scal-
ing law.” SEL is partly based on cohesive softening models and contains ele-
ments derived from it such as the length of the fracture process zone (see 
Chapter 2); yet it is also directly related to the early work by Walsh (1972) 
and Leicester (1973). MFSL is based on considerations about the fractal struc-
ture of concrete and its effect on mechanical behavior. MFSL predicts com-
plete stress–deformation behavior and is in that respect more complete than 
SEL. Let us first, however, summarize some of the findings by Walsh and 
Leicester. In Figure 9.2 Walsh’s results are shown. Notched beams of vary-
ing size were loaded in 3-point bending. The beam length was 5d, the height 
3d/2, and the notch depth was d/2, with d the size of the ligament above the 
notch as indicated. Walsh observed that, as expected, the nominal strength 
of the beams (normalized to the modulus of rupture) decreased with increas-
ing beam size. Surprisingly this decrease was found only for beams larger 
than a certain size threshold d0. For beams smaller than d0 a more or less 
constant strength was found. Walsh argued that the decrease of nominal 
strength along the inclined branch followed linear elastic fracture mechan-
ics. In a paper published around the same time Leicester (1973) proposed a 
simple expression for the decreasing nominal strength with increasing size:
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permission.)
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1σ = ≥−  (9.3)

Here a1 is a constant and D is the characteristic size of the structure. It is safe 
to assume that the characteristic size is the smallest dimension of the cross 
section where a crack will appear, in most cases in the direction of crack 
propagation. In Equation (9.2) one can substitute the volume V by Dn, where 
n denotes the number of dimensions, and the relation between nominal 
strength and structure size can be written as (see Bažant, Xi, and Reid 1991)

 DN
n m/σ ∝ −  (9.4)

Thus, for a material with a Weibull modulus m = 12, and considering three-
dimensional scaling, the negative exponent in Equation (9.4) is equal to –n/m 
= –3/12 = –1/4. The decrease of nominal strength with increasing charac-
teristic size takes a certain slope, which depends both on the material and 
on the dimensionality of the problem. LEFM predicts a negative slope of 
–1/2, irrespective of the material, as shown in Section A2.1. Some research-
ers consider the LEFM limit for very large sizes is the largest possible size 
effect. This would imply that for very large sizes the material structure has 
no effect on the strength of a structure; all is dictated by the (relative) size 
of the notch and the geometry of the structure itself. This could be debated. 
There is no experimental evidence available for extremely large structures. 
Moreover, the LEFM analysis is highly idealized: the material is homoge-
neous and isotropic, and the stress-state around the notch-tip is assumed to 
be identical to the stresses at the tip of an actual crack. For the moment we 
assume that the large-scale asymptote is set by LEFM.

Let us now return to the lower size asymptote from Walsh’s experiments. 
It appears that below a certain threshold d0 no size effect is observed and 
the strength of the (notched) beams is constant, contrary to sizes beyond the 
threshold d0 for which a strength decrease is found. For very small structures 
we have to consider the effects from the material structure, for example, the 
particle structure of concrete. In Chapter 6 an example was shown of a ten-
sile test on a single-edge notched plate (see Figures 6.2a–d). Although the 
notch was relatively deep, larger than the maximum aggregate size, the main 
crack started where a cluster of large aggregates was present, by chance at 
the opposite side from the notch. The stress concentration at the large cluster 
of aggregates was obviously more important than the stress concentration 
from the notch. If the size of the structure becomes smaller than what is 
considered as the representative volume element (RVE) (the smallest volume 
of a material that can be considered as a continuum; usually it is assumed 
that the RVE for concrete is three to five times the maximum aggregate size), 
effects from the local material structure will become increasingly more 
important. The notch will be of less importance, until the point is reached 
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where the structure has become so small that it consists of just cement matrix 
or aggregate material. For very small structure one should therefore expect 
a larger scatter in strength results. The horizontal branch in Walsh’s experi-
ments for small structures may therefore be quite indeterminate when scat-
ter increases.

In the “size–effect law,” which is based on the model by Walsh, a number of 
important assumptions are made. The size-effect law can be seen as a clever 
curve-fitting method that tries to connect the horizontal asymptote for small 
sizes and the LEFM-based asymptote for very large sized structures by means 
of a continuous function. “Asymptotic matching,” known from the field of fluid 
mechanics is the curve-fitting technique used. Two conditions are that the fail-
ure mechanism in structures of varying size remains unchanged and that two-
dimensional scaling is applied; that is, the thickness of structures of varying 
size is assumed to be constant. The structure always contains a notch (also geo-
metrically scaled) from which the main crack initiates. In front of the tip of the 
notch a fracture process zone exists with half-length cf. The nominal strength 
of a structure can then be expressed as a simple function of its size D, following

 D Bf
D D
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0
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′
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The size-effect relation can be described also by considering the energy 
release rate, which leads to
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0
σ =

α θ
 (9.6)

where ĝ(α0,θ) is the effective dimensionless energy release rate, θ = cf/D is 
a dimensionless parameter, E is the material’s Young’s modulus, and Gf is 
the fracture energy. These latter two parameters should be determined on 
“infinitely” large specimens; that is, they are the limit value. As we show in 
Section 9.2 the fracture energy of concrete from tensile tests is not constant, 
but increases with structure size (see Figure 9.8). D0 is the transitional size, 
which was already proposed by Walsh (Figure  9.2). When D << D0, the 
energy release from the structure is negligible, whereas for D >> D0, the 
energy release from crack growth is dominant. In the latter case the classical 
fracture mechanics solution is retrieved that leads to the –1/2 asymptote for 
very large sized structures, again, as was proposed by Walsh. The energy 
release caused by the growing crack is simply calculated by considering a 
triangular area above the total crack length, that is, the stress-free crack plus 
the fracture process zones with length cf/2.

As we have seen in Chapter 6 the definition of a fracture process zone 
for concrete is by no means clear. In a panel subjected to tensile loading 
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the fracture process develops from distributed microcracking through the 
growth of a single large macrocrack with substantial bridging. This whole 
microfracture and bridging zone could then be interpreted as the fracture 
process zone, but measuring the extent of it is certainly not straightforward. 
Moreover, the fracture process zone doesn’t seem to be constant throughout 
the fracture process. Depending on the resolution of the measuring tech-
nique different fracture process zone lengths were reported ranging from a 
few μm to almost a meter; see, for example, the overview article by Mindess 
(1991). The extent of the fracture process zone is thus the fundamentally 
unknown parameter, which then leads to fixing the problem by means of 
curve-fitting. Doing just that, it can be shown that on a double-logarithmic 
scale Equation (9.5) fits the behavior of many different structures made of a 
variety of different materials; see, for example, Bažant (2004). It is obvious 
that applying results from a curve fit outside the range of observations is a 
haphazard endeavor, and one should refrain from trying. SEL is just that, 
a curve-fitting exercise, in spite of all the theoretical considerations made 
in dozens of papers published on the topic by Bažant. The matter becomes 
quite clear when one studies the values of the parameters in Equation (9.5), 
when it is fitted to various data sets. An overview was made by my doctoral 
student Nooru-Mohamed (1992), who concluded that as long as there is no 
physical basis for the parameters, SEL has a very limited range of applicabil-
ity. Indeed, as was concluded by Mindess (1991), cf, the fracture process zone 
length, does not appear to be a fundamental property of the material, but 
depends on specimen geometry and loading conditions. The various anal-
yses presented in Chapter 6 confirm this view. The fracture process zone 
length is an essential parameter in Equation (9.6), and given its elusive char-
acter, any theory based on it is to be used with caution. There are additional 
problems, however. SEL applies to notched structures only. The enormous 
amount of papers on SEL is confusing people and has even led physicists to 
believe that there is interest in “notched structures” in the field of civil engi-
neering (see Alava, Nukala, and Zapperi 2006). Luckily we all know better.

The second, more recent theory developed to describe size/scale effects 
in the fracture of concrete is the multifractal scaling law. This approach 
considers the fractal nature of the material structure, in particular the aggre-
gate structure, and leads to the following expression.

 D f l
D

( ) 1N t
cσ = +  (9.7)

where ft is the tensile strength of the material (for infinitely large specimen 
sizes) and lc = λ · dmax is a characteristic length representing the influence 
of disorder on the mechanical behavior. In the small-scale (fractal) regime 
the size-effect law has a slope of –1/2 on a log σN-log D diagram, whereas 
in the homogeneous regime MFSL grows toward a horizontal asymptote. 
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The characteristic length lc marks the transition between the fractal and the 
homogeneous regimes. The fracture energy behaves in the opposite way, 
namely in the small-scale (fractal) regime the slope is + 1/2 in a log-log rep-
resentation, and again, grows toward a horizontal asymptote. This is, as a 
matter of fact, also the assumption in SEL, and is confirmed by experiments: 
the fracture energy increases with structural size, and seems to grow to a 
horizontal asymptote; see Figure 9.8. It is interesting to note the differences 
in asymptotic behavior between SEL and MFSL. In Figure 9.3 the various 
models are shown in a single log σN – log D diagram. Walsh’s model has 
been included, as well as the Weibull approach, which reduces to a straight 
line with negative slope in a log–log representation. The range of available 
experimental data is shown as a gray-shaded area. SEL forms a continuous 
variant of the Walsh proposal. A horizontal asymptote for the small-scale 
regime and a –1/2 slope from LEFM are connected by means of asymptotic 
matching. MFSL goes in the opposite direction: a –1/2 slope in the small-
scale regime, changing to a horizontal asymptote for large-scale structures. 
The two models, SEL and MFSL, overlap in the area where most test data 
are available, and the two models fit these data equally well. This is no sur-
prise because in both cases a fit is always made directly to the experimental 
data: in the case of SEL there is uncertainty about the length of the fracture 
process zone, whereas in MFSL the same is true for the characteristic length 
and the limit value of the tensile strength for infinite size. So, which model 
should be used? This question is very difficult to answer. The small-scale 
and large-scale asymptotes are difficult, if not impossible to measure. In the 
case of SEL, Bažant maintains that the asymptotes are only used to construct 
the model, and it should not actually be attempted to measure the behavior 
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in the two asymptotic regimes, in particular the one at the small-size/scale 
end of the spectrum. Bažant and Yavari (2005) have critically assessed the 
MFSL, and make various comments to show that erroneous predictions are 
made, especially concerning the small-scale and large-scale asymptotes. The 
horizontal asymptote for large sizes should have a slope, at least similar to 
Weibull. Moreover, the –1/2 slope for the small-scale asymptote in MFSL 
does not follow from the hypotheses made in MFSL (personal communica-
tion with Bažant).

We do not attempt to solve the argument, or rather controversy, in this 
book. The discussion about the asymptotic behavior seems rather futile and 
not to the point; it will never be possible to validate the small-size nor the 
large-size regime through experiments. It should be noted that both models, 
in the end, need to be fitted to experimental data. In both cases it is not clear 
how the model parameters relate to the common parameters used in con-
crete structural engineering, such as the compressive and tensile strength. 
Rather what we intend to do in the remainder of this chapter is to come to 
grips with the actual fracture process in concrete structures of varying size. 
Experiments have been conducted, in a size range of 1:32, revealing interest-
ing details of the behavior of tensile specimens of different size. Next to that, 
lattice simulations have been performed that give further insight to the frac-
ture process. The numerical simulations relate to two loading cases: uniaxial 
tension and 3-point bending. In the latter case detailed analyses of the crack 
size distributions have been made, which forms essential input for the new 
model presented in Chapter 10.

9.2	 Size	Effect	on	Strength	and	Deformation:	Experiments

Experiments will always form the basis for new models and theories for 
fracture of concrete. Considering this it is amazing that so few are really 
engaged in developing new critical experiments to test existing theories 
such as those presented in the last section. Truly open experimentation is 
not very often done, which probably is caused by the fact that in order to 
get some research funding one often has to “predict” what is to be found or 
observed. Performing size–effect experiments on concrete is a costly affair. 
Constructing the necessary loading equipment to handle specimens over a 
sufficiently large size range is time consuming; one needs to ensure that all 
measurements, on small and large specimens, can be done with the same 
accuracy. If different loading rigs are used to tests specimens of different 
size one needs the assurance there is no influence from the test method. In 
Chapters 2, 6, and 8 we have seen that the softening regime, both in tension 
and compression, is notably affected by the boundary conditions adopted 
in the test. Therefore, it is believed that softening is, at least for a large part, 
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a structural property rather than a material property. The lowest fracture 
energy measured directly from a uniaxial tensile test is obtained when 
freely rotating supports are used: crack overlaps from bending moments in 
the supports cannot develop. The main crack simply grows from one side of 
the specimen to the other side.

In 1994 Carpinteri and Ferro published results from size effects on con-
crete subjected to uniaxial tension. Active control was used, meaning that 
in a center part of the dog-bone-shaped specimens deformations measured 
along the circumference of a specimen were kept uniformly distributed. 
This was achieved by using three actuators, one centrically placed, the two 
others with a certain eccentricity to counteract possible bending moments 
when the main crack developed asymmetrically. Active control was men-
tioned in Chapter 6; see Figure  6.8c. According to computations with the 
lattice model higher fracture energy would be found for specimens loaded 
using active control, whereas the lowest possible fracture energy would be 
found when freely supporting boundaries are used. The size range of the 
experiments by Carpinteri and Ferro (1994) was 1:16. This was the largest 
available range in 1994, which relates directly to difficulties in measuring 
stable softening behavior for the largest tensile specimens. Following these 
experiments my student Van Vliet and I embarked on an ambitious endeavor 
trying to extend the range of size–effect tests for uniaxial tension. The goal 
was developing a test technique that would allow measuring the complete 
stress–deformation behavior, including the softening regime. Adopting and 
slightly modifying a technique also used by Li, Kulkarni, and Shah (1993), 
it was possible to determine the softening response of 2.4-m long dog-bone-
shaped panels with a thickness of 100 mm. The loading was applied with a 
small eccentricity, which was scaled along with the specimen dimensions. 
Two-dimensional scaling was applied: the thickness of all specimens was 
100 mm. Special hinges were developed, based on a pendulum bar system, 
which allowed testing the dog-bones between freely rotating loading platens.

A sketch of the specimens is shown in the inset of Figure 9.4, and a draw-
ing of the middle-size loading rig is shown in Appendix 3, Figure A3.4, 
where the test control is also explained. Three loading frames were built, 
each suitable for testing two sizes: the smallest rig for the smallest speci-
mens “A” and “B,” the middle rig for “C” and “D,” and the largest rig for “E” 
and “F.” The size D in Figure 9.4 varied between 50 and 1,600 mm; the total 
panel length was always 1.5D, thus varying between 75 and 2,400 mm. The 
smallest section between the curved bays of the dog-bones was 0.6D; thus 
for the smallest specimen “A,” the effective area where the crack would very 
likely develop was 30 × 100 mm, and for “F,” the largest size, 960 × 100 mm. 
This implies that for the smallest specimens the thickness is larger than the 
width of the dog-bone, thus creating a plane–strain situation. For the largest 
specimens one can clearly expect a plane–stress state. This is a consequence 
of the decision to scale specimens only in two dimensions and keeping the 
thickness constant. As a matter of fact, until these tests were done nobody 
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ever seemed to have realized that a transition from plane–strain to plane–
stress would occur. This obviously must have consequences for the analy-
sis of experimental data. Van Vliet (2000) shows in his doctoral thesis that 
the rotational behavior of the specimens during growth of the main crack 
depends on geometrical variations.

Due to the small size of the neck of the dog-bone size A, it was decided to 
use a concrete with dmax = 8 mm. The cement used was an ordinary Portland 
cement CEM I 42.5 R. The 28-day compressive strength (150-mm cubes) var-
ied around 50 MPa for the various batches, and the splitting tensile strength 
(also using 150-mm cubes) varied around 3.5 MPa (see Van Vliet 2000) for all 
the details). Compared to the neck width of 30 mm for the A-size specimens, 
the W/dmax-ratio was 3.75, which is small compared to the usual RVE of 5dmax. 
In the experiments of Carpinteri and Ferro (1994), the situation was even 
more critical: in that case the ratio W/dmax decreased to 1.875, barely enough 
to consider these results of any use. This is of course the dilemma: in order to 
extend the size range it is attractive to downsize, but if a specimen becomes 
smaller than the RVE the results become useless, and a high scatter must be 
expected. In all the discussions about the small-size asymptote, which we 
reviewed in the last section, there is no discussion whatsoever about this 
constraint. The situation should be clear by now: downscaling is useless, and 
only increasing the sample size will lead to very large size ranges that are 
needed to validate the various size-effect approaches. For very rough con-
cretes, for example, using dmax = 32 mm, would lead to minimum width of 
“A”-size specimens W = 120 mm, and for the “F”-size, 32-times larger; that is, 
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W = 3,840 mm. The panel length would in the latter case be 9.6 m. This is too 
large to handle in many laboratories; the only option left would be to load 
such specimens horizontally, for example, floating on water, as was done in 
the largest known size-effect tests by Dempsey et al. (1999a,b). They tested 
floating ice sheets that were examined first on uniformity of their thickness. 
Due to problems encountered in hostile arctic conditions, these tests were 
conducted using flat-jacks, without closed-loop control.

The main results from the size-effect tests are shown in Figure  9.5 and 
9.6. In Figure 9.5 the stress–deformation diagrams from the experiments are 
shown, labeled “A” (smallest) through “F” (largest). Results are shown in two 
diagrams to increase legibility: specimens “A”–“C” in Figure 9.5a, the other 
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three sizes in Figure 9.5b. Note the different scale along the force-axes (factor 
5 difference). Because scaled deformations are shown in these diagrams we 
clearly see snap-back behavior for the “E” and “F”-sizes. The adopted control 
system can handle this easily. It is of utmost importance to conduct stable 
experiments because otherwise conclusions cannot be drawn and a lot of 
work is done without appreciable result. These results are likely the largest 
size/scale range ever done for concrete. At least four successful tests were 
demanded for each size. Exceptions were the smallest “A”-size specimen for 
which 10 replications were made, and for types “C,” and “D.” It is important 
to note here the large number of replications for the “A”-size, which relates 
to the discussion about the lower asymptote in the previous section. In order 
to continue the discussion it is important to show first the nominal strength 
versus size diagrams of these experiments; see Figure  9.6. Two diagrams 
are shown, for the “dry” series in Figure  9.6a and for the “wet” series in 
Figure 9.6b. These latter results are ignored for the moment, but we return to 
these as soon as we discuss small-scale asymptotic behavior.

In Figure 9.6a it can be seen that the “A”-size specimens showed a large 
scatter (average tensile strength for “A” was 2.54 MPa, the standard deviation 
was 0.41 MPa, i.e., 2–4 times as large as for the other sizes; see Van Vliet 2000 
for all the details). The increasing scatter was expected because size “A” was 
below the RVE for the concrete used. Therefore it would make sense that the 
smallest size be discarded. This is normally not done because one would like 
to have results for the largest possible size/scale-range. In this case, however, 
it is shown to be meaningful to remove the results for the smallest size “A,” 
and it is considered very important for each test series to make a thorough 
check. For example, the previously cited results by Carpinteri and Ferro 
(1994) concerned tests on five different size dog-bones. The smallest size 
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specimen was just a factor 1.5625 larger than the largest aggregate particle 
in the concrete mixture used. This certainly makes these results doubtful. In 
addition, because the control system used by Carpinteri and Ferro (1994) was 
not capable to obtain stable load-deformation diagrams for the largest speci-
mens (only one valid result was obtained for that size, which is clearly not 
sufficient). The remaining size/scale range in their experiments spans only 
three sizes with a scale range of factor 4, which is barely sufficient to make a 
good comparison to the various models.

In the experiments of Figure 9.6 the effective scale-range is 16 and not 32, 
as was intended. There is another important effect here, namely, the aver-
age tensile strength for the “A”-size decreases, which does not correspond 
to any of the assumptions made in the size-effect approaches discussed 
in Section 9.1. The available choices were constant strength for small sizes 
(Walsh and SEL), or an asymptote with negative slope (MFSL); see Figure 9.3. 
A notable effect during the experiments was the rotational behavior of the 
specimen when the main crack propagated in the softening regime. In 
Van Vliet and Van Mier (1999) it was shown that the rotational behavior 
caused by the combination of the chosen boundaries (free rotations) and 
the effects from nonuniform crack growth (a truly three-dimensional effect, 
that was discussed in Section 6.1.4.1) led to the decrease of apparent tensile 
strength for the “A”-size. Here it should be recalled that when keeping the 
specimen thickness constant, a transition from plane–strain to plane–stress 
occurs when the specimen is scaled in the other two directions. This effect 
is usually ignored, and one can doubt many comparisons of the various 
size-effect approaches in the small-scale range. Thus, two effects must be 
carefully considered when experimental results are compared to size-effect 
theories: (1) comparing data below the RVE is not very useful because the 
material sample is not representative, leading to an increased scatter, and (2) 
two-dimensional scaling does not imply that we can consider the problem 
in just two dimensions. Three-dimensional effects may appear when we go 
through the transition from plane–strain to plane–stress. The strength of 
the experiments shown in Figures 9.5 and 9.6 lies in the fact that they were 
very carefully conducted. It has taken more than five years to come to the 
first journal publications, which is for most unacceptable in the present-day 
research environment with its heavy publication pressure. Nevertheless, 
there is great need for carefully conducted experiments as well as a careful 
analysis of the obtained results.

The “dry” results from Figure 9.6a were fitted to Weibull, and it was found 
that a Weibull modulus m = 12 led to a favorable comparison with the five 
largest sizes. The negative slope of the Weibull theory is –n/m = –2/12 = 
–1/6 as shown in Figure 9.6a (n = 2, that is, two-dimensional scaling). This 
value lies in the range for tensile tests on concrete by Zech and Wittmann 
(1978). In an in-depth analysis Vořechovský (2007) derives a negative slope 
of –1/7.91 for these experiments based on a stochastic analysis with three 
different length scales.
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Let us now return to the results of Figure 9.6, and investigate what happens 
when the environmental conditions change. In Figure 9.6 the log σN versus 
log D diagrams are shown for “dry” and “wet” specimens. Dry specimens 
were kept for a longer time (several months) in the lab, until equilibrium 
with the lab environment (specifically the relative humidity) was established 
(RH = 60%; T = 20°C). Wet specimens were stored in a fog room (RH = 90%, 
T = 20°C) until one day before testing. The wet specimens therefore suffered 
from significant moisture gradients, which may lead to drying induced 
microcracking as shown in Figure 9.7. Because the zone affected by micro-
cracking from drying shrinkage appears to have constant depth (see also 
the examples of drying shrinkage cracking in Section A4.4), the effects from 
drying may have some influence on the size effect on strength and fracture 
energy. In particular toward smaller-sized specimens the fracture strength 
may be affected because the microcracked zone takes up a relatively larger 
part of the specimen’s cross-section. The results shown in Figure  9.6 con-
firm this: the difference between fracture strength is larger for the smallest 
specimens, and comes close to the results for dry specimens when log D > 
2. Vořechovský (2007) also investigated the effect of damage zones on the 
size effect and concluded that the decrease for structure size “A” could be 
explained from just that.
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FIGURE 9.7
(a) Drying shrinkage of concrete may lead to differential deformations and differential stresses, 
eventually leading to microcracking in surface layers of the material; (b) typical drying shrink-
age crack patterns in hardened cement paste (section perpendicular to drying surface); and (c) 
composite of cement and mono-sized glass beads (view parallel to drying surface after grind-
ing the top-layer). Drying shrinkage cracking is explained in detail in Section A4.4 and Section 
11.2. ((a) After Van Mier. 2004a. Proceedings 5th International Conference on Fracture of Concrete 
and Concrete Structures (FraMCoS-V). (b),(c) From Shiotani, Bisschop, and Van Mier. 2003. Engng. 
Fract. Mech., 70(12): 1509-1525. With permission from Elsevier.)
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In Chapter 2 we discussed cohesive fracture models, which have been 
included in various finite element models for simulating fracture on the 
macroscale. Such models incorporate all the microscale behavior in a single 
cohesive fracture law. Basically, the behavior of a process zone is modeled as 
a nonlinear fracture phenomenon, which can be used in any type of struc-
tures loaded under any type of boundary condition. The analyses presented 
in Section 6.1.4.1, as well as experimental results shown in Section 2.5 showed 
that the boundary conditions have a significant influence on the shape of the 
softening curve in tension (see Figures  6.7, 6.8, and 2.11, respectively). The 
specimen size not only affects the maximum strength but the entire load-
deformation response. The size effect must likely also be considered as a 
structural property, and can therefore also be analyzed by means of a micro-
mechanical model. Thus, again, simply consider a specimen as a small-scale 
structure and include the boundary conditions from the experiment in the 
analysis. In the context of this book quite obviously the lattice model has been 
used. Particle models and other micromechanical models can be used too, 
however, as long as the intention is not to curve-fit the experimental results. 
Instead the model should be used as a tool to come to a deeper understanding 
of the size-effect phenomenon. Such an approach is quite different from those 
presented in Section 9.1 where in most cases ad hoc assumptions are made, 
in some cases lacking any sound physical basis. Before presenting the results 
from a number of lattice analyses, however, the size effect on fracture energy 
is shown here for the sake of completeness. In the previous section it was men-
tioned that the fracture energy increases with structural size. In Figure 9.8 the 
effect of size on fracture energy is shown in two different diagrams.

We do not know the width of the crack zone exactly: it is “assumed” that it 
is a either a line-crack (Fictitious Crack Model) or a crack-band with certain 
(usually, constant) width (Crack-Band Model), nor is it straightforward how 
the correction for the unloading of the elastic material inside the measure-
ment length should be done. So, in Figure 9.8 we plot the raw data directly 
from two types of deformation measurements that were conducted: the 
so-called ‘“scaled” measurement (Ls), in which the measurement length is 
scaled with the specimen dimensions (see inset in Figure 9.8: two LVDTs are 
mounted at the front and back side of a dog-bone and the length Ls is scaled 
with D), and the “control” measurement length Lc. This latter measurement 
is related to test control: the LVDTs to the right side of the dog-bone were 
used in the test control system (see Appendix 3, Figure A3.4), but of course 
also deliver information about the deformations during the whole experi-
ment. The fracture energy is defined as the area under the postpeak stress–
deformation curve, following,

 G w dw( )F

w

0

c

∫= σ  (9.8)



177Size Effects

Here we use the subscript F instead of the common f to indicate that a 
correction for elastic unloading has not been made. The area under the load 
postpeak deformation diagram has been calculated up to a 180-mm aver-
age crack opening and up till maximum crack-opening, when the load is 
zero and the specimen is separated into two parts. Both values are shown 
in Figure 9.8a for the scaled measurements and in Figure 9.8b for the control 
measurements. All diagrams show the same trend: steadily increasing frac-
ture energy. It is not clear if the asymptotic value has been reached already 
for specimen size “D.” The point of interest is that specimens of varying 
size give different values of the fracture energy, which, according to the two 
aforementioned theories (FCM and CBM) should be a material constant. 
This, again, implies that structural effects have an influence on the experi-
ments; or that our interpretation of fracture energy as material constant is 
not correct. One way to find out what is happening is using mesomechanical 
analyses and studying the fracture process in detail, as we did in Chapter 6 
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Effect of size D on the fracture energy GF of 8-mm concrete: (a) results computed from the scaled 
deformation measurement (measurement base Ls, see right); (b) fracture energy computed from 
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in Tensile Fracture of Concrete and Rock. With kind permission of Dr. Marcel van Vliet.)
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for tensile fracture. In the next two sections we look to the size effect in ten-
sion and in 3-point bending.

9.3	 Lattice	Analysis	of	Size	Effect:	Uniaxial	Tension

Van Vliet (2000) analyzed the results of Figure 9.6 with a two-dimensional 
lattice model. The restriction to two dimensions was made in view of the 
enormous computational demand, which was so large that even in two 
dimensions the largest specimen size of 2.40 m could not be handled within 
reasonable wall-clock time. One of the important issues that constantly 
returns is the way in which heterogeneity is handled and the selection of the 
type of lattice to be used (see Chapter 4). In Figure 9.9 the effect of random-
ness is shown. Variations are made in the type of lattice (regular triangu-
lar lattice) and the incorporated material structure (without or with particle 
structure). The material randomness increases from regular homogeneous, 
to regular with particle structure, to random homogeneous, and random 
lattice with particle structure. The load-displacement diagrams are becom-
ing gradually less brittle in this order, and the crack patterns change from 
a linear crack (Figure 9.9a) to a highly irregular pattern (Figure 9.9b–d). The 
steps refer to the number of cracks until the end of the relative force–inelastic 
deformation diagram. Quite clearly there is a direct relation between the jag-
gedness of the force-displacement diagram, the tortuosity of the crack pat-
tern, and the number of lattice elements removed. In considering size effects 
resulting from lattice analyses the number of cracks at peak load is of impor-
tance; the crack histories shown in Figure  9.9 actually represent the post-
peak (unstable) crack process, which, in experiments is stabilized by using 
an appropriate servo-hydraulic test technique with a well-chosen feedback 
parameter (see Appendix 3). Because the crack histories in Figure 9.9 are so 
different from one another it may be suspected that the size effects from lat-
tice analyses depend on the modeled heterogeneity. Indeed this is the case, 
as shown in Figure 9.10, although perhaps not that convincing from the cho-
sen representation.

In Figure  9.10 the size effects from regular and random lattice analyses 
are shown, with and without particle overlay. The shaded gray band shows 
the range of the experimental results from Figure 9.6a. The analyses cover 
the range 1:16 and not the experimental range of 1:32, therefore only the first 
five specimen sizes are shown and size “F” has been omitted. The calculated 
range was smaller for the random lattice analyses (Figure 9.10b), that is, cover-
ing a size range of 1:8 (note the D-axes are different in Figures 9.10a and b). 
The specimen size “D” was explained in Figure 9.4. The horizontal dash-dot-
ted line in Figure 9.10 makes a comparison between the two diagrams easier: 
the line shows the normalized stress for the fourth size type “D” specimen 



179Size Effects

(a) Step 257

1.00
Regular lattice
Homogeneous

F/
F u

0.75

0.50

0.25

0
0 5

Inelastic Deformation [µm]
10 15

1.00
Regular lattice
Particle structure

F/
F u

0.75

0.50

0.25

0
0 5

Inelastic Deformation [µm]
10 15

1.00
Random lattice
Homogeneous

F/
F u

0.75

0.50

0.25

0
0 5

Inelastic Deformation [µm]
10 15

1.00
Random lattice
Particle structure

F/
F u

0.75

0.50

0.25

0
0 5

Inelastic Deformation [µm]
10 15

(b) Step 1200

(c) Step 400 (d) Step 1100

FIGURE 9.9
Effect of lattice type (regular triangular versus random beam length) and heterogeneity (i.e., 
homogeneous and with overlaid particle structure) for the third smallest dog-bone tensile test 
specimen (type “C”) of the test series shown in Figure 9.4. The step numbers for each example 
refer to the number of removed lattice elements at the end of each analysis. (After Van Vliet. 
2000. Size Effect in Tensile Fracture of Concrete and Rock. With kind permission of Dr. Marcel 
Van Vliet.)
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(D = 400 mm). Comparison of the two figures shows that initially the nominal 
strength decreases faster in the random lattice analyses. Qualitatively the size 
effect appears to be correct for the smaller sizes; for larger sizes the compari-
son is not very favorable (regular lattice only, open squares in Figure 9.10a).

The results suggest that heterogeneity is the key factor that determines 
the size effect of concrete. Without particle structure, cracks are straight and 
the slope of the nominal stress-size diagram becomes steep. Generally it is 
assumed that when the effect of heterogeneity becomes less notable the size-
effect curve would take a slope –1/2, which is the limiting value from lin-
ear elastic fracture mechanics, which is the large-scale asymptote in Walsh’s 
model and in SEL (see Section 9.1, Figure 9.3). Drawing a straight line from 
the “B”-size specimen (200 mm) to the “E”-size specimen (800 mm) gives a 
slope of –0.52 in log–log representation, which is close to the LEFM limit. It 
should be mentioned that the analyses are too limited to lead to a final con-
clusion, and many more simulations are needed. Important in the results of 
Figure 9.10 is that heterogeneity has a vast effect on the (negative) slope of 
the size-effect diagram. The degree of heterogeneity is determined not only 
by the particle structure, but also by the randomness of the applied lattice. 
The randomness of the lattice can be varied (see Figure 4.12), but it is not very 
clear how a certain randomness would relate to, for example, the structure 
of the cement matrix between the coarse aggregate particles. The solution 
would of course be to model the material structure down to the smallest 
scale level, but this would result in an impossible lengthy computation. It 
is also no solution to change the fracture law of the lattice elements in, for 
instance, a softening fracture law as suggested by Ince Arslan and Karihaloo 
(2003), because this distracts from the real goal, namely understanding frac-
ture in heterogeneous materials. There are simply too many ad hoc assump-
tions underlying cohesive models. Moreover, structural effects have a strong 
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Size effect from (a) regular lattice analyses, and (b) random lattice analyses. (Reprinted from 
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influence on the cohesive parameters. It is likely that an entirely different 
approach will be needed.

One final remark should be made with respect to the result shown in 
Figures 9.9a,b. The cracks in a regular triangular lattice tend to follow the 
mesh lines, and rather straight cracks develop (see, for instance, Figure 9.9a). 
Also when the particle overlay is used, small straight cracks connect the 
interfacial transition zone cracks, which can be observed from the crack pat-
tern of Figure 9.9b. The use of a random lattice will, irrespective of the chosen 
degree of randomness, immediately cure this spurious crack mode. But the 
question remains, which beam-length distribution must be selected to have 
a correct representation for the material under consideration?

For the size effect on strength the crack distribution immediately before 
peak stress is reached is considered of importance. Actually it is considered 
the most important factor that may lead to a sound explanation of the size 
effect, because it defines the attainable strength of the material/specimen 
(structure). What happens beyond peak is merely (unstable) macrocrack 
propagation and localization, which is different for each structure. Again: 
softening cannot be considered a material property. Of course researchers 
(including me) were so pleased over the past years that it was possible to 
measure the softening regime, the stage of (unstable) crack propagation that 
much attention has gone to that part of the fracture process, that the most 
important part has been badly neglected, namely the prepeak crack distribu-
tion. In Figure 9.11 the crack distribution for the five considered specimen 

Neck width
type “A” = 30 mm

Type “A” “B” “C”

“D” “E”

FIGURE 9.11
Crack distribution at peak-stress for the analyses with regular lattice and particle overlay. 
(After Van Vliet. 2000. Size Effect in Tensile Fracture of Concrete and Rock. With kind permission 
of Dr. Marcel Van Vliet.)
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sizes with the regular triangular lattice with particle overlay are shown (size 
“A” through “E”). For sizes “A” through “C” the entire neck part of the speci-
mens is shown; for sizes “D” and “E” only the right side of the specimen. 
Crack initiation at the right side was controlled by loading the specimens 
with a small-scaled eccentricity, that is, 1 mm for the smallest “A”-size, up to 
32 mm for the largest “F”-size specimen. The main reason to apply a slightly 
eccentric load was that test control would become easier (see Appendix 3 for 
details). In the analyses of Figures 9.9–9.11 the particle structure was overlaid 
in such a way that the same particle geometry appeared at the right side, the 
most loaded side of the specimen (for details see Van Vliet 2000). Sizes “A” 
through “C” showed that crack initiation was near the same grains; devia-
tions started to appear for the sizes “D” and “E.” This is probably caused by 
the different curvatures in specimens of different size, which cause devia-
tions in local stress distributions. At peak-load cracks have reached as far as 
half of the neck width in some specimens. Compared to the analyses without 
particle structure (i.e., the homogeneous samples), the number of lattice ele-
ments that failed before reaching peak is substantially larger.

In the homogeneous specimens, between one and three elements were 
removed before peak, which would be in agreement with the hypothesis 
made using Weibull’s theory, namely the whole structure fails upon failure 
of the weakest link. In the analyses with particle overlay the prepeak damage 
increased significantly: from 66 elements removed for the “A”-size to 1,029 
removed elements at peak stress for the “E”-size specimen. The removed 
elements are part of several cracks, as can be seen from Figure 9.11. Which of 
these microcracks will eventually develop into the critical macrocrack lead-
ing to localization of deformations in the postpeak regime depends on many 
factors. One of the main tasks at hand is to determine which of the prepeak 
cracks is critical. Van Vliet tried to establish the extent of microcracking in 
specimens of various size (“A,” “C,” and “E”) by using the impregnation 
technique (see Section A4.1). One of the last examples he mentions on page 
82 of his thesis (Van Vliet 2000) relates to the crack densities along the edge 
of an “E”-size specimen where the control LVDTs are attached. Indeed the 
thin sections show larger crack densities where the largest deformations are 
measured between two neighboring measuring points. This means that the 
deformation measurements are, as would be expected, a reliable measure for 
the amount of cracking in parts of a specimen. However, in this way we can-
not answer the question of how long the critical microcrack is, and at what 
point it would start to propagate. The local strength distribution will be an 
important factor to decide this, but also possible crack interactions between 
neighboring cracks. As long as we cannot easily access these details of the 
fracture process, an averaging method will be needed. Progress in vari-
ous crack detection techniques, in particular x-ray computed tomography 
(Section A4.2), will eventually help to unravel all the details. Also additional 
numerical simulations will prove to be helpful. In the next section some fur-
ther examples are given, focusing in particular on the effect of the aggregate 
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structure (particle shapes and particle content) on size/scale effects in the 
fracture of concrete.

9.4	 Lattice	Analysis	of	Size	Effect:	Bending

Many researchers revert to bending tests because, as we already mentioned, 
these are presumed simpler than uniaxial tension tests. Perhaps this is true as 
far as gripping a specimen is concerned, although nowadays strong epoxies 
are available that, given a reliable test protocol will lead to a plenitude of reli-
able results. Bending tests were already discussed in Section 6.2.2. The main 
objection against such tests is that strong stress and strain gradients are pres-
ent in the projected failure plane from the very beginning of the experiment/
simulation. This has certainly an effect on the mechanical behavior, and the 
flexural strength of concrete (usually determined by applying linear elastic-
ity to the result of a test; see Equation (6.2)) is always larger than the uniaxial 
tensile strength. In concrete, for example, under uniaxial tension (i.e., more 
or less uniform stress field) microcracks can—to some extent—be arrested 
in the heterogeneous material structure (see, e.g., Figure  6.3). In bending, 
in addition, cracks can be arrested in the stress and strain gradients, which 
allows reaching a higher failure load. The size of a specimen has influence on 
the absolute size of the part of the specimen involved in the prepeak micro-
crack process. Thus, the likelihood for a critical localized crack increases with 
specimen size, which may lead to the expectation that larger specimens will 
appear to be weaker. However, the fracture process may in detail be quite dif-
ferent from uniaxial tension where the entire cross-section is always approxi-
mately uniformly stressed (even in the tensile tests on dog-bone-shaped 
specimens with (scaled) load eccentricity; see Figure 9.4). Thus although the 
test may appear to be simpler, analyzing the obtained results is more tedious. 
Nevertheless, because bending is the most common type of loading in practi-
cal situations it is worthwhile to ponder a bit on such experiments.

Together with one of my most recent doctoral students we carried out a 
numerical study on the size effect of concrete prisms subjected to 3-point 
bending (see Man 2009). Following the simulations done by Van Vliet (see 
previous section) some improvements were essential to come closer to the 
needed answers. In the first place, full three-dimensional simulations would 
be needed. The aforementioned problem with two-dimensional scaling, 
where a transition from plane strain to plane stress is unavoidable can be 
circumvented. Next, the computer-generated particle structures used by Van 
Vliet would be replaced by realistic particle distributions from CT scans, as 
discussed in Section 4.4 (e.g., Figure 4.7). Also, as was shown in 2D simula-
tions by Prado and Van Mier (2003; see also Section 6.1.2 and Figure 6.3), the 
particle density has a significant influence on the fracture process and may, 
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as a consequence, also affect the size/scale effects. Finally, from a fully 3D 
analysis the crack-size distribution at various stages of the fracture process 
can be extracted, but most importantly at peak-load. This might give a clue 
about the critical crack size, which is an important parameter in the 4-stage 
fracture model explained in Chapter 10.

Prisms containing different types of aggregates were cast, and the aggre-
gate structure (geometrical distribution of the particles) was determined 
by means of a medical CT scanner as explained in Section 4.4. Oval-shaped 
basalt particles were used in one concrete, and crushed basalt particles in 
another. Basalt has a higher density that the porous cement matrix, and the 
particle shapes are quite accessible in a simple medical scanner. The resolu-
tion turned out to be sufficient for our purpose. Three different aggregate 
densities were studied for the oval-shaped aggregate particles (Pk = 20, 30, 
and 40%), and just two densities for the crushed basalt concrete (Pk = 40 and 
48%). Smaller parts were cut from the scanned prisms and overlaid with a 
regular triangular lattice to build the simulation models. All details can be 
found in Man (2009) and in Man and Van Mier (2011). Some preliminary 
results were published in Man and Van Mier (2008a).

In simulations selecting specimen sizes larger than the RVE is of less impor-
tance than in physical experiments. Not only can specimens containing very 
large aggregates at critical locations easily be identified, and if necessary for 
well-documented reasons be discarded, it is much easier to repeat some of the 
simulations than would be possible with experiments. In the latter case, cast-
ing new specimens would inevitably lead to more scatter, just owing to differ-
ences between batches. The simulations, therefore, give important additional 
insight to the fracture process, even from perspectives that would be impos-
sible in experiments. One of these perspectives was, again, as was also used 
in the 2D dog-bone simulations of the previous section, to place the same 
aggregate structure along the most critical edge of the specimen/structure. In 
the case of bending we would have to take care that the aggregate distribu-
tion matches along the lower specimen surface for the various prism sizes. 
Figure 9.12 shows the applied procedure. The method allows having exactly 
the same aggregate structure at the midpoint of the front-lower edge of the 
prisms. It will of course be possible that crack initiation occurs away from this 
point. An alternative approach would just be to select random locations in the 
result from the CT scan for all prism sizes. Four different sizes were inves-
tigated; the smallest “A” size prisms were L × B × H = 6.25 × 2.38 × 2.6 mm3 
(approx. ratio 2.6 × 1 × 1), very small indeed compared to the size of the largest 
aggregate particles dmax = 15 mm. The specimen sizes “B,” “C,” and “D” were 
obtained by subsequent doubling of these dimensions.

Volume scaling has a large effect on the number of lattice elements needed 
in the analyses. The number of elements increased from 21,107 for size “A” to 
9,269,081 for size “D.” In view of this the number of replications of the analysis 
for each size differed: 10–12 replications for size “A,” 8–10 for size “B,” 5–6 for 
size “C,” and just a single analysis for the size “D” prisms. They were simply at 
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the brink of the possible given the available computing infrastructure (see also 
Appendix 1). The main difference between oval-shaped and crushed aggre-
gates is in the crack patterns: depending on the location and shape, crushed 
aggregates may fracture, whereas for rounded aggregates the crack will always 
grow along the smooth interface; see Man (2009) and Man and Van Mier (2011). 
In load-displacement diagrams the differences in crack growth lead to slightly 
lower peak strength for smooth aggregates. The point of interest here lies of 
course in the differences in size effect. In Figure 9.13 crack growth in prisms of 
four different sizes are shown for oval-shaped aggregate particles (Pk = 20%, 
i.e., a relatively low particle content). The size differences between the prisms 

(a)   (b)

FIGURE 9.12
(a) Large prisms (size “D”) were cut out at random locations from the CT scans of a real con-
crete prism; (b) subsequently the smaller specimens (sizes “A” through “C”) were cut from the 
“D”-sizes. (From Man and Van Mier. 2011. Cem. Conc. Comp., 33: 867–880. With permission from 
Elsevier.)
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FIGURE 9.13
Crack growth in prisms subjected to 3-point bending. The concrete contains 20% oval-shaped 
basalt aggregates. At left the crack patterns are shown at maximum load (Fmax), to the right the 
crack patterns at 0.4Fmax in the post-peak regime. (After Man. 2009. Analysis of 3D Scale and Size 
Effects in Numerical Concrete. With kind permission of Dr. Hau-Kit Man.)
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are clearly visible: the smallest specimens at the top are barely larger than the 
dmax, and are not suitable for a continuum representation of the concrete used. 
The cracks propagate predominantly along the interfaces between aggregate 
and matrix, which was modeled as the weakest elements. Some of the cracks, 
in particular in the postpeak regime and very well visible in the largest size 
“D” specimens at the bottom, show matrix cracking. Here large continuous 
cracks have developed, almost to the top of the beams. There is a remark-
able amount of side cracking along the bottom part of all prisms, which all 
contributes to the fracture energy. Unless notched beams are used, bending 
tests will therefore lead to overestimating the fracture energy of concrete. Yet, 
notches have a detrimental effect as well because they force the main crack to 
develop at a specific location, which is not necessarily the weakest part of a 
prism. For an aggregate content of 40% oval-shaped or crushed particles, the 
bi-logarithmic size-effect plots are shown in Figure 9.14. Along the horizontal 
axis log V is plotted, along the vertical axis log σN, which has been calculated 
using Equation (6.2). The trend in the two diagrams corresponds to what we 
have seen for tension as well. The nominal strength decreases with increasing 
size and the scatter is largest for the smaller sizes because here the effect of 
disorder from the particle structure is dominant.

When it is assumed that Weibull theory applies, even in this case where 
substantial prepeak cracking is observed (see Figure 9.13, left column), the 
results can be approximated with the linear expression:

 a b Vlog logNσ = +  (9.9)

where the parameters a and b, as well as their confidence intervals (CI) and 
the regression coefficient R are shown in Table  9.1 for the various particle 
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Size effect on nominal strength σN in 3-point bending, shown in bi-logarithmic representa-
tion for numerical concrete with (a) oval-shaped aggregates and (b) crushed aggregates. The 
particle content in both cases is Pk = 40%. (From Man and Van Mier. 2011. Cem. Conc. Comp., 33: 
867–880. With permission from Elsevier.)
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densities. Parameter b is the slope, which appears to vary between –0.15 and 
–0.24 depending on the type of aggregate and the amount of particles included 
in the concrete. The translation into the Weibull modulus leads to m between 
12.5 and 20 for n = 3 (using Equation (9.4) for three-dimensional scaling).The 
regression coefficients lie between 0.85 and 0.94, indicating that a linear fit 
is not all too bad. A few remarks should be made. First of all, it is debatable 
whether the results from the smallest size “A” should be included in this anal-
ysis. They should probably not be included considering the arguments given 
in the previous section. Secondly, the Weibull modulus varies with material 
compositions, which is of course expected. The approach becomes a bit more 
rational than applying SEL and MFSL, because the actual material composi-
tion is now taken into account. For a certain concrete composition a CT scan 
will deliver the input parameters for the lattice model, specifically the particle 
geometry and particle distribution, which may then be used to compute the 
size effect. The analyzed range is still too small; we realize that in full, but the 
approach seems promising. Given time and improvements of the model, spe-
cifically the solver, and progress in computing infrastructure, will ultimately 
allow for analyzing larger size ranges. There is no need for making assump-
tions about the small-scale and large-scale asymptotes, as is the case in SEL, 
for instance. Refinements are in order, however. The linear approximation of 
Equation (9.9) is just that, an approximation, and the final model is more com-
plicated. The last word has also not been said about the fracture law in the 
lattice model, and it is expected that there is room for improvement.

The lattice approach for estimating the expected size effect is for two other 
reasons also quite useful. In the first place, the load-displacement diagrams 
are computed, which helps to judge brittleness. Secondly, the crack-size dis-
tribution becomes available, which may be used as a starting point in the 
proposed 4-stage fracture model; see Chapter 10. SEL is only capable of fit-
ting the nominal strength at peak; MFSL also gives access to stress–deforma-
tion behavior, but the lattice model (or any other micromechanical model) 

TABLE 9.1

Slope b and Intersection aa in Equation (9.9)

Aggregate	Shape Pk	[%] a CI(a) b CI(b) R

Crushed 20 2.16 0.152 –0.17 0.026 –0.90
30 2.09 0.186 –0.15 0.033 –0.85
40 2.27 0.166 –0.18 0.02 –0.90

Oval 40 2.36 0.148 –0.19 0.026 –0.94
48 2.66 0.229 –0.24 0.04 –0.91

Source: Man and Van Mier. 2011, Cem. Conc. Comp., 33: 867–880. With 
permission from Elsevier.

a From linear regression of the computational size-effect results for 
numerical concrete with various particle shapes and particle densi-
ties. The confidence intervals (CI) for parameters a and b are 
included, as well as the regression coefficient R.
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will deliver the full content. This is exactly what was meant in the beginning: 
a good fracture model/theory has the size effect implicit and no separate 
rule is needed. In the next section we give an example of how the crack-size 
distribution may be retrieved from a lattice analysis.

9.5	 Damage	Distribution	in	Structures	of	Varying	Size

The strength of a material or structure depends on the (micro-) crack growth 
and the crack-size distribution just before reaching the maximum. This is noth-
ing new, although one might ponder whether the point is well taken within the 
concrete fracture community. As may have been clear from the macroscopic 
models presented in Section 2.4, the main attention has focused on soften-
ing, which is the regime of unstable macrocrack growth (see also Chapter 10). 
The macroscopic models are all based on incorporating softening under the 
assumption that microcracking occurs. This erroneous assumption (made, for 
example, by Bažant and Oh 1983), somehow keeps dominating fracture stud-
ies, in spite of an abundance of contradictory experiments; see Chapters 2 and 
6. The softening regime represents the behavior beyond peak strength, and 
thus the material/structure has failed already, unless, as we are accustomed to 
in concrete fracture experiments, special measures are taken to stabilize mac-
rocrack growth (see Appendix 3). We return to these matters in Chapter 10.

In the field of ceramics there has been interest in describing the microcrack 
population for several decades; see, for instance, the work by Jayatilaka and 
Trustum (1977), Danzer (2006), and Danzer et al. (2001, 2007). For example, 
Jayatilaka and Trustum provide a probability density function f(a) of semi-
crack length a (a ≥ 0):

 f a c
n

a e( )
( 2)!

n
n c a

1
/=

−

−
− −  (9.10)

In this equation c is a scaling parameter and n determines the length of the 
tail of the probability density function, where the largest cracks are found. 
Jayatilaka and Trustum (1977) suggest that only a crack of sufficiently large 
length may lead to global failure, and the probability for failure of a single 
crack follows from
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with K /( )Ic
2 2κ = πσ ; that is, LEFM principles are assumed to be valid and 

incorporated in the formulation. Danzer, Lube, and Supanic (2001) summarize 
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the situation very clearly. For homogeneous materials under uniform ten-
sion, with a flaw population described by a negative power law similar to 
Equation (9.10),

 g a g a
a

( )
r

0
0

=






−
 (9.12)

a Weibull distribution according to Equation (9.1) is found. Two parameters 
are of importance in Equation (9.12), namely the power r and the coefficient
g ar0 0. The parameter a0 is a normalizing length. It is assumed that cracks are 
not hindered by obstacles (such as aggregates in the case of concrete), and 
also that no crack interactions occur. Danzer et al. (2001, 2007) continue on 
the path set out by Jayatilaka and Trustum and extend the formulation to 
flaw populations with any size distribution (thus not just a population fol-
lowing Equation (9.12)) and for specimens with inhomogeneous flaw size 
distributions. Again, the Weibull hypothesis (weakest link) applies, and 
crack interactions are ignored. After including the LEFM criterion,

 a K
Y

1
c
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(9.13)

using Equation (9.1), and the relation suggested by Freudenthal (1968) relat-
ing the probability for failure to the mean number of critical flaws Nc,S(σ),

 F N( ) 1 exp[ ( )]S c s,σ = − − σ  (9.14)

Equation (9.12) can be rewritten as follows (Danzer et al. 2007):
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σ π






−  (9.15)

where σ0 is a characteristic strength and V0 the related volume (as in Equation 
(9.1)), m = 2r – 2 and Y is the geometrical function as described in classical 
LEFM (see Section 2.2; here we use a different notation to circumvent confu-
sion with the symbols used for the flaw-size distribution). Note that Nc,S(σ) 
follows from integrating over the defect density from the lower bound ac(σ) 
to infinity, which in turn is related to g(a). The crack density g(a) is shown as 
a function of semi-crack length a in Figure 9.15. At a critical crack size ac(σ) 
failure will be inevitable for a given external stress σ. With increasing σ the 
critical crack size decreases, and the number of “destructive flaws” increases 
(shaded area). Because it is assumed that no crack interactions occur, damage 
has to be sparsely distributed, and for that case Danzer et al. (2007) show that 



190 Concrete Fracture: A Multiscale Approach

the probability of failure of ceramics can be described with a Weibull modu-
lus m = 15. The above exposure is short here because the equations are not 
used in the remainder of this chapter. The reader interested in these matters 
is referred to the various cited publications by the group of Danzer.

The important question to be asked is of course if such an approach would 
apply to concrete fracture as well. The results from the lattice simulations 
in Chapter 6 (uniaxial tension), as well as to those presented in this chapter, 
reveal that the microcrack distribution certainly is not sparse, and crack 
interactions will be the rule rather than the exception. Moreover, the material 
“concrete” is far from homogeneous and crack-arrest and crack-deflection 
caused by large stiff aggregates appear anywhere. What can be done, how-
ever, is investigate how the actual crack-size distributions develop from lat-
tice simulations. Because cracks are basically “removed elements” from the 
lattice, it takes some additional effort to compute the crack-size distribution. 
The final result is, as expected, quite similar to the density function plotted 
in Figure 9.15. In a lattice simulation all crack interactions are automatically 
incorporated: we simply compute the structure as it is and base our con-
clusions directly on the results obtained. A simple procedure to count the 
cracks from lattice simulations was recently developed by my student Man 
(2009). Figure 9.16 shows the procedure. In Figure 9.16a the cracked prisms 
are shown at a certain loading stage. The cracks can be isolated, as done in 
Figure 9.16b, where just the removed elements are plotted. The connectivity 
between these removed elements is hard to determine. Therefore a three-
dimensional cubic grid is projected over the prism’s volume. Cubes have a 
side length equal to the length of a single lattice beam. The cubes containing 
a crack are separated from intact cubes; see Figure 9.16d. In three dimensions 
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FIGURE 9.15
Probability density of crack sizes a. The function g(a) shows the distribution necessary for a 
Weibull distribution. (From Danzer et al. 2007. Eng. Fract. Mech., 74: 2919–2932. With permission 
from Elsevier.)
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a cube has 26 neighbors, which reduces to 18 when the diagonal connectivity 
is excluded (or even less when edge cubes are considered). Subsequently all 
the clusters of connected cubes can be determined and visualized using a 
grayscale coding or color coding (see Figure 9.16e). From here it is straightfor-
ward to retrieve the largest crack cluster (Figure 9.16f). Note that these crack 
clusters are not necessarily curved planes; there may be branching, making 
the crack cluster a complex 3D object. There is much room for improvement 
at this point, but as a first approximation the results can be well used.

In Figure 9.17 results are shown from a series of analyses of lattice analyses 
on prisms of varying size, subjected to 3-point bending. The example relates 
to a crushed-aggregate density Pk = 40%. We only show results for the “C” and 
“D”-size specimens here inasmuch as their volumes are larger than the RVE, 

(a)  (b)

(c)  (d)

(e)  (f )

FIGURE 9.16
From a cracked structure (a) the removed elements representing cracks can be isolated (b). 
The connectivity of the elements is not clearly described; therefore, a 3D cubic grid is super-
imposed on the structure, with base length equal to a single lattice beam length (c). The cubes 
containing a crack are plotted in (d). Considering the connectivity between neighboring cubes, 
crack clusters containing more than one cube can be identified and marked using different 
grayscales or colors (e), and it is possible to isolate the largest cluster (f). (After Man. 2009. 
Analysis of 3D Scale and Size Effects in Numerical Concrete. With permission of Dr. Hau-Kit Man.)
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and variations due to accidental aggregate locations are reduced compared 
to the “A” and “B”-sizes (the complete range can be found in Man 2009 or in 
Man and Van Mier 2011).The area of the individual crack-clusters is shown 
along the horizontal axis, the counts for each size in the vertical direction. The 
crack-cluster distributions are shown at peak-load (Figures 9.17a and c), and 
in the descending portion of the load-deformation curve at 40% of peak-load 
(Figures 9.17b and d). The distributions are all quite similar: clearly the small 
clusters outnumber the larger ones. Due to the heterogeneity of the mate-
rial structure, many isolated cracks develop. Only those under the most criti-
cal loading conditions (in combination with the local material strength) will 
grow to larger-sized clusters, and perhaps even develop into the last critical 
crack that leads to complete failure of the prism in the postpeak regime. Large 
differences start to appear when the largest crack-cluster is considered.
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inset diagrams. (After Man. 2009. Analysis of 3D Scale and Size Effects in Numerical Concrete. With 
permission of Dr. Hau-Kit Man.)
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The largest clusters are shown in the inset of each figure. Going into the 
postpeak regime we see a negligible increase of small-sized crack-clusters, 
whereas the largest crack keeps growing: from 16.5 mm2 to 46 mm2 for the 
“C”-size prism and from 108 to 228 mm2 for the “D”-size. Translated to 
the fraction of the total cross-sectional area for the type-“C” and type-“D” 
prisms we obtain the following results: at peak 19% and 25% cracked area 
for “C” and “D,” respectively, and in the postpeak regime at 40% of Pmax 
these values increase to 48% and 55%. Apparently the largest crack is the 
critical crack that will lead to separation of the prism in two parts at the 
end of the softening curve. Thus, again, as we have seen earlier for tensile 
loading (Chapter 6), the softening regime is dominated by the growth of a 
single large crack-cluster. Remember that this is probably not a single undu-
lating crack but a complex 3D object complete with branches and possibly 
crack-face bridging (see Section A4.1). For the application in a simple macro-
scopic fracture model presented in Chapter 10, it is necessary to translate the 
above crack-area data to an effective crack length in two dimensions. This is 
attempted in Figure 9.18. For each crack-cluster the largest extension in the 
direction of the height of the prisms has been determined, and plotted for 
various loading stages for the variety of concretes investigated.
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The effective crack lengths shown have been determined from a two-dimensional projection of 
the largest crack-cluster (defined according to Figure 9.16f) as indicated in the inset. In the main 
diagram the effective crack length is shown for the various concretes with different content 
of crushed or oval-shaped aggregates at five different loading stages. Results are for “C”-size 
prisms. (From Man and Van Mier. 2011. Cem. Conc. Comp., 33: 867–880. With permission from 
Elsevier.)
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The important issue at hand is how this crack-cluster should be interpreted 
and used in a global macroscopic model. In the spirit of the effective crack 
models developed in the past (see, e.g., Karihaloo and Nallathambi 1989), it 
seems a good idea to return to classical fracture mechanics. There are some 
differences, however. First of all, before reaching peak-load a whole family 
of cracks develops in the prisms. These cracks can be understood as a means 
to weaken the structure, that is, to prepare it for global failure. The criti-
cal stress intensity factor that would be a necessary input parameter in any 
classical fracture mechanics approach is therefore reminiscent of an R-curve 
model, where the stress-intensity factor keeps increasing until it reaches a 
maximum value. From the beginning of an analysis it is not straightforward 
to determine the first critical crack. Together with my former student Prado, 
I looked into the problem, trying to trace back the critical crack from the final 
crack map. Usually a small crack was found that did not seem very special 
compared to its neighbors, and it is very likely that the crack map has to be 
judged simultaneously with the distribution of local material strength. At 
this point we leave these results for what they are. In the next chapter they 
are of good use in the development of the 4-stage fracture model.

Perhaps a last remark is appropriate. Uniaxial tension and 3-point bending 
are among the simplest possible loading situations one may investigate. The 
subject matter (size effects) is rather complex, and so it is no surprise that the 
main attention goes to these cases for the moment. All cracks are more or less 
oriented perpendicular to the direction of the principal tensile stress. Under 
more complex loading situations, such as torsion (and multiaxial compres-
sion), the stress-direction may rotate affecting the orientation of microcracks. 
These can be measured using stereological principles (see, e.g., the applica-
tions in Stroeven 1973 and Van Mier 1985). The full picture has to include the 
crack orientations with respect to the loading direction; for the simple loading 
cases discussed here and as a first approximation we can refrain from that.

9.6	 Concluding	Remarks

Size effect is a major issue in fracture studies of concrete materials and struc-
tures. It may be obvious by now that separating the material effects from 
structural behavior is no simple task when it comes to describing fracture. 
This means that phenomenological models directly based on experimental 
results cannot be used. The best way is still deriving the size effect directly 
from a macroscopic fracture theory, and no special rule must be devised. 
This already eliminates SEL and MFSL as possible candidates. Another rea-
son not to use either SEL or MFSL is that the assumed asymptotic behav-
ior can never be verified, as discussed to some extent in this chapter. 
Micromechanical modeling is a great tool, but cannot be used either because 
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of the lengthy computations needed, whereas it is still questionable if truly 
large-scale analyses can be performed at all considering the demands of the 
various length scales that must be included ([μm]- to [mm]-scales) and the 
sheer size of the structures ([m]-scale and larger) that need to be analyzed. 
At the moment the best bet would be using Weibull theory, which has the 
clear advantage that it is based on sensible assumptions. Expanding the sta-
tistical theories in a way comparable to developments in the field of ceramics 
seems a workable approach. Again, micromechanical modeling is quite use-
ful here because one may obtain insight to how the crack population evolves 
throughout the loading history. In doing so, it is best not to trust any model 
used, but combining the analyses with sound experiments.
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10
Four-Stage Fracture Model

Thus far we have concentrated on existing model approaches for the fracture 
of concrete. As an extension of the cohesive model developed by Barenblatt 
and Dugdale in the late 1950s/early 1960s, the Fictitious Crack Model was 
developed by Hillerborg and co-workers in 1976. The similarity was taken 
very loosely because the fracture process zone is very small for the metals 
that were considered initially, in comparison to the large (global) size of the 
process zone for concrete materials. By starting out from this similarity the 
original “local” model for the fracture of plastic metals is transformed into a 
“global” model where the process zone may even exceed the size of the entire 
structure or specimen. As a result, the softening parameters needed in the 
model are size-dependent (see Figures 9.5, 9.6, and 9.8) and also are heavily 
influenced by the boundaries (see Figure 2.11). It is obvious that, even though 
the model is used extensively for the moment, albeit sometimes with rather 
debatable outcomes, eventually a better and more reliable model needs to 
be developed. One might think that a micro- (or rather meso-) mechanical 
model may be the answer to many of the questions. Yet, one must accept 
lengthy analyses in that case (see, e.g., Appendix 1), and also at a smaller 
level of observation the same uncertainty will remain about the validity of 
the parameters used. We return to these matters in Chapter 11.

The intention here is to develop the framework for a possible successor of 
the fictitious crack model. This is done for tensile fracture (mode I in clas-
sical terminology), but at the end it is shown that the same approach may 
well be used for another important failure mode of concrete (and for related 
geomaterials), namely compressive fracture. To set the stage, in Section 10.1 
we first review the fracture process of concrete subjected to uniaxial ten-
sion, as it emerges from all the experiments described thus far and the vari-
ous lattice analyses done. In Section 10.2 the new framework is explained, 
and an example of its application is given. Next, in Section 10.3 the fracture 
process in compression is summarized, citing the most important evidence 
for the view given, and the similarities and differences with the approach 
proposed for uniaxial tension are outlined. The model is barely fit for prac-
tical applications. Yet it is considered as an important tool (or guideline) 
for future experimentation and a better understanding of the fracture of 
concrete. For other materials the model appears to apply as well. This is 
discussed in Section 10.4.
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10.1	 Fracture	Process	in	Uniaxial	Tension

In Chapters 2, 6, and 9 quite some attention was given to mode I fracture 
of concrete at different sizes/scales. Because of the low tensile strength of 
concrete, mode I fracture will usually prevail, unless high confinement 
is applied, fibers are added to the concrete, or very fast loading rates are 
applied. In most other situations global failure is always initiated by the 
nucleation and growth of mode I cracks. The crack orientation can change 
when the loading on the structure is redistributed during crack propagation 
(see, e.g., Chapter 7 dealing with mixed-mode fracture). The fracture process 
understood from many experiments and numerical simulations at the level 
of the particle structure of concrete (lattice model and related micromechani-
cal models) conveniently can be subdivided into four stages:

(0) Elastic stage
(A) (Stable) Microcracking
(B) (Unstable) Macrocracking
(C) Bridging

As can be seen from Figure 10.1 the first linear-elastic stage (0) starts from 
the origin. Next, when the first microcracks nucleate and grow, stage (A) 
leads to a curved prepeak stress–deformation diagram. This continues up 
till peak stress, when, with the growth of the single most critical microcrack, 
unstable macrocrack growth (stage B) leads to the steep part of the softening 
curve. Finally, the macrocrack growth is stabilized, to some extent, by bridg-
ing (stage C). Stages (B) and (C) very likely overlap as indicated in Figure 10.1: 
bridging starts almost directly after the macrocrack propagates. In stage (B) 
the material specimen (or structure) is basically failed. During this stage the 
macrocrack is unstable, but may be stabilized depending on the composition 
of the material (tensile or compressive failure) or the presence of confinement 
(compressive failure only). Let us now examine the evidence for each of these 
four stages in the following subsections.

10.1.1 Stage (0): Elastic Behavior

Immediately after the beginning of loading the material or specimen may 
behave elastically: if no initial defects are present the loading and unloading 
behavior will be identical. Initial defects can be caused, for example, by dry-
ing or wetting, leading to differential shrinkage or swelling, respectively, or 
differential expansion caused by nonuniform cooling after the cement has 
heated due to the hydration process, and so on. Depending on the composi-
tion of the material, and the local properties of the constituents the initial 
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response is either linear-elastic or nonlinear elastic. In general it is assumed 
that linear elasticity dominates stage (0).

10.1.2 Stage (A): (Stable) Microcracking

As has become clear from the meso-level analyses in Chapters 6 and 9 before 
peak stress is reached many small microcracks will develop along the inter-
face between aggregates and the cement matrix; see, for instance, Figure 6.3: 
at peak load a considerable number of microcracks have developed, the 
amount being determined by the aggregate content. Of course the lattice is 
a rather simplified model, but the results (foremost the crack patterns and 
their temporal appearance during the loading process) are in agreement 
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Schematic representation of the fracture process of fracture of concrete under uniaxial ten-
sion, along with the load-deformation diagram. The AE data shown below the diagram were 
obtained by Wissing (1988, Acoustic Emission of Concrete), the photoelastic results of macrocrack 
growth are from Van Mier and Nooru-Mohamed (1990, Eng. Fract. Mech., 35(4/5): 617–628; see 
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Res., 21(1): 1–15; Fracture Processes in Concrete, Rock and Ceramics, 1991; see also Section A4.1).
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with experimental data: from optical microscopy with or without the use 
of fluorescent dye (e.g., Stroeven 1973), and from dyeing experiments with 
ink at various loading stages up to and just beyond peak (Hsu et al. 1963). 
In these experiments compressive loading was applied, which is just a bit 
different from tensile loading, but not in principle. Indirect evidence for pre-
peak (micro-) cracking in tension can be derived from acoustic emission mea-
surement carried out, for example, by Wissing (1988). He tested small prisms 
loaded with deformation control in uniaxial tension. Some results by Wissing 
are included in Figure 10.1. Before maximum stress is reached, considerable 
AE activity is monitored (number of counts, or “hit-rate”). Shah (1990) reports 
similar results on single-edge notched tensile specimens: the AE count is 
significant at peak stress. Using a technique called ESPI (electronic speckle 
pattern interferometry), Meda (2003) showed early microcracking on Serena 
Sandstone. Note that in his specimens notches were machined, which may 
have affected microcrack growth at earlier than normal loading (see, e.g., the 
uniaxial tests on granite by Labuz, Shah, and Dowding (1985), who showed 
a decrease of tensile strength and a larger prepeak curvature when notches 
were used). Many tests have been done under bending, but such results are 
affected by stress- and strain-gradients caused by the specimen geometry 
and the type of loading. Unfortunately the resolution of x-ray tomography is 
not sufficient at the moment to reveal the microcracks, which are expected 
to have submicron openings at the most. It should be mentioned here that 
when small cracks nucleate or grow, elastic energy is released as explained 
in Section 2.2, Equations (2.17) through (2.20). Summing the energy released 
by all microcracks leads to an increasing curvature of the stress–deforma-
tion curve as sketched in Figure 10.2. The increasing curvature in the pre-
peak regime can easily be identified from experiments; see for example the 
σ–δ diagram measured by Wissing shown in Figure 10.1.
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The energy release can be interpreted as the deviation from “ideal” lin-
ear-elastic behavior. The area below the stress–deformation diagram is the 
amount of energy needed to create the cracks, and equals the fracture energy 
Gf postulated by Hillerborg and coworkers in the Fictitious Crack Model. The 
prepeak energy is usually subtracted from the total energy as the definition 
in the FCM is limited to crack growth during the softening regime only. 
The complete prepeak curve is commonly linearized, which is equivalent to 
eliminating the crack initiation stage. If the area under the stress–deforma-
tion diagram is plotted against the axial deformation, an S-shaped curve is 
found, with the point of maximum stress located at the bend-over point, as 
shown in the inset of Figure 10.2. When the maximum energy is reached, the 
specimen is broken into two parts, at the end of the softening regime.

10.1.3 Stage (B): (Unstable) Macrocracking

Demonstrating macrocrack growth is much easier. A macrocrack has length 
and depth of the same order of magnitude as the dimensions of the speci-
men or structure that is considered. Beyond peak crack-widths are substan-
tially larger, and after the steep part of the softening curve have become as 
large as 30–50 μm. Such cracks can be seen with the naked eye, but with tools 
such as dyeing, impregnation, photoelastic coatings, and ESPI the cracks 
are even more easily detected. In Figure 10.3 we show a result obtained by 
Labuz et al. (1985) on charcoal granite, which behaves almost identically to 
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concrete in tension. The test was done on a double-edge notched plate loaded 
in deformation-control between freely rotating loading platens. Several load-
ing-cycles were applied in the postpeak regime showing that some quite 
irreversible deformation occurs. The optical crack length am, measured from 
the side of the specimen as indicated (thus including the initial notch depth 
of 13 mm) is shown between brackets along the softening curves. At a load 
of 1 kN the ligament between the two notches (49 mm width) is for the larg-
est part broken: the crack length from the tip of the notch is 41.9 – 13 = 28.9 
mm. No secondary cracking was reported. Indeed, considering the results 
from the lattice analyses in Section 6.1.4.1 no secondary crack should develop 
when freely rotating boundaries are used.

In Figure A2.1 in Appendix 2 the results are shown of deformation con-
trolled uniaxial tensile tests on a double-edge notched (DEN) specimen 
of size 200 × 200 mm2 and a thickness of 25 mm; the notch depth was 25 
mm. A thin (1 mm) photoelastic coating was glued to the front and the back 
side of the specimen in the area where the crack was expected to grow. The 
main crack started to propagate just beyond peak, and because (contrary to 
the tests in Figure 10.3) fixed boundaries were used; two overlapping crack 
branches were found. The stage at 22.5 μm average crack opening (measured 
with LVDTs attached to the sides of the specimen; measuring length 35 mm) 
is also included in the main diagram of Figure 10.1. At this crack opening, the 
steep part of the softening curve changes into a shallow tail. It appears that 
most of the cross section is cracked, although some doubt remains because 
with the available equipment only one side of the specimen could be viewed 
during the experiment. Impregnation experiments at subsequent crack open-
ings in the softening regime reveal that the macrocrack starts from the notch 
and extends farther along the specimen surfaces, leaving something like an 
“uncracked” core in the specimen, as shown in Figure 10.4. Further explana-
tions and in-depth analyses of these results can be found in Van Mier (1997).

From the results included here the growth of macroscopic cracks in the soft-
ening regime cannot be doubted. Assumptions made in the Fictitious Crack 
Model and in the crack-band model (see Section 2.4) are hereby refuted. The 
hypothesis of a microcrack cloud in the softening regime does not appear to 
be correct, and an alternative model is required. This seems the “fast” con-
clusion from these observations, but it is very likely correct. There remain a 
few loose ends, namely the tail of the softening curve is not explained, nor 
the uncracked areas in Figures 10.4b and 10.4d at the 50-μm crack opening. 
Bridging (and branching) is part of the explanation; the other parts derive 
from typical structural behavior caused by environmental effects and struc-
tural boundary conditions. We return to these matters in the next section.

10.1.4 Stage (C): Crack-Face Bridging

The crack overlap that is visible in Figure A2.1d (Appendix 2) is caused by 
structural effects; the reason was given in Section 6.1.4.1. When the crack starts 
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to propagate from the left notch, a gradually increasing load-eccentricity 
develops, which leads to a bending moment that hinders the crack from 
propagating (because nonrotating loading platens were used). Only when 
the tensile strength at the right notch is exceeded is the former symmetric 
situation restored, but as a consequence a second crack has grown into the 
specimen. The result is an increase of the fracture energy by as much as 
30%, which can easily be explained from the increasing fracture area. At 
a smaller scale, that is, at the scale of the individual stiff and strong aggre-
gate particles the same mechanism develops. The aggregates deflect cracks 
that originate at the interface between aggregate and matrix, and intact 
ligaments remain between overlapping crack-tips. The overlapping crack 
mechanism (sometimes also referred to as a handshake crack) is recognized 
in many materials and under a variety of structural conditions. In an inter-
esting paper by Sempere and Macdonald (1986) crack overlaps are shown in 
a variety of materials at different length scales, such as at km-scale in the 
earth crust (e.g., the fault system in the African Rift Valley) to the μm-scale 
in ceramics. The reason for development of the crack overlaps is not always 
clear and sometimes subject to debate. The mid-Atlantic ridge is a place 
where two continents are drifting away from each other and magma wells 
up. The fracture zone that develops shows the same crack overlaps as those 
in Figure A4.2 for concrete and in Figure A4.6 for hardened cement paste. 
The impregnation tests that were the basis of Figure  10.4 yielded many 
examples of overlapping cracks, and an effect on the carrying capacity in 
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the tail of the softening diagram could be established. The result is shown 
in Figure 10.5. Here we show load-deformation curves from uniaxial tensile 
tests on three different types of concrete: 2-mm mortar, 16-mm concrete, 
and 12-mm lytag concrete. The lytag concrete is a lightweight concrete con-
taining soft and light aggregate particles in the size range between 4 and 8 
mm. In addition, sand fraction is present up to 4-mm grains. As can be seen 
from Figure 10.5 the tail of the softening diagram increases with increasing 
aggregate size, and it seems that the size of the ligament between two over-
lapping crack-tips is a good explanation for the increasing carrying capacity 
in the tail.

In Figure 10.5 we also show clear examples of crack-overlaps in these con-
cretes. In the lytag concrete (Figure 10.5c) the main crack propagates through 
the porous lytag particles, and forms crack-face bridges around the stiffer 
sand particles (see, e.g., the cracking around the white sand particle to the 
right in Figure 10.5c). Another example of crack-face bridging is included 
in the Appendix, Figure A4.2b. Finally, in Figure 10.6 the final stages of the 
failure in the area of two overlapping crack-tips are shown. Again, this is an 
example of cracking in lytag concrete; observations were made at the surface 
of the specimen using a long-distance optical microscope (Questar QM-100). 
The images were taken almost at the end of the tail, just before complete 
rupture. The stages are labeled along the tail of the softening branch in the 
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P–δ diagram. In the stage labeled (a), at a deformation of 251.9 μm we see 
the lower crack-tip approaching in the wake of the upper crack. The upper 
crack-tip is located to the right and not visible in the image. In stage (b) we 
clearly see a widening of the lower crack, and subsequently in stage (c) part 
of the ligament breaks off when a flexural crack develops from the top of 
the ligament. Instantaneously the upper crack-tip closes, and the path of the 
main crack is now the wide crack along the bottom of images (c) and (d). In 
the process it was observed that some debris fell down, which may be an 
explanation for the irreversible deformations that are observed when cyclic 
loading is applied as in Figure 10.3. It is interesting to note that final failure 
of the ligament is through bending (equivalent with mode I crack growth), 
which explains the continuation of AE activity along the entire softening 
curve as can be seen from Wissing’s results in Figure 10.1.
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The last part of the failure process is, in comparison with the steep por-
tion of the softening curve just beyond peak-stress, extremely stable. A 
servo-controlled loading device is basically not required any longer; just 
a high stiffness of the loading frame would suffice. The bridging mecha-
nism through the formation of a hand-shake crack follows quite naturally 
from lattice analyses, and other micromechanical models, as was shown in 
Figures 6.2d and 6.2h. Finally, the crack-overlaps are all shown here in two 
dimensions. In reality the overlaps are three-dimensional “flaps”; they do 
not necessarily have the same geometry over the specimen thickness. In 
microtomography experiments we recently observed bridging in hardened 
cement paste, and because the specimens were scanned in three dimensions 
the full geometry of the ligament connecting the two crack-faces could be 
established; see Figure A4.6c. The interested reader is referred to Van Mier 
(1997) for further details.

10.2	 Four	Fracture	Stages,	yet	a	Continuous	Process

The four stages form the basis for a new macroscopic model for tensile frac-
ture of concrete, which is shown schematically in Figure 10.7. The model is 
very simple in principle: it just follows the physical mechanisms elucidated 
in the previous section. It was recognized that the same four stages appear 
in practically all materials that fail in a quasi-brittle manner, through the 
development of one or more cracks, as explained in Van Mier (2004a).

In stages (0) and (A) in the prepeak regime the application of a continuum 
model seems the best approach. This is not different from any other current 
approach in engineering. In simplified form:

 σ = ε = ∆F
A

l
l

and  (10.1)

where A and l are the cross section and length of a tensile test-specimen, 
respectively. Assuming uniformity in the distribution of stresses and strains 
allows for this approach. In general one would simplify the prepeak behav-
ior from a curvilinear function to a simple linear function up to peak stress 
(i.e., assume linear elasticity (LE)). Note that neither the linear elastic nor the 
nonlinear elastic (NLE) continuum approach for the prepeak regime delivers 
the parameters needed for the postpeak stage, namely the size of the (largest) 
critical microcrack. So, if LE or NLE is used for modeling prepeak behavior, 
the size of the critical flaw must be estimated using another methodology. 
Micromechanical modeling seems here the best choice, for instance, the 
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lattice-type analyses that led to estimates for the largest (and likely also the 
critical) flaw in 3-point bend beams shown in Figure 9.18.

As mentioned, a different approach is needed as soon as peak strength is 
reached. At this point a change occurs that can best be characterized as a 
phase-transition. Because at peak a macroscopic crack starts to propagate, 
applying continuum theory hardly seems appropriate. Due to the growth of 
a macrocrack, new boundaries are created in the specimen/structure, and 
trying to average the crack-width to retrain the classical state variable strain 
seems just impossible. Nor does it seem fruitful separating strains in differ-
ent contributions as, for instance, attempted in higher-order continuum the-
ories (see, e.g., Iacono 2007, who, working with a gradient plasticity model, 
concluded that for modeling the behavior of specimens of different size the 
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same parameter set could not be used, including the length-scale parameter, 
which appears in such models). The length scales needed in higher-order con-
tinua are impossible to measure directly from experiments. A sound physical 
basis is lacking and one may wonder why advocates of continuum theory do 
not just accept the limitations of their approach and let nature decide which 
method to apply. Classical fracture mechanics, with some small amendments, 
appears to be the best option: it comes closest to the observations. Thus, 
directly beyond peak, the classical criterion from LEFM may be used

 = σ π θ =K a f a K( . )I Ic
 

(10.2)

for describing crack propagation. Some clarifying remarks are needed. First 
of all, the crack propagates in a material with numerous smaller cracks, and 
a distinct heterogeneity. This means that the critical stress intensity factor 
must be determined under the same circumstance. It implies that somehow 
KIc must be derived from a test specimen at peak-load. At that moment a 
test is rather unstable, and it will be a challenge to carry out such measure-
ments successfully. Moreover, as mentioned before, the main macrocrack is 
not a simple flat plane, but has numerous undulations, and branching and 
bridging occur frequently as a result of the existing microcracks and the het-
erogeneity of the material. Therefore it is essential to make an amendment 
to the classical formulation, and to include a bridging stress. The bridging 
stress is equal to the tail of the softening diagram exclusively. It is best mea-
sured under fixed boundary conditions where the crack-propagation stage 
(B) is clearly separated from the bridging stage (C). The specimen should 
be relatively wide, allowing for unhindered extension of the macrocrack, 
but not too large to create instabilities in test control when the second crack 
branch from the opposite notch develops. The bridging stress in the tail can 
be assumed as an almost uniformly distributed stress keeping the crack-
faces somewhat together (see Figure 10.8). This is quite different from the 
cohesive model developed by Dugdale/Barenblatt and its counterpart for 
concrete developed by Hillerborg and coworkers; namely it is not assumed 
that stress-intensities from the farfield stress σ and the bridging stress σb 
cancel at the crack-tip. The bridging stress depends on the material composi-
tion: the size of the aggregate used, the strength- and stiffness contract of 
matrix-, aggregate- and ITZ-phases in the specific concrete considered, and 
fibers in the mixture. The latter addition may have a significant effect on the 
magnitude of the bridging stress, as we discuss in Section 10.4. Because the 
stress-intensities do not match,

 + ≥K K 0I I
b  

(10.3)

with KI the stress-intensity from the farfield stress and KI
b the (counter-

acting) stress-intensity from the bridging stress, is still positive and a 
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stress-singularity keeps controlling crack propagation. In Figure  10.8 the 
situation is sketched for two cases: in Figure  10.8a for normal concrete 
where bridging originates from (stiff and strong) aggregates only, and in 
Figure  10.8b for fiber-reinforced concrete where bridging comes not only 
from aggregates but also from fibers. In the latter case substantially higher 
bridging stresses may be measured (see Section 10.4 and Section A5.2).

With this, the three main components of the model for tensile fracture of 
concrete are defined: prepeak (non-) linear elasticity (continuum behavior may 
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at the left; the diagrams to the right show the postulated bridging-stress distribution. (From 
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be assumed), postpeak macrocrack propagation (discrete model is required, 
viz. classical fracture mechanics) with bridging. The bridging stress is more 
or less uniformly distributed for ordinary concrete. For fiber-reinforced 
concrete (FRC) it may also be rather uniform until complete pull-out of the 
fibers. After pull-out the bridging stress rapidly decreases to zero, be it at 
rather large deformations (in average up to half the fiber length). Depending 
on the precise material composition the bridging stress may also gradually 
decrease for FRC; more about this in Section 10.4 and Section A5.2). The 
stress-singularity from the propagating main crack controls the process 
beyond peak.

As a simple example let us consider a beam loaded in 3-point bending. 
In Chapter 9 we computed the size of the largest crack in beams loaded in 
3-point bending (Figure 9.18). The slenderness of these beams, expressed as 
S/W ≈ 3 (S is the span, W is the height of the beam, and a is the notch depth), 
so an approximate choice may be to take the equations from Tada’s hand-
book (Tada, Paris, and Irwin 1973) for S/W = 4:
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This equation was derived by means of least square fitting and has an accu-
racy of 0.2% for a/W ≤ 0.6. The crack-opening at the lower edge of the beam 
is given by:
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This expression has accuracy <1% for any a/W; see Tada et al. (1973). The 
computation is now relatively straightforward. From the onset of macrocrack 
growth at peak stress, the process is artificially stabilized by controlling the 
relative crack length a/W (this is essentially also what happens in deforma-
tion-controlled experiments, although strictly speaking in such experiments 
the crack width is controlled). The main assumption is that during crack 
propagation KI = KIc = constant. The remaining carrying capacity σ1 < σpeak 
can be computed for each value of a1/W > a/W using Equation (10.4). The 
crack opening follows from Equation (10.5), and a point on the descending 
branch is found. It is rather straightforward to see that this will be a continu-
ously decreasing function.

The lattice analyses of Chapter 9 suggested that for the various concretes 
with crushed or rounded aggregates the initial notch lies between a0/W = 0.39 
and 0.55. From Figure A2.2 in Appendix 2 it can be seen that the postpeak 
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behavior of a SEN tensile specimen changes when the initial notch size varies. 
This is not different in this example: a shallower tail of the softening curve is 
found when the relative size of the initial notch increases. Or, in other words: 
beams with more pronounced prepeak cracking, leading to a larger relative 
crack at peak stress, will in general show a more shallow softening behavior. 
The increase of prepeak cracking will also result in a lower global strength. 
From experiments it is known that lower-quality concretes have a lower 
flexural strength and behave relatively more ductile. For any test that must 
result in stable softening behavior it is therefore recommended to cut a deeper 
notch. For example, in the bending test proposed by Hillerborg for determin-
ing the fracture energy in the fictitious crack model, a notch depth a0/W = 0.5 
is required, which is the right decision to guarantee test stability.

The bridging stress is not known for the beam analyses of Chapter 9. The 
only useful starting point is the increase of crack length in the softening 
regime as shown in Figure 9.18. One may use these results to determine the 
possible variation of the bridging stress via an inverse analysis. In the con-
text of this chapter this result is not very important, and instead we discuss 
the advantages and disadvantages of the proposed approach, and see if it is 
possible to include compressive failure within the same simplified modeling 
strategy, as well as to ramify to different types of materials.

A final important remark should be made. It is obvious that the method is 
generally applicable for mode I crack growth. For each new structure, with 
its own specific size and shape, and boundary conditions the function f(a/W) 
must be determined. Closed-form solutions for the geometric function are 
not always available and in many cases one has to use empirical formulations 
such as those given in Equations (10.4) and (10.5), or using approximations 
from numerically computed functions. As in the Fictitious Crack Model, the 
above model approach is empirical. The main question is whether we are 
now closer to physical reality, which fully depends on our interpretation of 
experiments. New results may force us to change to an alternative view.

10.3	 Similarity	between	Tensile	and	Compressive	Fracture

Describing (confined) compressive fracture in the same framework as in 
the previous section for uniaxial tension is quite straightforward. There are 
some important differences but the four stages can be recognized as well in 
the fracture process under (confined) compression. In Figure 10.9 we show 
the equivalent model for compression. It all starts with the linear elastic 
stage (0), assuming that damage from initial defects can be neglected. At a 
certain stress, onset of microcracking is observed. This may be between 30 
and 50% of peak strength as classical experiments using either strain read-
ings or acoustic emission measurements will tell.
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Stage (A), stable microcracking, is larger than its counterpart in tension. 
This is obvious because the stability of a microcrack growing under (con-
fined) compression is much improved: the farfield stress must be increased 
to increase the crack length, which is an important difference from ten-
sile microcracking. We discussed these matters in Section 8.1, and do not 
repeat all the arguments here. At some stage peak-stress is reached, and 
now again, as in the model for tension, a phase transformation occurs. The 
most critical crack will propagate and form a mode II (in-plane shear) crack 
that will extend during the steep part of the softening curve. A transition 
occurs from a continuum-based approach to a discrete crack model. The 
discrete mode II crack(s) start(s), at least in laboratory-size specimens from 
one of the corners of a specimen, as was clearly shown in Figure 8.15. In 
Figure 8.15b several cracks have nucleated at different corners and the most 
critical crack will subsequently propagate to form a complete shear band. 
In the example of Figure 8.15 there are clearly two cracks, which again may 
be affected by the suppressed rotations of the loading platens. The shear 
band appears to propagate along a straight line, and is hardly affected by 
the heterogeneity of the material. In Figure 8.15e the shear band has formed 
a more-or-less straight path between two diagonally opposite corners of 
the specimen, but still considerable stress can be transferred. The reason 
is that the shear band is not a continuous fracture plane, but has a certain 
width. Rubble and grains in the wide shear band may develop a sliding/
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FIGURE 10.9
Four-stage fracture model for concrete subjected to (confined) compression. The main differ-
ences to the tensile model are that more stable microcracking leads to a more pronounced stage 
(A) and friction is the main component defining the residual stress level in stage (C).
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rolling mechanism that can carry substantial load (gearbox mechanism, 
which is frequently considered in modeling granular assemblies; see, e.g., 
Bagi and Kuhn 2004).

When aggregates are “jammed” this may lead to rupture of such aggre-
gates within the shear band (some examples of intrafracture of aggregates 
in shear bands were given by Van Geel 1998). In Figure 10.10 both mecha-
nisms are illustrated. If lateral confinement is applied, depending on the 
magnitude of the confining stress, the residual stress level will increase 
as indicated in Figure 10.9, stage (C). Thus, comparing the framework for 
(confined) compression to the model for tension, two main differences 
must be considered: the extended stage (A) and the mechanisms in the 
bridging stage (C). Note that the effect of frictional restraint in the shear 
band (stage (C)) starts directly after peak stress, in the same way aggregate 
and fiber bridging was modeled in mode I in the previous section (see 
Figure 10.7).

An analysis will always start by calculating the inclination of the mode 
II crack. This qualification seems correct because it propagates in a straight 
line: no rotations are caused by the loading system which would turn the 
situation toward a mixed-mode crack. In a compressive test several fac-
tors will contribute to the direction of the shear crack: the compressive 
loading σa itself, the confining stress σc, and the frictional stresses τb along 
the boundaries of the specimen in contact with the loading platen. In 
Figure 10.11a the shear band, at an angle α to the axial loading direction, 
is shown together with the acting shear stress τ and the normal stress σn 
working parallel and normal to the shear-plane, respectively. The afore-
mentioned external stresses are indicated as well. The normal and shear 
stresses along the inclined plane can be estimated by considering the local 
equilibrium:

 τ = σ α + σ α + τ αsin cos sinc a b
 (10.6a)

τ Particle
fracture

τ

τ

(a) (d)

τ

FIGURE 10.10
Rolling friction of (idealized) spherical aggregate particles in a shear band, that is, gear-box 
mechanism (a), and intraparticle fracture in grains that have become “jammed” in the shear-
band (b). (From Van Mier. 2008. Engng. Fract. Mech., 75: 5072–5086. With permission of Elsevier.)
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 σ = σ α − σ α + τ αcos sin cosn c a b
 (10.6b)

These equations can be simplified by assuming a coupling between the 
boundary shear and the axial stress via τb = ησa (η > 0) as follows:

 τ = σ + σ α + η α(cos sin )c a
 (10.7a)

 σ = σ α + σ − α + η αcos ( sin cos )n c a
 (10.7b)

If the shear crack propagates under pure mode II, it can be assumed that 
σn = 0. Substituting this in Equations (10.7a–b) the direction of the shear-
band can be computed. The result is shown in Figure 10.11b, both for uniaxial 
compression (σc = 0), and for confined compression (σc = σa/3, assuming fric-
tionless transfer of the confining stress to the concrete). When the boundary 
restraint, now indicated through the coefficient η, increases it can be seen 
that the inclination of the shear band increases too. This is in agreement 
with experimental observations; see, for instance, the results of Kotsovos 
(1983) shown in Figure  8.4. MGA pads and rubber as a friction-reducing 
medium between loading platen and specimen leads to inclination angles 
α ≈ 00; brushes with slightly more frictional restraint lead to α ≈ 100 and for 
steel platens α ≈ 200 was measured. Under confined conditions (σc = σa/3) the 
curve in Figure 10.11b moves upward: a higher inclination angle is predicted. 
Unfortunately, however, no systematic experimental results are available for 
comparison. The tests of Van Geel (1998) (Figure  8.15) suggest an average 
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Effect of boundary restraint (defined through the coefficient η = τb/σa) on the inclination angle 
α of a shear crack in uniaxial compression (σc = 0) and under confined conditions (σc = σa/3). 
The shear band with local stresses σn and τ is situated in a specimen subjected to axial stress σa, 
confining stresses σc, and boundary restraint τb as shown in the inset.
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inclination of 22.5 degrees; tests by Van Mier (1984; Figures 8.12–8.14) indicate 
that α lies between 20 and 25 degrees. The confined results are likely lim-
ited to the lower-confinement regime only. When σc increases substantially, 
a transition from brittle to ductile behavior is observed. In this case it seems 
that stage (A) of the fracture process is extended and no macroscopic crack 
can develop. How specimens subjected to very high confinement would 
fail is unknown. No such tests have ever been conducted, but, judging from 
available experimental data it might well suffice to model the behavior at 
high confinement using an elastic-plastic model, that is, not going beyond 
stage (A) of our approach.

The solution shown here is likely not valid when α approaches zero. In that 
case a transition to vertical splitting is observed; see, for instance, the afore-
mentioned results of Kotsovos when very low-friction systems are used, 
such as MGA-pads or even rubber. When rubber is used one should be very 
careful because this material has a Poisson ratio that is initially higher than 
that of concrete in the elastic stage and the boundary restraint changes sign 
and is directed outward, thus causing a tensile splitting stress at the speci-
men’s far ends.

The four-stage model now proceeds as follows. The direction of the ini-
tial shear crack is known from the simplified analysis shown before. The 
length of the initial crack is a0 (see Figure 10.11a), and is the result of pre-
peak microcracking. The details are not simple, and there is need for a solid 
micromechanical model that can help to compute the crack-size distribution 
in compression, in particular in the regime just before peak stress is reached 
(see also Section 8.4). The growth of the macrocrack is controlled as long 
as deformation-control is available, and the residual carrying capacity σ1 at 
crack length a1 > a0 can be calculated as before using:

 σ
σ

= ⋅
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(10.8)

where σp is the stress at peak, and f(a/W) is the geometrical function for the 
considered problem. The propagation criterion is now KII = KII,c = constant, 
thus reminding us that we are now dealing with a mode II problem. Bridging 
in stage (C) is now largely caused by (Coulomb) friction (or rolling friction; 
see Figure 10.10). Friction will delay macrocrack growth, and the net effect 
follows from summing the two contributions to the stress-intensity factor:

 = +K K KII II loa II Cou frict, , .  (10.9)

It should be noted that a stress-singularity still remains for low con-
fining stress, but for higher confinement we may experience that the 
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singularity vanishes as in the plastic crack-tip model. In that case we have 
a fully stable situation: a crack can propagate only when the loading (or 
deformation) is increased.

At this point we should be fully aware that the above describes just the 
framework or concept for a new model for compressive fracture. The strong 
point is that the physics of the fracture process is followed in great detail, 
and no debatable assumptions are needed. Of course there is a lot of work to 
be done. Not only should there be extensive experimentation to elucidate the 
microcracking process in stage (A), the role of friction on the stress intensity 
and the transition from brittle to ductile behavior are in need of further test-
ing as well. The role of the model, or rather framework for a new model, is 
thus exactly what it should be: a guide to experimentation. Further simula-
tions, either with a lattice model or a particle model may help to interpret 
the experimental results and assist in expanding our knowledge. For the 
moment we continue to discuss the possible ramifications to other materials.

10.4	 Ramification	to	Other	Materials

The above applications of the four-stage fracture model for tensile and 
(confined) compressive loading are both related to quasi-brittle fracture. In 
Figure 10.9 it was suggested that the increase of external confinement would 
lead to a more pronounced residual stress-level in stage (C). The four-stage 
fracture model may well be used for materials other than concrete when the 
relative effect of the four stages is varied. Behavior ranging from brittle to 
quasi-brittle to ductile behavior can be described by such a model, as illus-
trated in Figure 10.12. When the material/structure shows brittle behavior, 
the first microcrack likely will trigger global failure. It should be mentioned 
here that for very large structures brittle failure may occur as well; see, for 
instance, the size-effect tests of Figure  9.5, where the largest specimens 
showed a “snap-back” response, indicating that the energy release due to 
the developing macrocrack was already larger than the energy needed to 
create the new crack surface (see also the discussion on the brittleness num-
ber in Section 2.2). For the moment we ignore the structural effect and con-
sider the response of the material independent of the structural conditions. 
Even though there is recent evidence that glass exhibits nanoscale fractures 
advancing the growth of a macrocrack (see Célarié et al. 2003) the behavior 
is generally classified as brittle. Generally one would expect finding, even 
for very small specimen sizes, unstable crack growth. Indeed, if one care-
fully studies the mirror–mist–hackle stages (see Figure 2.1) under an elec-
tron microscope, at the largest magnifications rather large roughness is still 
observed even in the mirror-zone, indicating that at least some effect from 
the heterogeneous material structure at very small scales must be expected, 
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probably at the atomic/molecular level. All the lattice analyses presented in 
Chapter 6, for example, are independent of scale/size, therefore the hetero-
geneity arguments provided translate unrestrictedly to smaller size/scales, 
unless other physical aspects need to be considered, that is, other than 
included in the very simplistic lattice model.

Thus, in terms of the four-stage fracture model, glass, and other purely brit-
tle materials will have an almost negligible stage (A); whereas crack growth 
during stage (B) dominates the behavior completely. If bridging in the main 
crack occurs it is believed to be insignificant, and will not help to stabilize the 
macrocrack; see Figure 10.12a. Quasi-brittle behavior was discussed at length 
in the two previous sections. In Figure 10.12b the case for tensile fracture is 
shown again: stage (A) has some significance, unstable macrocrack growth 
in stage (B) is partly balanced by bridging in stage (C); the bridging stress 
increases for coarser-grained materials. Then, in Figure 10.12c the possible 
application to more ductile materials is shown. Fiber-reinforced concrete 
may show ductile behavior depending on the mixture used. Examples of 
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FIGURE 10.12
The four-stage fracture model for materials exhibiting (a) brittle, (b) quasi-brittle, and (c) duc-
tile stress–deformation behavior; only tensile fracture is considered in these diagrams. (From 
Van Mier. 2008. Engng. Fract. Mech., 75: 5072–5086. With permission from Elsevier.)
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the mechanical behavior of hybrid-fiber concrete (HFC) are shown in Section 
A5.2; see Figure A5.7. The challenge here is to combine a high strength in 
tension with large deformability before and beyond peak; see, for example, 
Markovic, Walraven, and Van Mier (2003). This is in contrast to, for example, 
ECC, engineered cementitious composites (a strange term considering that all 
concretes are the result of engineering) where the tensile strength always lies 
around 4 MPa, but an enormous strain capacity up to 0.03 is reached; see, for 
instance, in Li (2010).

In the case of HFC, a strong matrix and large carrying capacity of fibers 
after fracture is asked for; for ECC the strength demands for the matrix 
are not very high, but large deformations of the fibers are striven for. This 
then leads to the choice of PVA as fiber material. Anyway, these details are 
not very important here. The fibers, in the case of HFC, arrest and deflect 
microcracks and may lead to a substantial increase of stage (A). The behav-
ior in stage (A) can be characterized as “multiple cracking,” as shown, for 
example, in Figure A4.3 in Section A4.1. The dense network of cracks with 
approximately the same width has developed before and around peak-
stress; the main localized crack which is visible in this figure has developed 
after peak; see Stähli (2008) for details. The strength, even under uniaxial 
tension, is higher than the tensile strength of plain concrete. After the main 
localized crack starts to grow (again, see Figure A4.3b) substantial carry-
ing capacity is derived from fiber bridging. An example of fiber bridging 
observed in an experiment on microfiber-reinforced cement is shown in 
Figure 10.13. At the right side of the image the crack width has become so 
large that some fibers have been completely pulled out, whereas closer to 
the tip fibers can be identified that still seem to connect the two crack-faces. 
The bonding properties of the fibers to the cement matrix, as well as the 
fiber geometry are decisive parameters in the pull-out process, which is 
essential for a large deformability beyond peak. Alternatively, long fibers 
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FIGURE 10.13
Bridging of a crack in microfiber-reinforced cement. Two images made with ESEM are stitched 
together. (After Rieger and Van Mier. 2009. Advances in Cement-Based Materials.)
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with low modulus will lead to large deformations; the aforementioned ECC 
is a good example for such response.

Figure 10.12c summarizes the behavior of ductile materials. When the car-
rying capacity of the fibers can match the peak-stress, large deformations 
occur without any appreciable stress-jump when localization of deforma-
tions in a main crack occurs. When the fibers cannot match the peak strength, 
a sudden drop of stress is measured, which accompanies the growth of the 
main crack. The four-stage model is capable of capturing this behavior as 
well. In brittle metals crack localization is observed too, for example, in the 
interesting experiments by Bluhm and Morrisey (1965). An example from 
their results is shown in Figure 10.14. In uniaxial tensile tests on copper and 
mild steel it was observed that after a long deformation trajectory starting 
from peak-stress, necking occurs, followed by the growth of an inclined 
macrocrack in the steep softening branch of the diagram. Even under uniax-
ial tension these metals fail through the formation of inclined cracks (shear 
fracture), which is the easier mode. The four stages that are discriminated 
in the model presented here can again be easily recognized. Now, however, 
the mechanisms up till localization are different from the microcrack pro-
cess discussed for cement and concrete. In the case of metals dislocation 
movement and void formation at the onset of macrocrack growth are the 
important mechanisms. Thus, even though the micromechanisms deviate 
the four-stage fracture model can be applied.

For each case, brittle, quasi-brittle, or ductile, the importance lies in iden-
tifying the prepeak deterioration mechanisms, and possibly describing the 
behavior by means of an as-simple-as-possible micromechanical model. 
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Possible bridging mechanisms in stage C must be identified, as well as 
the closing stress distribution these mechanisms may exert on the faces of 
the macroscopic crack. Thus, the micromechanisms leading to peak may 
take different forms: dislocation movement and void growth in metals, 
nanoscale cracking in glass, microcracking in plain concrete, and multiple 
cracking in fiber-reinforced concrete. The mechanism that affects the main 
(in principle unstable) crack may vary from crack branching and bridging 
near aggregates and fibers in the case of tension, and frictional restraint for 
(confined) compression.
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11
Multiscale Modeling and Testing

Fracture properties of concrete are hard to separate from their structural 
environment. This is in short the message conveyed in the previous chapters. 
In Chapter 10, with the four-stage fracture model, the influence of the struc-
tural boundary conditions and the geometry (shape and size) of the con-
sidered structure are incorporated via the geometrical factor, known from 
classical LEFM. Estimates for the size of the critical crack that leads to soften-
ing must be determined by means of an alternative model, for instance, the 
lattice model. Doing so seems unavoidable. The cohesive crack models will 
not work for concrete because the size of the cohesive zone is larger than 
the considered structure, and the original “local” plastic crack-tip model 
is changed into a “global” approach. It is quite essential that the structural 
component is included in the formulation. The 4-stage fracture model is an 
approach that might work. At the same time it should be mentioned that 
estimates for the geometrical factors are not always available, and it gener-
ally requires quite some effort to carry out the required analyses or experi-
ments. Another approach that may be used is to return to a different form 
of lattice, which we refer to as “structural lattice.” The equivalence between 
lattice and particle models can be used conveniently in developing this new 
approach. Again, as in the last chapter, the material presented here has not 
yet led to a fully operational model. Of importance is developing the frame-
work of the model first, and showing its potential. Again, as in the 4-stage 
fracture model, the multiscale approach presented here is a good guideline 
for new experiments. After all, new insights are usually derived from care-
fully conducted and original experiments. Our modeling efforts are needed 
to summarize our knowledge in a uniform framework. The resulting model 
is no more than an approximation of physical reality. A critical assessment 
of the limitations and shortcoming of any modeling approach is therefore 
considered of the utmost importance.

At present there is enormous interest in multiscale approaches, where the 
behavior of materials and structures is analyzed simultaneously at several dif-
ferent length-scales. A stepwise upscaling methodology is used as shown in 
Figure 11.1. The most important assumption is that by following this sequence 
computational costs will decrease and the reliability of the model outcome will 
improve. It is obvious that the lattice model, which can be described as “upscal-
ing from a predefined size/scale” leads to significant computational costs, as 
may be obvious from the short overview provided in Appendix 1. Whether 
computational effort is reduced by applying the multiscale methodology 
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depends on many factors. It is hard to say if it is really true. More experience 
with this new modeling approach is necessary. In this chapter we take a closer 
look to the multiscale approach applied to cement and concrete.

As mentioned, the basic principle of multiscale modeling is shown in 
Figure 11.1. At the smallest size/scale, for example, the nano- or micrometer 
scale, the behavior of hydrating and hardening cement paste is considered. A 
view of the structure of hardened cement paste was provided in Figure 4.1b 
(left and middle photos). Models are developed and experiments are carried 
out to feed the models with the necessary parameters. It is quite essential 
that these parameters be “pure” material parameters, and are not influenced 
by structural conditions in the same way as we have seen in other parts of 
this book, for instance, the size-dependency of softening parameters as well 
as their dependence on boundary conditions. The results from the efforts 
at the smallest scale are used in a model at the mesoscale, the intermedi-
ate level in Figure 11.1. If the results from the micro- or nano-level analyses 
are dependent on boundary conditions, one should take care that the same 
boundary conditions apply when the results are applied at the mesoscale. 
We have already seen a meso-level model, namely the lattice model, and 
shown several results that are obtained from it in Chapters 3, 6, 7, and 9. In 
Figure 4.1b (right photo) a view of the meso-level material structure of con-
crete was shown. A mesoscopic model operates at the [mm]-size/scale to the 
[cm]-size/scale, that is, the size/scale where the aggregate structure of con-
crete is considered.* Results from the smallest size/scale-analyses are needed 
for determining the properties of the cement matrix and the interfacial tran-
sition zone (ITZ). The results from the meso-level analyses and experiments 
are then used at a larger size-scale, the macroscale. Quite often the model 
used at this scale, that is, the scale of building structures ([m]-size/scale to 
[km]-size/scale) will be either a (modified) continuum model, or a discrete 
crack model in the spirit of classical fracture mechanics.

In this chapter, in Section 11.1, we first address the structure of hardened 
Portland cement and in relation to that say a few words on the mechanical 

* Square brackets are used to clearly emphasize the dimension of the various size/scales used.
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FIGURE 11.1
Multiscale modeling: principle. At the smallest size/scale, here the nano-/micro-size/scale, an 
ab initio analysis is carried out. The obtained result is used at the higher size/scale, the inter-
mediate or meso-level. Finally this result is carried over to the next size/scale: the macro-level, 
where the final result is obtained.
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and fracture properties of this extremely heterogeneous, but interesting 
material. Next in Section 11.2 we discuss the role of water in the cement struc-
ture. Much of the water that is mixed initially with cement will react, but a 
substantial part of the water can move rather freely, even after hydration, and 
may have an effect on eigenstresses, eventually even resulting in cracking. 
Capillary forces resulting from “water-bridges” may, to some extent, add to 
the strength of the cement. This is a variable factor because, as mentioned, the 
water may move around depending on the environmental temperature and 
relative humidity. Spanning the size scales, F–r (Force–separation) potentials 
can be a useful tool to capture the size dependency of the fracture properties. 
As shown in Section 11.3, the potentials can be constructed from the atomic 
level to larger scales using relatively simple and straightforward formula-
tions. The potentials can be applied directly in a “structural lattice model.” 
The constitutive equations are the most troublesome factor in many, if not all 
of the models that have been debated to this point. Instead of solving the kine-
matic, equilibrium, and constitutive equations as done in a classical mechan-
ics approach, it might be simpler to analyze structures directly at the force 
and deformation (separation) level. This may perhaps lead to complications 
because boundary effects must in some way be incorporated. On the other 
hand the unsolvable problem of the boundary and size effects on the consti-
tutive level of commonly used fracture models may be overcome in this way.

11.1	 Structure	of	Cement	at	the	[μm]-Scale	and	Its	Properties

Portland cement is the binding agent in concrete. The material has been 
known since 1824 when a patent was applied for by Joseph Aspdin. The raw 
material is marl, a mixture of lime and clay, from which four clinkers are 
produced at relatively high temperatures (around 1450°C) in a rotary kiln. 
If they are cooled down rapidly, the four clinkers can react with water, the 
amount added being one of the main parameters defining the porosity of 
the hardened cement paste, and with that the strength of the material. Also 
the ability of the material to transport fluids depends directly on connected 
porosity, or permeability. The main products from the reaction of the clin-
kers (C3A, C2S, C3S, and C4AF) with water are calcium silicate hydrates (CSH 
in short, in the notation used in cement chemistry; C stands for CaO, S for 
SiO2, A is Al2O3, and H is used for H2O) and calcium hydroxide (CH). The 
reactions develop from the surface of the cement grains (that are in contact 
with water in a fresh mixture) to their center.

Depending on the amount of available water, commonly expressed 
through the w/c-ratio (by weight), not all material will hydrate but unhy-
drated material will remain in the core of the cement particles. It is obvi-
ous that hydration is faster when small cement particles are used because 
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the relative surface is much larger in comparison to coarser mixtures, and 
the resulting amount of unhydrated material at any time of the hydration 
process may be substantially smaller. The main hydrates responsible for 
strength are the calcium silicate hydrates. The CH is not particularly impor-
tant for strength; instead it provides an alkali environment that protects 
the steel reinforcement against corrosion. Reinforcing steel in the form of 
ribbed bars or as fibers is commonly supplied to carry the tensile loads in 
structural applications of cement and concrete. CSH is found in two different 
forms, namely high-density and low-density CSH; see, for example, Jennings 
(2000) and Tennis and Jennings (2000). The structure of hardened Portland 
cement was shown in Figure 4.1b (middle image). The lightest shade of gray 
in this image is unhydrated cement. The darker grays are low- (lighter) and 
high-density CSH (darkest gray). Small pores are visible as well: they are 
the irregularly shaped black areas: their form develops as a consequence of 
the nonuniformity of the hydration process of the rather irregularly shaped 
cement particles. In Figure 11.2 another view of hardened cement paste is 
shown, before and after an indentation test using a Berkovich diamond tip. 
We return to the indentation later, but Figure 11.2a shows at higher magni-
fication the structure of hardened cement paste (hcp). The large unhydrated 
particle in the center clearly has internal structure, and it seems important to 
consider that when modeling the material. Also here, darker and lighter gray 
are the high- and low-density CSH, respectively; porosity is black.

Thus, at the observed size/scale hardened cement is perhaps even more 
heterogeneous than plain concrete at the [mm]-size/scale. The methodol-
ogy developed with the lattice model (i.e., projecting the measured material 
structure over the mechanical lattice) is as simple and straightforward for 
hardened cement paste as it is described in Chapter 4 for concrete. The size/
scale is the difference, and the lattice elements will be one or two orders of 
magnitude smaller. When making the projection, it is important to decide 
which material phases should have clearly distinct elastic and fracture prop-
erties, and at what locations interfaces appear. For plain concrete this has 
been quite clear for several decades (the inherent weakness of the aggre-
gate–cement bond was recognized in the early 1960s; see, e.g., the papers by 
Alexander and Wardlaw 1960, Hsu et al. 1963, and Alexander, Wardlaw, and 
Gilbert 1965), and for hardened cement paste these decisions must be made, 
based, for example, on local measurements of the material properties, such 
as by means of indentation tests (as shown in Figure 11.2b), or by scratching 
the surface (see, e.g., Akono, Reis, and Ulm 2011). Before going into this mat-
ter in more detail, a few words on the role of the amount of water mixed in 
the cement and the ensuing porosity are needed.

For complete hydration a quantity of water equal to approximately 40% of 
the weight of cement is needed: 25% for the chemical reactions and 15% phys-
ically absorbed water. When cement, sand, aggregate, and water are mixed, 
the water is absorbed at the surface of the particles. When the reactions start 
and CSH is formed, the amount of free water decreases and the particles 
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move to a more compact configuration. With increasing degree of hydration 
the CSH becomes denser and gains strength. The reactions between cement 
and water are more violent when more cement surface is in contact with 
water; that is, finely grained cements react faster. If more water is added than 
needed, excess water will remain between the hydrates, and after evapo-
ration open pore-space is created. This porosity increases with increasing 
w/c-ratio, and is detrimental for the cement’s strength (this is simply caused 
by stress concentrations around pores; see also Section 2.1). The connectiv-
ity between adjacent hydrating cement particles is a point of concern. In 
Figure 11.3 the hydration process between two neighboring cement particles 
is shown schematically. Initially, as mentioned, water is absorbed on the sur-
face of the grains, and capillary water bridges may develop in between (we 
return to these in the next section).

When the chemical reactions between water and cement clinkers start, 
high-density (HD-) CSH and low-density (LD-) CSH are formed as indicated 
in Figure  11.3b. LD-CSH forms along the grain’s perimeter, and HD-CSH 
more toward the core. Accessibility of water must be guaranteed to keep 
the reactions going. The core may remain unhydrated for some duration, 
which typically will depend on the amount of available water. Note that if 
concrete dries out at some stage hydration will come to a halt, but may start 
again upon re-wetting. Seasonal drying and wetting of exposed concrete 
may show the development of “year-rings” in the hydrated cement struc-
ture, quite similar to year-rings in wood. The main question for a model, 
similar to the meso-level lattice model is if, and where, interfaces must be 
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FIGURE 11.2
 (a) Polished surface of hardened cement paste. The almost white particles are the remaining 
unhydrated cores of partially hydrated cement grains. Light gray and dark gray are the low- 
and high-density CSH; black is porosity; (b) same area after an indentation has been made with 
a Berkovich diamond tip. (From Van Mier. 2007. Int. J. Fract., 143(1): 41–78. With permission from 
Springer.)
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assumed. Is this between the HD-CSH and the unhydrated core, or between 
the HD-CSH and the LD-CSH? Or is the latter phase transition just a grad-
ual density shift of the hydrates going from the inside to the outside of the 
grains? And what to do with the interface between the LD-CSH of two 
adjacent particles: must this also be seen as an interfacial transition zone? 
Moreover, the ESEM-image of Figure 11.2a shows the internal structure in 
the unhydrated core of the cement grain: when an indentation test is car-
ried out cracks seem to run along the visible particles inside the unhydrated 
core. Are these genuine interfaces as well? In all, more questions than can 
be answered at this stage, and rather demanding experiments are needed to 
provide the answers. To pose a few additional questions: what are the elastic-
ity constants of the various material phases depicted in Figure 11.3, and what 
is their fracture strength? Do these materials exhibit softening? Or are they 
behaving elastic-plastic or just purely elastic brittle?

Over the years several numerical models have been developed for simulat-
ing the ever-changing structure of cement in time. The reactions of the four 
clinkers with water from which CSH and CH are formed are complicated, and 
most models are limited to describe the hydration of C3S only. The reaction of 
this clinker with water leads to CSH, the main product defining the strength 
of hardened cement. Other reactions develop in part to control the entire pro-
cess, in part because burning the aforementioned raw materials simply leads 
to these clinkers. The other limitation often imposed in the simulation mod-
els is that round (in 2D) or spherical (in 3D) grains are assumed. Under this 
assumption one should be careful drawing conclusions on the geometry of the 
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FIGURE 11.3
Schematic drawing showing the hydration process between two neighboring cement particles. 
Going from (a) to (b) to (c) we see a gradual decrease of the unhydrated material in the core of 
the particles. The outer part of the grains is transformed into high-density (HD)-CSH and low-
density (LD)-CSH as indicated. The contact between two particles appears to be the result of 
contact/entanglement of the LD-CSH zones enveloping the grains, whereas the capillary water 
that is collected at the nearest point may further affect strength (see Section 11.2). One of the 
questions to be answered is if the clear separation among the respective material phases (viz. 
the unhydrated cement core, the LD-CSH, and the HD-CSH) and between adjacent cement 
particles, must be treated as interfaces, similar to the interfacial transition zone between aggre-
gate particles and hardened cement-paste at the meso-level. (From Van Mier. 2007. Int. J. Fract., 
143(1): 41–78. With permission from Springer.)
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pore-space, in particular the capillary porosity that is left between the hydrat-
ing particles. The divergence between real (see Figure  11.2) and assumed 
grain shapes will directly cause a misfit between the simulation and the real 
process. Unfortunately insufficient attention is usually given to the impor-
tance of having the particle geometry right. It simply directly affects the rate 
of the reactions and the geometry of the ensuing hardened cement structure. 
Models based on C3S reactions only are, for example, the Hydrasim model 
by Berlage (1987), and more recent developments by Koenders (1997) and Ye 
(2003) of the same model, now under the name Hymostuc. In these models 
round spherical particles are always assumed, which, as mentioned, consist 
of C3S only. Other hydration models include those by Maekawa, Chaube, and 
Kishi (1999), Pignat, Navi, and Scrivener (2005), Bishnoi and Scrivener (2009), 
and the NIST-model by Bentz et al. (1994) and Bentz (1997). The last model is a 
cellular automaton, which includes the most complete description of the clin-
kers and chemical reactions with water. Grain shapes can be as irregular as in 
real cements because, as in the particle overlay method in a lattice (see Section 
4.5), in this model the cement structure (clinker distribution in the cement 
grains and the grain’s geometry) is also directly mapped onto the model. 
The great advantage should not be underestimated, in particular when the 
simulator’s goal is to make a direct comparison between model outcome and 
results from physical experiments.

We include just one result here, the simulation of the structure development 
in the ITZ between cement matrix and aggregate. The simulations were done 
several years ago by Garboczi and Bentz (1991), and are a marvelous illustra-
tion of how these simulation tools should be put to good use. In Figure 11.4 
the two starting conditions and the calculated porosity as a function of the 
distance to the interface are shown. In Figure  11.4a the situation is as we 
would find it in any practical concrete, except that the shape of the grains 
does not match, which, in this particular example does not matter. The ini-
tial porosity along the aggregate–cement interface is rather high in this case, 
which is simply caused by the wall effect. A dense packing of cement parti-
cles is prohibited along the interface simply because of geometric constraints. 
In the structure of Figure 11.4b the aggregate particle has been placed over a 
structure of cement grains and water, having the same initial w/c-ratio as the 
case in Figure 11.4a. The average water-filled pore volume before hydration is 
about 60% in both analyses; in the case shown in Figure 11.4a the interfacial 
porosity increases to 100% next to the surface of the aggregate particle. The 
wall effect does not occur in Figure 11.4b: cement particles along the interface 
are simply cut into parts; all the cement-grains “under” the aggregate particle 
are excluded from further analysis. The initial porosity measured at a dis-
tance from the interface is in this second case almost constant.

Now hydration starts. This process is modeled in a very simple and 
straightforward manner. In a nutshell it proceeds as follows. Just consider the 
type of clinker in the cement grains, in particular those in contact with the 
water. Following the basic hydration equations (see Bentz et al. 1994, or also 
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summarized in Van Mier 1997), pixels of clinker and water are transformed 
to the respective quantities of hydration products (CSH, CH, and open space). 
As a result a new material structure emerges; the step size is a measure of 
the elapsed time in the hydration process. The results in Figure 11.4c indi-
cate that the porosity along the interface has increased substantially after 
full hydration. The increase has happened in both cases: where a wall effect 
was allowed, and in the case (Figure 11.4b) where it was suppressed. The 
conclusion is that hydration occurs in a direction away from the solid aggre-
gate particle, and is part of the reason why enhanced porosity always occurs 
along the cement–aggregate (or cement–steel) interface; see, for example, the 
experiments by Scrivener (1989). The high porosity of the ITZ implies weak-
ness of the material. Indeed, measurements, for example, by Zimbelmann 
(1985), show that the strength of the ITZ is very low in comparison to the 
strength of bulk cement. In the meso-level analyses in the Chapters 6, 7, and 9 
a low ITZ-strength was always assumed when the analyses were to resemble 
normal gravel concrete.

It is amazing to see how much can be explained from simple geometrical 
considerations. Ignoring these may lead to erroneous conclusions, which are 
often happening, in particular in those model simulations where from the 
onset large deviations from the real situation are assumed and one keeps 
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FIGURE 11.4
Two variations of an idealized particle structure of cement (light gray circles) near a square 
aggregate particle (black) are shown here in (a) and (b). Water is assumed between the cement 
particles. The water is consumed in the hydration reactions. A neighboring cement-pixel will 
be replaced by pixels of the reaction products (stoichiometry should be correct). In (a) the situ-
ation resembles that of a practical concrete where cement, water, and aggregates are mixed 
together. In (b) the cement grains were positioned first over the entire area, using the same w/c 
ratio as in the first example, and next the black aggregate particle is simply overlaid on top of 
the cement particles. The difference is in the wall effect. In (a) a normal wall effect develops: 
the grains can only be positioned until a point at their circumference touches the aggregate 
particle. This will lead to enhanced porosity near the surface of the aggregate particle. In (b) 
no wall effect occurs: the initial porosity is the same everywhere; (c) shows a diagram of the 
initial porosity of the two cases and the porosity distribution after complete hydration. (From 
Garboczi and Bentz. 1991. J. Mat. Res., 6: 196–201. With permission.)
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insisting on a perfect match between simulation and experiment. Surely this 
has to be attributed to sheer coincidence. I do not mention specific examples 
here; they are plentiful and are easy to detect with the above arguments in 
mind. In those simulations one should not be tempted to make a quantita-
tive comparison; rather the simulations must be used in a qualitative way as 
in the example of Figure 11.4. They are a tool to increase our understanding 
of the complex subject matter at hand. The simulations are thus not a goal 
in itself and cannot be an attempt to rule out experiments altogether. Such a 
goal would be totally unrealistic because new ideas generally will originate 
from experiment.

Now let us return to the main topic: the structure and properties of 
hardened cement paste. The basis for a micromechanical model for hard-
ened cement paste could look like the simple spring and dashpot model of 
Figure 11.5, which distinguishes three different material phases (unhydrated 
cement, LD-CSH, and HD-CSH), and three types of interfacial elements as 
indicated. The input parameters are more-or-less similar to what we have 
seen in the mesoscopic lattice model for plain concrete. The elastic param-
eters, Young’s modulus, and Poisson ratio, and the strength for each of the 
three solid phases, as well as the spring stiffness of the interfacial elements 
(both normal and shear components) must all be estimated. The “easy solu-
tion” is to work with relative differences and use the results from simulations 
only in a qualitative way. In order to establish realistic values of the elastic 
properties and the strength of the three material phases rather demanding 
experiments have to be carried out. In the first place these experiments are 
very difficult, in part owing to the small size of the cement grains. Several 
types of experiments are needed. Not only those revealing the properties of 
the abovementioned material phases, including fracture properties, but also 
experiments on hardened cement paste at different size-scales to determine 
the overall properties. These latter results can be used for a comparison to 
model simulations at the nano- or micro-size-scale. In line with the previous 
paragraph: only the trend needs to be the same; no exact fit of the simulation 
results should be aimed at inasmuch as our knowledge is very likely incom-
plete. Next to these two types of experiments, one may also be interested to 
find out how two hydrated cement grains are bonded together, that is, the 
properties of the central interface spring in Figure 11.5.

So, let us show a few rather preliminary results from the three types of 
experiments mentioned. First we discuss the tests for measuring local prop-
erties of unhydrated cement, and the two types of CSH. Indentation and 
scratching are two tests that could be useful. Indentation was already shown 
in Figure 11.2. In that example a Berkovich-shaped diamond indenter was 
pushed in the surface of a large unhydrated cement grain. During indenta-
tion the contact area increases, plastic deformation occurs in the material 
close to the diamond tip, and the external load increases. There is a choice 
to drive the indenter until substantial damage is made in the substrate, or to 
stop at a prescribed depth of the indentor. Schärer (2005) carried out many 
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indentation tests in order to see if the results published by Constantinides 
and Ulm (2004) could be reproduced. These latter results are shown in 
Figure 11.6, and suggest that the modulus of elasticity of the two types of 
CSH is indeed quite distinct and that the respective frequency distribu-
tions can be easily recognized. Schärer carried out indentation tests in an 
Environmental Scanning Electron Microscope (ESEM) in which the environ-
mental conditions can be controlled to some extent. The indenter was fixed 
in the chamber, as can be seen in Figure 11.7a. This setup has the obvious 
advantage that the indent can be viewed at large magnification without hav-
ing to move the material from the well-defined environment in ESEM. By 
moving the specimen underneath the indenter at regular spatial intervals 
indents were made to a depth of 500 nm, both with a Berkovich tip (shown 
here) and with a corner-of-cube tip. In Figure 11.7b three indents can be seen. 
The distance between the indents was large enough, and no mutual effects 

Unhydrated UnhydratedLD-CSH LD-CSHHD-CSH HD-CSH

FIGURE 11.5
Principle for a micromechanical model for hardened cement paste. Included are three material 
phases, namely unhydrated cement, low-density CSH, and high-density CSH, as well as three 
different types of interfacial springs: between the unhydrated cement and LD-CSH, between 
LD-CSH and HD-CSH, and between two adjacent cement grains, indicated by the central 
spring. All interface elements shown here have a normal and a shear component (in 2D). A 
more realistic model would incorporate three dimensions, which implies that a second shear 
component must be added to the interface elements. (From Van Mier. 2007. Int. J. Fract., 143(1): 
41–78. With permission from Springer.)
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between indents were expected. After the indents were made the under-
lying material was characterized: unhydrated, CSH, and at the boundary 
between these two phases. The results by Schärer showed a quite irregular 
frequency distribution for the Young’s modulus; see Figure 11.7c for tests at 
a chamber pressure of 20 torr (RH = 90%). With some imagination one can 
see two “peaks” that would correspond to the LD-CSH and HD-CSH, at 18 
GPa and 29 GPa. However, perhaps the number of tests is still too limited; in 
the example of Figure 11.7c results from just 70 measurements are included.

There are many disturbing factors in indentation tests that may have 
affected the outcome. First of all, the diamond tip exerts a high local force 
on the surface of a (usually polished) surface, and the resistance experienced 
will depend on the material under the surface, as much as on what we can 
actually see on the surface. Indentation is a truly three-dimensional experi-
ment. Even if the surface shows that an indent is made in, let’s say HD-CSH, 
this might be a sliver of just 10-nm thick with a larger unhydrated cement 
particle underneath with much higher stiffness. In this case a higher appar-
ent modulus will be measured than in a test where the entire indent is made 
in the HD-CSH phase. Calcium-hydroxide crystals (CH) will be abundantly 
present as well, and here the orientation of the CH-crystal may affect the 
indentation result. In order to get a closer view of the three-dimensional 
damage exerted by an indenter on a cement sample a number of experiments 
were carried out in the tomography beamline of the synchrotron at the Paul 
Scherrer Institute in Villigen (Switzerland); see also Section A4.2 where the 
method is briefly described. Indeed the damage exerted on the specimen 
is not limited to cracking at the surface (see, e.g., Figure  11.2b), but under 
the tip of the indenter a vertical crack may propagate along some distance 
in the substrate. In Figure 11.8 two views from the synchrotron experiment 
are shown, a 2D-section along the deepest point of the indent, as well as a 
three-dimensional view. The appearance of the vertical crack is quite clear. 
Recently, using the lattice model described in Chapters 3–6, Chiaia (2001) 
and Carpinteri, Chiaia, and Invernizzi (2004) published results from simula-
tions of a hard indenter pressed in a brittle material and a heterogeneous 
material resembling concrete, respectively. The simulations showed a similar 
result as the experiment in Figure 11.8: abundant surface cracking and a ver-
tical splitting crack growing from the tip of the indenter into the substrate. It 
therefore seems that the indentation test is foremost a splitting experiment; 
the homogeneity of the material beneath the indenter will certainly affect 
the outcome of the experiments, and should be part of any analysis based 
on such results. It is quite obvious that much additional work is needed. Just 
doing the indents and deriving conclusions from that is “quick and dirty”; 
substantial additional effort is needed to characterize the material in which 
the indents are made more precisely, also in the third dimension.

An alternative to the indentation test is a scratch-test, in which a sharp 
object is dragged along the surface of a material, keeping the depth of the 
cutter-blade constant; see, for instance, Akono, Reis, and Ulm (2011). The 
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FIGURE 11.7
(a) View of the nano-indenter in the chamber of an environmental scanning electron micro-
scope (ESEM). In the center the ESEM detector is visible; the cylinder to the right in the nanoin-
denter and the light gray element in the foreground are part of the specimen table. (b) Three 
Berkovich indents at the surface of a polished cement sample, in a row, each with a depth of 500 
nm, and (c) the frequency spectrum of the modulus of elasticity at RH = 90% is shown. (After 
Schärer. 2005. Micromechanical Properties of Portland Cements. (b) and (c) with kind permission 
of Mr. Reto Schärer.)
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FIGURE 11.8
Two views of an indentation in hardened cement paste viewed in the tomography beam-line 
of the synchrotron at Villigen (CH). (a) Two-dimensional section along the deepest point of the 
indent shows a vertical crack running into the substrate. (b) Three-dimensional view recon-
structed from the tomography experiment and the extent of cracking in the third dimension is 
clearly visible. (After Trtik et al. 2005.)
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“scratch” develops over a certain length, on the order of [mm] to [cm]. Akono 
and colleagues concluded that scratching is a genuine fracture experiment, 
and for hardened cement a critical stress intensity factor in the range of 
values from quite different tests was reported. This conclusion certainly 
requires independent confirmation. It has to be clarified whether the method 
could apply at the very small scale of the hydration products.

The second type of experiment needed is a test that provides detailed 
information on the global behavior of hardened cement paste. The obvious 
way to go is to repeat the tensile tests mentioned in Chapter 6—uniaxial 
tension, 3-point bending, or a Brazilian splitting test—on small samples 
of hardened cement paste. A good example, which may be recalled here, 
are the classical 3-point bending tests on notched beams made of ordinary 
Portland cement and a material called “macro-defect-free” (MDF) cement 
by Birchall, Howard, and Kendall (1981). Varying the notch depth showed 
that the MDF samples were very sensitive to the smallest notch depth of 0.1 
mm, whereas the normal Portland cement samples were hardly as affected 
by the notch depth until it reached 1.2 mm. The difference was attributed 
to the large porosity of ordinary Portland cement compared to the almost 
negligible porosity of the MDF cement, in which all possible measures were 
taken to prevent pores as much as possible. The MDF cement can be seen as 
a forerunner to the modern-day high-strength concrete. Indeed, a maximum 
flexural strength larger than 60 MPa was reached for MDF cement, which is 
very high compared to the maximum of 10 MPa for Portland cement. Birchall 
et al. concluded that in the regime where the notch depth affected strength, 
both materials followed the Griffith criterion. It is obvious that, although 
these tests are very interesting, we would need quite a bit of additional infor-
mation for comparison to the outcome of simulation models. Not only the 
full load-deformation diagrams would be needed, but also some insight in 
the fracture process.

Like at the meso- and macro-size/scales the best way to proceed is to per-
form a uniaxial tension test and try to perform experiments where the stress-
distribution over the specimen’s cross-section is as uniform as possible 
during a significant part of the experiment, in particular before the localized 
critical crack starts to propagate. Loading a specimen and at the same time 
monitoring the fracture process would be the ideal setup. Recently we made 
some preliminary attempts in this direction; see Trtik et al. (2007). Small 
cylindrical specimens (diameter 130 μm, length 250 μm) were loaded in a 
newly developed miniature tensile loading device. In this loading apparatus 
the load was applied by varying the voltage over a piezo-crystal, as explained 
in Section A4.2 (see also Figure A4.5). The complete loading device was small 
enough to fit inside the tomography beam-line of the synchrotron at the Paul 
Scherrer Institute in Villigen (CH), which allowed monitoring crack growth 
while the specimen was under load. The gamble was if the test would be 
stable, because at this size/scale deformation control was difficult to realize. 
Unfortunately the experiments were unstable in the postpeak regime, but 
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revealed some interesting results regarding the fracture process nonetheless. 
In Figure 11.9 the void distribution in a specimen after applying the loading 
is shown. In Figure 11.9a all detected voids are shown, in Figure 11.9b only 
the largest void, which is in fact the main crack. The main crack formed in 
the plane where a notch was machined (using femto-second (fs) laser pulses). 
The crack-plane is highly undulated and remnants of crack-face bridging 
were found at closer scrutiny. The view in Figure  11.9 is a reconstruction 
of 401 angular projections; see Trtik et al. (2007) for full details of the test 
procedure. Figure A4.6a shows how the crack touches the unhydrated and 
hydrated cement phases, which gives a clue about the relative strengths of 
the material phases in partially hydrated Portland cement. As mentioned, 
an interesting observation from these experiments is that bridging seems to 
occur, much like the crack-face bridging in mortar and concrete, which was 
mentioned in Chapter 6 (Figures 6.2d and 6.2h), in Chapter 10 (Figures 10.5 
and 10.6) and in Section A4.1, Figure A4.2). The miniscule bridges are the 
white spots visible on the fracture plane of Figure 11.9; a three-dimensional 
reconstruction of a bridging event in hardened cement paste is shown in 
Figure A4.6c in Section A4.2. The conclusion is that hardened cement paste 
will show softening behavior in small specimens like those tested here, 
which is of interest for the model developed in Section 11.3.

The challenge in the tomography experiments includes the manufacturing 
of geometrically correct specimens, the test control, and the data handling. 
At the same time only a handful of experiments can be conducted per year, 

(a) (b)

FIGURE 11.9
Three-dimensional reconstruction of the voids in a cylindrical specimen loaded in the 
μ-tensile testing device. (After Trik et al. 2007. Proc. 6th Int’l. Conf. on Fracture Mechanics of 
Concrete and Concrete Structures (FraMCoS-VI). (a) All voids are shown, which included not 
only the cracks, but also the porosity in the hardened cement paste. The main crack is shown 
in (b), where the darker patches indicated with arrows are the locations where the main crack 
intersects unhydrated cement particles.
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due to the aforementioned challenges, but also because only limited access 
to the tomography beam-line can be obtained. Nevertheless, reliable infor-
mation on the fracture process of hardened cement, at a size/scale which 
is three orders of magnitude smaller than, for instance, the size effect tests 
on the “F”-size specimens shown in Figure  9.5. It will be obvious that in 
coming years substantial research effort is needed to reveal the properties 
of hardened cement paste at this size/scale, including variations of many 
parameters such as type of cement, water–cement ratio, degree of hydration, 
and the effect of admixtures.

The third experiment has to reveal how the contact between two neigh-
boring hydrating cement grains is established during and after hydration. 
This test is thus related to the properties of the central interface spring in 
Figure  11.5. The experimental difficulties have been partially overcome at 
this point, and at least a few more years of tedious work are needed to fully 
master it. The idea is sketched in Figure 11.10. Two cement grains, selected 
for their shape and size, are brought together on the cooling/heating stage in 
ESEM. This can be done by using micro-manipulators in the chamber of the 
microscope. In Figure 11.10a we see the grains lying side by side, touching 
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FIGURE 11.10
Three stages of development in an advanced experiment for studying the contact zone between 
neighboring hydrating cement grains. (a) Condensation of water at the surface of the cement 
grains can be achieved by properly cooling the grains down, just a bit more than the immedi-
ate surrounding. Localized condensation (b) will bring the water to those locations where the 
next step, hydration, should commence (c). Finally, after the hydration process has stopped, a 
tensile test is carried out by fixing the two hydrated cement grains in a tensile loading stage 
(d). In the ideal situation this all should take place in a controlled environment (T and RH). The 
chamber of ESEM would be quite well suited for that, but it means keeping the apparatus in 
use for quite extended periods of time.
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perhaps at their nearest point. Next, by cooling down the grains it is pos-
sible to condensate water vapor on their surface. It is quite essential that 
only the grain’s temperature is changed, at least more than the temperature 
change of their immediate vicinity. By placing an appropriate isolator on the 
surface of the cooling/heating table, with holes at the location of the grains 
this can be achieved. It is not straightforward to select the right isolation 
material. Figure  11.10b shows a cement grain with water condensed at its 
surface. The next step is to initiate the hydration process, and to try gluing 
the grains together at the nearest contact point; see Figure 11.10c. This step 
is most cumbersome. The contact has to be strong enough to carry out a 
uniaxial tensile experiment. For this to be successful the two grains must 
be fixed in a loading stage; see Figure 11.10d. The experience gained in the 
μ-tensile experiment described in the previous paragraphs is a good start for 
accomplishing this part of the experiment. An alternative to tension would 
be splitting: simply driving knives between the two hydrated particles. The 
load and the separation of the grains should be measured. Where in the first 
method, uniaxial tension, perhaps deformation-control could be performed, 
in the latter method this is much more difficult to achieve (compare the split-
ting tests of Section 6.2.1, which are a much larger size/scale, however). The 
challenges are enormous, and substantial support is needed before they can 
be overcome. In the present-day funding system continuous support for 
experiments of this degree of complexity is rather difficult to obtain. The 
number of publications produced is too small, progress will be at a snail’s 
rate, but, when successful, the results are very valuable because they may 
help to improve our understanding of the origin of the strength of cement.

It can be concluded that the initial steps for determining the properties of 
hardened cement have just been made. It is hoped that the coming years will 
show increased activity in this field. A few more experiments than those 
mentioned here can probably lead to useful results; however, we refrain 
from extending this section too much, and leave it to the imagination of the 
reader. As mentioned, support for an extended period of time is needed to 
conclude these experiments; it is hoped that the funding system would allow 
for such developments.

11.2	 The	Role	of	Water	at	the	[μm]-Scale

By now it may be obvious that water plays a large role in the structure of 
cement. The initial cement–water mixture gradually hardens during the 
hydration process. The chemical reactions consume the water for a large part, 
but some of it remains in the cement structure, either adsorbed to the walls 
of the hydrates or as free water in the larger pores. Particle size has a large 
influence on the adsorption of water on the surface. In a relatively simple 
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analysis the importance can be demonstrated. Mono-size particles (spheres) 
can be placed in varying geometrical packing. Figure 11.11 shows two quite 
distinct possibilities: regular packing (abbreviated rp; see Figure 11.11a), and 
hexagonal close-packing (or hcp; see Figure 11.11b). Two boxes of given size 
are filled with particles using these two packing arrangements: the first one, 
regular packing, will contain fewer particles per unit of volume than the 
second one, especially when incomplete spheres are allowed, that is, when 
it is assumed that from an infinite arrangement simply a cubical box is cut, 
thereby splitting some of the particles in segments as shown in Figure 11.11b.

In Figure 11.11 just the principle of the packing is shown: the second layer 
of particles lies directly on top of the first layer in the ‘rp’ scheme, whereas 
with ‘hcp,’ particles in the second layer are shifted to fall in the ‘valleys’ left 
by the first layer particles as shown. The density of these two types of par-
ticle packing differs significantly:

 0.5236 0.7405rp hcpϕ = << = ϕ  (11.1)

Porosity is 1 – φ; the pore volume decreases for ‘hcp.’ Even larger density 
difference would be observed when particles of different sizes are packed 
in a box. For the sake of simplicity we do not consider particle size distri-
butions, other than saying that the Fuller distribution we introduced in 
Section 4.3, Equation (4.3) is the densest packing of spherical particles. The 
total area of the particles in the two situations of Figure 11.11 varies with the 

1st layer particles 2nd layer particles
(a)

(b)

Porosity

1st layer particles 2nd layer particles Porosity

FIGURE 11.11
Regular packing of mono-sized spheres and resulting porosity (a) and hexagonal close-pack-
ing (b).
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number of particles in the box, and is thus larger for ‘hcp.’ If a box of unit 
volume is considered, and one decides to reduce the particle size by a factor 
of 10, the number of spheres will increase in both cases by a factor of 1,000. 
However, although the total sphere volume remains constant, the total area 
of all spheres increases by a factor of 10. It is thus quite obvious that denser 
packing of smaller particles will lead to an increase of specific surface. The 
amount of physically adsorbed water is in that case larger if not the total pore 
volume is filled.

A variety of interaction forces can be active depending on the size/scale 
of the particles in question. One can distinguish, at extremely small scales, 
hydrogen bonds, primary chemical bonds, double-layer forces, and Van der 
Waals/London attraction. At a somewhat larger size/scale capillary water 
may be present, forming liquid bridges such as the one shown in Figure 11.12b, 
causing attractive forces between neighboring particles, for example, cement 
grains or sand. The simple fact that a granular medium is wet causes it to 
have some basic strength, which may lead to problems, for example, in the 
case when particles flow in a silo, or when caking of fine powders occurs. For 
very dry concretes used in the production of concrete bricks the capillary 
forces between the grains in the wet state allow us to remove molds rela-
tively quickly after casting, which of course increases the production rate. In 
the end the interaction potential between two neighboring particles will be 
the result of the sum of all forces, and may take the shape of Figure 11.12a. 
When the particles are very close together, they may expel one another; at 
larger spacing the attraction force may reach a maximum, after which, with 
increasing distance, it will decrease again.

Now let us return to the capillary forces between adjacent particles. In this 
example we assume that only capillary forces make up the potential. When 
the particle size decreases, and the total amount of water in the porous par-
ticle stack is kept constant, the thickness of the water layers adsorbed on the 
surface of the spheres will decrease. As a consequence the radii of all menisci 
defining the liquid bridges will decrease, and with that the interaction force 
pd, which is described with the Laplace equation,

 = − γp
r
2

d
 (11.2)

will increase; see Figure 11.12c. In Equation (11.2), γ is the surface energy for 
the air–water interface and r is the radius of the meniscus. The result is quite 
well known: with decreasing water content the porous material will become 
stronger. In three dimensions both the contributions from the internal pres-
sure pd and the surface tension γ along the water–air contact must be added 
to obtain the attraction force F following

 = π + π γF r p r2d0
2

0
 (11.3)
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In this equation, pd is given by Equation (11.2), with r = r0 + r1, where r0 and 
r1 are the radius of the smallest water column between the two particles 
and the radius of the meniscus, respectively. This result is well known; see, 
for example, the application in the discrete element model by Muguruma, 
Tanaka, and Tsuji (2000). An interesting contribution to the problem is the 
recent paper by Rabinovich, Esayanur, and Moudgil (2005). The point made 
here is that the material-structure geometry has a significant influence on 
the behavior of the considered material. This has, as a matter of fact, also 
been demonstrated in some of the fracture analyses in Chapter 6, more spe-
cifically the influence of the particle density in concrete on tensile strength 
and ductility (Figure 6.3).

The above example is valid only for materials built up from equal-sized 
particles, which is far from reality, in particular for cement and concrete, 
where usually a certain particle distribution is used to fill up a volume as 
densely as possible, without too large porosity since that is detrimental to 
strength and durability. The distribution of water in heterogeneous particle 

Pressure p

Liquid
bridge

Sandgrain with
adsorption layer

Capillary water (meniscus radius = r)
(c)(b)

(a)

Adsorption layer

Distance r
r0

pd

pd

pc

pd

da

rc

σax

p(r)

FIGURE 11.12
(a) Interaction potential between two spherical particles has a form as shown. At the smallest 
scale, the atomic scale, the atomic potential is retrieved; at larger scales other interaction forces 
contribute and blur the picture. Liquid bridges caused, for example, by condensation of water 
on the surface of sand grains (b) showing an image of sand grains viewed in ESEM where 
condensation is achieved by cooling the particles down in a vapor-saturated environment and 
are capable of building up capillary forces, which to some extent may keep particles together. 
The capillary attraction forces in a liquid bridge depend on the radii of the particles, the total 
amount of water, and the relative vapor pressure, which all determine the radii of the water 
menisci. (From Van Mier. 2007. Int. J. Fract., 143(1): 41–78. With permission from Springer.)
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composites such as concrete is far from uniform. When a porous material is 
brought into an environment of 100% RH smaller pores will be filled first; in 
larger pores water will condensate on the pore walls, and it will take much 
longer to completely saturate them. The reason is not just the difference in 
volume, but differences in water vapor pressure in the pores, which is related 
to the pore radius. The Kelvin equation,

 





= − γ





⋅p
p

V
RT r
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 (11.4)

shows that the relative pore pressure p/p0 increases with decreasing pore 
radius r. In this equation γ is the specific surface energy (0.072 J/m2 for water), 
and Vm is the molar volume of the liquid (18.10–6 m3/mol). Thus, smaller pores 
fill at much lower relative humidity, and much later the larger pores will 
be saturated. In heterogeneous particle composites smaller pores will occur 
closer to places where smaller particles meet, which will, according to the 
Kelvin equation, be saturated first.

The mutual attraction between the small particles is larger, and these 
places may act as attraction kernels to which all other particles will “move.” 
When particles move under mutual capillary attraction forces, the water 
will be redistributed, which continues until a new equilibrium is reached. 
In some places between regions where particles are attracted to different 
kernels, voids may appear which can be interpreted as shrinkage cracks. 
This process may occur in material like clay, or in hardening cement paste, 
where often cellular-type crack patterns are observed at the surface; see, 
for instance, Figures 11.13a and A4.9b,c in Section A4.4. In Figure 11.13 the 
mechanism is clarified. The attraction kernel-development is shown in a 
birds-eye view of the surface in Figure 11.13b, and in a cross-section view in 
Figure 11.13c. Thus, the cell-like pattern of shrinkage cracks is caused by the 
geometrical arrangement of the attraction kernels, which is purely probabi-
listic. The relative strength of the material at various spatial locations and 
at a certain moisture distribution is mimicked in the crack patterns. In the 
vertical direction it can be shown that shrinkage cracks in materials like 
hardened cement develop almost instantaneously, in the first few minutes 
after the surface has been exposed to a drier environment; see Shiotani, 
Bisschop, and Van Mier (2003). In the formation of the vertical cracks 
capillary suction may play a limited role (see Wittmann 1978, where the 
mechanism is elucidated). Curiously, horizontal branching cracks are often 
observed, at a relatively shallow depth. The shrinkage cracks do not seem 
to extend beyond a depth of 4–5 mm in hardened cement paste; see Figure 
A4.12a. The reason may be that the moisture distribution is more uniform 
in deeper parts of the material, and the attraction kernel mechanism can-
not work there. The horizontal cracks mark the depth where the moisture 
distribution is sufficiently uniform to prevent further growth of shrinkage 
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cracks. The situation changes markedly when large aggregates are present, 
as explained in Section A4.4.

Shrinkage of hardened cement paste and concrete is a very important 
problem. Much damage can be caused, which can easily be prevented by 
controlling the climate just outside the fresh concrete until strength devel-
opment is sufficiently large, or by adding fibers; see also Appendices 4.4 and 
5.2. The crack growth caused by drying shrinkage can be modeled using 
lattice-type models comparable to the model described in Chapters 3 and 4. 
Notable models are those by Meakin (1991) and Leung and Néda (2000). A 
frequent problem remains that the moisture transport during the shrinkage 

(a)Gaps between
contracting
clusters are
shrinkage
‘cracks’

Attraction kernel
Attraction force

(c)

(b)

FIGURE 11.13
The relative movement of particles connected through liquid bridges, which create capillary 
forces between the particles, will ultimately lead to drying shrinkage crack patterns as shown. 
In a heterogeneous material the particles will have varying size, leading to preferential places 
called attraction kernels in (b), where the material is relatively stronger than its immediate 
environment. The capillary forces between the particles draw them nearer to the nearest 
attraction kernel, leaving larger “gaps” between “clusters of particles” surrounding the respec-
tive attraction kernels. These “gaps” are interpreted as being shrinkage cracks. (a) Top-view of 
a shrinkage crack pattern in hardened cement paste, with a typical cell size of 55–90 mm. In 
(b) the clusters of particles around the attraction kernels leave gaps, dubbed shrinkage cracks. 
In the third dimension the shrinkage cracks penetrate into the material in a vertical direc-
tion. Often, as in hardened cement paste and clay it is observed that horizontal crack branches 
develop (c), which may be explained from the formation of clusters of particles around attrac-
tion kernels. Additional drying through cracks and capillary suction are believed to contribute 
significantly to crack branching. It is pointed out that in the drying situation sketched here 
water evaporated through the top surface, and a strong moisture gradient developed as the 
interior of the material dried more slowly; see also Figure A4.11 in Section A4.4. Thus, deeper 
inside the material the attraction kernels will not develop because water is distributed more 
uniformly. The horizontal crack branch marks the location where the moisture distribution is 
sufficiently uniform. The drying shrinkage experiments on hardened cement shown in Section 
A4.4 suggest that the horizontal branches develop at a depth of 4–5 mm. (From Van Mier. 2007. 
Int. J. Fract., 143(1): 41–78. With permission from Springer.)
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deformations is not handled correctly; usually this factor is completely 
neglected due to the fact that these flow problems in porous media are not 
completely understood, and coupling to mechanical problems is not really 
straightforward either. During shrinkage the size of liquid bridges changes 
constantly as does the degree of saturation of pores. The contact forces are 
thus directly affected.

In a defined volume more small spherical particles can be placed than 
larger particles, for example, of one magnitude larger diameter. The increase 
of number of particles is by a factor of 103. The number of contacts between 
particles increases by a factor of 103 as well. If the same water volume is 
added to a porous particulate material with small or tenfold larger particles, 
the first material will react stronger. In a deforming partly saturated porous 
particulate material a constant redistribution of the relative volumes of liq-
uid bridges leads to a constant redistribution of the interaction forces, and 
the outcome is not straightforward. When the particle shape changes, from 
spherical to, for example, ellipsoids, like M&M candies, the number of con-
tact points between particles increases significantly; see, for instance, Donev 
et al. (2004). Again, hydration models based on realistic particle shapes, such 
as the NIST model by Bentz et al. (1994) are quite essential to obtain valid 
results. Results from models based on spherical particles must be regarded 
with some skepticism unless they are used in a qualitative way to elucidate 
certain principles such as the formation of the ITZ shown in Figure 11.4.

Cement has an incredibly complicated structure; see, for instance, Tennis 
and Jennings (2000), Jennings (2000), Pellenq and Van Damme (2004), and 
Gatty et al. (2001), among many others. Before hydration the situation is still 
relatively simple: the distribution of the four clinkers and other residues 
forming during the hydration process can be determined by means of opti-
cal microcopy, and incorporated in a numerical simulation model such as 
the NIST model. During hydration and at complete hydration the situation 
becomes more tedious because the length-scale of the CSH is much smaller 
than that of the particles before hydration. Although controlling humidity 
during viewing is of extreme importance, high-resolution TEM is probably 
the only realistic tool to be used (Pellenq and Van Damme 2004 and Gatty et 
al. 2001). According to these authors the nanometer-scale structure of cement 
can be described as a combination of nanocrystalline regions, microscale 
ordered regions, and amorphous matrix, that is, substantially more compli-
cated than the simple model of Figure 11.5. For developing a model for the 
mechanical behavior at the moment simplicity is called for, and to start with 
the principle of Figure 11.5 seems quite workable.

Capturing the porosity of a sample of cement may prove quite difficult. 
In Figure 4.8a the pores in a 130-μm diameter cement cylinder of hardened 
Portland cement are shown. Using the advanced tomography beamline at the 
Swiss Light Source in Villigen (Stampanoni et al. 2002), or equivalent equip-
ment at other places (for instance, the European Synchrotron Research facili-
ties in Grenoble, which was used by Bentz et al. 2000) is helpful for getting a 
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better insight to the porosity of hardened cement paste. Another tool is mill-
ing with a focused ion beam (FIB), which can be done in combination with 
high-resolution electron microscopy; see, for instance, Holzer et al. (2004). 
In this technique, thin layers of material (10–100 nm thickness) are removed 
step by step; between steps a high resolution SEM image is captured. The 
three-dimensional structure of a material can be captured in this way, but a 
stack of 100 images will easily take three to four hours. Thus, for porosity this 
seems OK; for fracture the technique is too slow to follow crack growth, even 
under quasi-static loading. Holzer et al. (2004) found deviations between the 
porosity measured by means of conventional mercury intrusion porosime-
try (MIP) and their FIB-technique. Of course MIP is a partly destructive tech-
nique: when the mercury is pressed into a porous sample, pore walls may 
break. In addition, one has in some way to account for the “ink-bottle” effect: 
a large pore connected to the other porosity via a very narrow opening will 
be counted as small porosity. Recently Diamond (2000) argued against the 
use of MIP, and I can fully agree with his view. Of course tomography and 
FIB-milling are very time-consuming methods, and the necessary facilities 
are only sparsely available. Yet, the accuracy seems much improved, which 
is essential for comparing to the outcome of simulation models. Here one 
has to be careful: if the hydration model is based on spherical particles, the 
outcome may substantially deviate from the experimental measurements. 
This is not always recognized, and claims of excellent fits, as in the work 
by Ye (2003), must be viewed with skepticism. Hydration and the resulting 
material structure is largely driven by the shape and size distribution of the 
original cement particles.

It is obvious from the above exposure that the development of a fracture 
model at the cement-level is far from complete. As a matter of fact just some 
very humble initial steps have been made, and much research is needed 
before a workable model will be available. The assumption that cement can 
be regarded as a particulate material seems perhaps farfetched in view of 
the above description of the hardened cement paste structure and the role 
of water therein. Yet, as a first step this assumption may be good enough as 
simplicity is warranted. Some initial steps in the development of a particle 
model and the interaction potentials that are needed in such an approach are 
formulated in the next section. An important conclusion from the aforemen-
tioned μ-tensile experiment is that hardened cement paste shows softening 
behavior, which is part of the model development in the next section.

11.3	 F-r	Potentials:	From	Atomistic	Scale	to	Larger	Scales

The main parameters needed in the simplified model of Figure 11.5 are the 
interaction potentials, the properties of the interface springs between the 
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solid unhydrated cement grains and the grains consisting of the two types of 
hydrates, LD-CSH and HD-CSH. The type of model can actually be seen as 
a lattice model or a particle model, which we discussed in Chapters 3 and 4. 
The main differences are, firstly, that we have to deal with many more mate-
rial phases and interfaces, and, secondly, that the size/scale is significantly 
smaller, about three orders of magnitude smaller.

In view of the complexity of the physical interactions in hardened cement 
paste, which includes the role of water, it seems most appropriate to start 
with an interaction potential that lumps all effects into one single equation. 
The notion that the same type of lattice or particle model can be used at any 
size/scale-level suggests that starting from a very fundamental level may 
lead to a useful result. The potentials describing the interaction between two 
atomic particles is a well-defined starting point, where we should recog-
nize that the proposed model here is active at a much larger size/scale-level, 
the nano-/micro-size/scale. In Figure 11.14a an atomic potential is shown. 
The attraction force or energy between two neighboring atoms depends on 
the separation distance. At a distance r0 the system is at rest: attractive and 
repulsive forces are in balance. When r < r0 the repulsion overtakes and par-
ticles are driven apart, when r > r0 the attractive force or energy binds the 
particles together.

A well-known atomic potential is the Lennard–Jones (LJ) potential, which 
can be written as
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FIGURE 11.14
 (a) Potential for the interaction force F between two neighboring atoms as a function of the 
separation distance r, (b) and an extended potential for interactions at the micro-, meso-, or 
macro-level consisting of a normal force-separation law (FN – rN) and a shear force-slip rela-
tionship (FS – rS). (Reprinted from Van Mier. 2007. Int. J. Fract., 143(1): 41–78. With permission 
from Springer.)
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where σ and ε are units of length and energy, respectively. When the dis-
tance between two interacting particles is reduced below the equilibrium 
distance r0, a substantial amount of potential energy (or a large force) is 
required. When the confinement of the system is strong enough, particles 
may merge to form a new element, or they may break down and a number 
of subatomic particles be created. The very steep slope of the potential indi-
cates the enormous energy that is required to bring particles at very close 
distance, something that is aimed at in fusion or splitting of atomic particles. 
Many interaction potentials are known today. At this point we may refer to 
the beginning of Chapter 2, where a simplified version of an atomic poten-
tial, namely a sine function expressing the variation of the interaction force 
with separation distance was used to estimate the ideal strength of materials. 
For the interactions between Si-atoms potentials were proposed by Stillinger 
and Weber (1985), Bazant and Kaxiras (1996), and Bazant, Kaxiras, and Justo 
(1997). Some of the proposed potentials include interactions between more 
than two atoms; see, for instance, Stillinger and Weber (1985) for silicon; we 
briefly return to multi-particle interactions at the end of this section. Atomic 
potentials can be used in molecular dynamics simulations of the behavior of 
solids; see, for instance, Holland and Marder (1999).

The attraction part of the atomic potential (r > r0) very much resembles 
a softening stress-deformation curve for concrete at the macroscopic size/
scale level; compare, for example, Figure 11.14a with Figure 9.5, which shows 
force-deformation diagrams for concrete specimens of different size/scale 
(a factor 32 difference in size/scale was applied in these tests). After an ini-
tial rise, a decreasing interaction force is observed with increasing separa-
tion distance. The analogy could be as follows: a concrete plate is separated 
into two parts through the nucleation and growth of a crack at the weak-
est location in a specimen. In the dog-bone-shaped specimens used for the 
measurement of the curves in Figure 9.5 this is obviously in the neck region, 
but not necessarily at the smallest cross-section due to the heterogeneity 
of the concrete. Note that the compression regime is not shown in the dia-
grams of Figure 9.5. Compression was discussed at length in Chapter 8 and 
we further elaborate on that at the end of this section. Unless extremely 
large confinement is applied (which is very hard to achieve for large con-
crete specimens; see also Appendix 5), the huge energies are not measured 
as compared to the very small-distance energies resulting from Equation 
(11.5). This is just a matter of practical limitations; at very high confinement; 
after an initial pore-collapse stresses up to 1,500 MPa are easily reached; 
see, for instance, the tests by Schickert and Danssmann (1984). Beyond that 
stress-level not much is known about concrete, simply because too large 
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specimens must be used, and devices such as a diamond anvil cell, which 
allow for the extreme high pressures that are needed, unfortunately cannot 
be used. But let us not deviate too much from the description of a model 
based on potentials, and return to the similarity observed for the attraction 
part of the stress–deformation curves. The variation in shape, from snap-
back behavior for very large sizes, to stable softening for very small sizes 
may conveniently be captured by varying the exponents m and n in the 
LJ-potential, which is rewritten as

 = α σ
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Note that the state variables are force F and separation distance (or displace-
ment) r. A convenient choice of the parameter α and the two powers m and n 
allows constructing an accurate fit to physical experiments like those shown 
in Figure 9.5. An example of a set of curves obtained with σ = 1 (separation 
distance scaling), n = 6 and α = –4 leads to the family of curves of Figure 11.15 
when m is varied between 2 and 20. When n = m, the trivial result F = Fu = 0 
is obtained. Thus, at any given size/scale-level defined by L the maximum 
load Fu(L) and the shape of the interaction potential should be fitted to the 
outcome of the experiments by properly selected values for the free param-
eters. In line with the foregoing discussions in the previous chapters we are 
here not interested so much in arriving at a close fit; rather we would be 
interested to learn what the underlying reasons are for the specific shape of 
the potentials and the implications of using them. At the meso-level some 
of them were already recognized (see Chapters 6 and 10). In contrast, much 
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FIGURE 11.15
Set of interaction potentials through variation of the exponent m in Equation (11.6), which 
can be used to model the size-dependency of softening curves (attraction part of these curves 
only). The other parameters are constant at the values indicated in the graph. Different types 
of behavior are observed; the main problem is understanding the underlying physical mecha-
nisms. (From Van Mier . 2007. Int. J. Fract., 143(1): 41–78. With permission from Springer.)



248 Concrete Fracture: A Multiscale Approach

knowledge is still lacking at the size/scale of the hardened Portland cement 
and smaller.

The important aspect of the approach proposed here is that at any size/
scale-level the material is thought to be composed of (rigid) particles or mate-
rial points. Thus not only at the atomic-level, but also at the macroscopic size/
scale-level we lump the entire F–r behavior in the contact law between two 
neighboring particles as shown in Figure 11.16. In this figure four distinct 
size/scale-levels have been included: the atomic-/nano-level (n), the micro-
level (μ), the meso- (or intermediate-) level (m) and the macro-level (M). The 
size of the particles in contact increases from smaller than 10–9 [m] to 100 [m] 
at the macro-level, as indicated. The spring indicating the interaction force 
has in reality zero dimension. The pair-potential can be the LJ-potential or 
any other suitable function. The importance is to recognize that the entire 
attraction curve (from the equilibrium state to full separation; at both points 
the interaction force is zero) must be included for describing the interaction 
between two neighboring rigid particles (spheres may initially be assumed to 
simplify the problem). In softening models for concrete fracture (see Section 
2.4, Equations (2.25)–(2.27)) the part leading to the maximum cohesive stress 
is usually ignored and linear-elastic behavior is assumed to describe the pre-
peak behavior. The main difficulty, however, lies in the fact that two distinct 
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FIGURE 11.16
Simple particle (or lattice) model for the analysis of the mechanical behavior of solids based 
on pair-potentials. Note that the same mechanism appears for any size/scale-level L. At each 
level a different interaction potential F(r) must be used, for instance, characterized by the size-
dependent potential Equation (11.6), visualized in Figure 11.15. The subscripts n, μ, m, and M 
are used to distinguish between the atomic (nano- and smaller), micro-, meso- (or intermedi-
ate-), and macro-size/scale-levels, respectively. Note that the separation distance, which is 
here shown by a spring with clear physical length, has actually zero length. Therefore, at the 
atomic level we are dealing with an almost ideal point-contact, whereas at the other three 
levels the physical dimensions of the particles increases to a size that cannot be ignored in 
any analysis.
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regimes are distinguished, each relying on different state variables: prepeak 
behavior is described in terms of stress and strain, the postpeak behavior in 
terms of stress and displacement. The potentials suggested here are all based 
on force and displacement, in the entire diagram, and in this way a disconti-
nuity in the model is prevented. This is certainly an improvement, yet it has 
far-reaching consequences for the mechanics and the type of experiments 
needed for determining the requisite model parameters. We return to these 
issues in Section 11.4. In order to clarify the hierarchy between the size-/
scale-levels it helps to identify the main mechanisms leading to the specific 
shape of the interaction potentials at each level. Table 11.1 shows which mech-
anisms at size-/scale-level L-1 are responsible for the behavior observed at 
size/scale L, that is, one level higher. At the smallest size-/scale-levels physi-
cal forces are active, and one may wonder to what extent purely mechanical 
models still apply. Instead a full-fledged materials science approach is the 
only suitable approach at the very small size-/scale-levels.

Now, with the above description of the interaction potential at different 
size-/scale-levels the model is not yet complete. One of the extensions needed 
concerns multiple particle interactions. Thus, not only the pair-potential 
discussed thus far, but also triplet-potentials and higher-order interactions 
involving several interacting particles simultaneously must be considered. 
The general expression for the potential energy function Φ describing the 
interactions between N identical particles can be written as (Stillinger and 
Weber 1985):

TABLE 11.1

Identified Mechanisms in the Fracture of Cement and Concrete at Size/Scale Level 
(L-1) Underlying the Interaction Potential at the Higher Size/Scale Level L

Size/Scale	Level	
(L)

Size/Scale	Level	
(L-1) Identified	Mechanisms	at	(L-1)

Macro (M) Meso (m) (1)  Prepeak microcracking defines maximum tensile 
force (Figure 6.3)

(2)  Rapid load-decrease postpeak signifies decreasing 
contact area (Figure A2.1)

(3)  Aggregate- and fiber-bridging (in FRC) cause a 
stable tail postpeak (Figures 10.5, 10.6)

Meso (m) Micro (μ) (1)  Crack-face bridging appears in the tail of the 
diagram (Figure A4.6c)

(2)  Capillary forces in water bridges affect the tensile 
strength (Figure 11.12)

Micro (μ) Atomic (n) (1)  Capillary forces in water bridges affect tensile 
strength (Figure 11.12)

(2)  Equilibrium between attractive and repulsive 
atomic forces defines the shape of the diagram 
(Figure 11.14a)
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The single particle potential v1 describes external forces and wall effects. 
The pair- and triple-potentials v2 and v3 can be written as:
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where ε and σ are again units of energy and length, respectively, as intro-
duced before in Equation (11.5). What can be seen here is that f2 is a func-
tion of particle distance only, whereas f3 is function of all translations and 
rotations between the three considered particles. The problem thus becomes 
notably more complicated. The LJ-potential that we showed in Equation (11.5) 
is mostly used for describing the interaction between atoms in noble gases 
including argon, krypton, or xenon. For silicon, Stillinger and Weber (1985) 
proposed a different function for f2, and added one for f3, which were used 
in molecular dynamics simulations. Introducing rotations in the formula-
tion is equivalent to incorporating “structural” effects. As a matter of fact, 
using a beam-lattice model, such as the one presented before in Chapters 
3 and 4, with various applications in later chapters, is just that: rotations 
between the elements have become part of the formulation, and are even 
used in defining fracture in the lattice (viz. by using a fracture law based on 
normal force and bending such as Equation (3.36)). One important consider-
ation in using these potentials is that the particles are considered rigid and 
cannot be separated into smaller elements. If that is expected to occur, as in 
the unhydrated cement grain of Figure 11.2, one simply has to decrease one 
size-/scale-level, namely, the size/scale of the constituting particles of the 
unhydrated cement.

We have indicated the similarity between lattice and particle models in 
Section 3.4. Particle models have the obvious advantage that friction between 
the particles can be included, which is an important aspect of the behavior 
of materials such as concrete and other particulate geomaterials (rock, sand, 
ice) subjected to compressive loadings. We speculated about that in Chapter 
8. Just considering the pair-potential (i.e., including the normal interaction 
between particles only) would not suffice; instead also shear force-slip rela-
tions must be included as sketched in Figure 11.14b. This is common practice 
in particle models; see, for instance, Cundall and Strack (1979). In a lattice 
model this could be mimicked by selecting the correct higher-order interac-
tions that describe the nodal rotations.

Thus by carefully selecting pair- and higher-order potentials the response 
of multi-particle systems may be extended to compressive fracture. In order 
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to finalize the discussion of Chapter 8, let us have a closer look at Figure 11.17. 
In Figure 11.17a the structure of sandstone with equally sized sand grains 
that are bound together by CaCO3 is shown. The calcium-carbonate layers 
between neighboring sand-grains are very thin, leaving a large porosity in 
the material. The enormous porosity of such sandstones, for instance, for 
Felser sandstone where sand grains are bound with clay, Hettema (1996) 
reported porosity values up to 21.1%, which is the reason for the relatively 
low compressive strength. In concrete the particle structure and the cement 
content are selected in such a way that the large voids between the rough 
aggregates are filled completely, thereby reducing the porosity and increas-
ing the compressive strength.

Another factor defining the strength of granular media such as sandstone 
is the quality of the “glue” between the particles. In the aforementioned 
Felser sandstone, particles are bound together by means of clay, and water 
may have a significant influence on the strength of the sandstone; see, for 
instance, Visser (1998). But, let us return to cement and concrete. Before hydra-
tion a complete hierarchy of small and large grains is found in concrete, as 
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FIGURE 11.17
Structure of sandstone: mono-sized sand grains are glued together by means of thin layers 
of lime, clay, or other adhesive material (a); mechanical response of the grain skeleton under 
external compression (b); in contrast to sandstone the particle structure of concrete contains 
many small particles (silica, sand, and cement grains) (c); after hydration the matrix forms 
a more-or-less solid material where the particle structure is less pronounced, at least at the 
meso-size/scale considered here (d). (From Van Mier. 2007. Int. J. Fract., 143(1): 41–78. With per-
mission from Springer.)
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shown in Figure 11.17c. The application of the interaction potentials would 
require many different parameters to capture interactions between parti-
cles of different size. Considering that in modern concrete very small filler 
materials are added to close the smallest voids in an effort to increase the 
strength, the size-scale range of the particles varies between 10–7 and 10–2 [m], 
about 5 orders of magnitude. Working with an “average” potential could be 
useful at the beginning, but likely this would not suffice. After the cement 
hydrates, the matrix material between the rough aggregate particles forms 
a more-or-less continuous solid as shown in Figure 11.17d. This means that 
the larger aggregates with a size-/scale-range between 10–3 and 10–2 [m] can 
be interpreted as approximately mono-sized, and a model based on a single 
“averaged” potential may well work. This example may show that one has to 
be careful in selecting the right interaction potential, at the size/scale levels 
important for the material at a given moment of its history (e.g., unhydrated, 
partly hydrated, or fully mature).

11.4	 Structural	Lattice	Approach

In the classical framework for structural analysis, three sets of equations 
must be solved: the equilibrium equations describing the relation between 
internal stresses [σ] and external loads [F], the kinematic equations that 
describe the relationship between the overall displacements [u] and strains 
[ε], and thirdly, the constitutive equations, describing the stress [σ] –strain [ε] 
relations. Constitutive behavior is what we mostly discussed thus far. There 
appears to be a certain indeterminacy when it comes to defining appropriate 
parameters for fracture of concrete. When it comes to softening, the use of 
strain is not realistic any longer, but considering 3D localization, the notion 
of stress is no longer very useful either. The above-mentioned approach in 
structural analysis implicitly assumes that the material can be seen as a 
continuum; it does not apply when deformations localize in a crack or in a 
shear band. The discussion in the previous section points toward an alter-
native approach for fracture where the constitutive equations are replaced 
by a direct relation between force and displacement for an element in, for 
instance, a lattice or particle model. This means that the interaction potential 
(F–r), describing the relation between the applied normal force F and the 
crack opening r in tension, as we have named these relationships in the pre-
vious section is regarded as a structural property, and the notion of “material 
parameter” is abandoned altogether. In view of the size and boundary con-
dition effects on the softening diagram used in cohesive models, just going 
one step back and negating the existence of appropriate material parame-
ters for fracture seems the best possible approach that needs to be investi-
gated in coming years. Doing so has enormous implications, not only for the 
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theoretical framework, but also for the type of experiments needed to derive 
the structural properties of lattice elements. Figure 11.18 shows the differ-
ence between the old situation where one still would rely on constitutive 
equations and the newly proposed approach where one directly focuses on 
the relation between interaction potentials for a complete structural element, 
implying that structural size and boundary conditions form an integral part 
of the potential. It takes some time to get used to this weird idea, but in view 
of the problems around the definition of cohesive fracture properties it cer-
tainly is a workable hypothesis.

The structural approach requires that for a lattice with given element size, 
exactly for that element size and the governing boundary conditions for 
the particular place in the lattice, the structural properties must be deter-
mined. Here just for the sake of clarifying matters a bit better we return to 
Equation (3.11):

 
= =k T C SCTv SvT T  

(11.9)

which describes the relation between forces and displacements in a linear-
elastic element. The matrix =S T C SCTT T

 
describes the structural behavior 

of the element, and no further detail is considered. We may actually con-
sider the product of the combination matrix and the local stiffness matrix 
as one, which leads to =S T KTT . The constitutive equations are simply dis-
carded; what matters are just the structural properties of the entire element 
via the structural matrix K. In Figure 11.18b the “new” approach is shown. 
The essential property for the analysis of the global lattice is the interaction 
potential F–r. Note that the interaction potential will, in general, be a highly 
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FIGURE 11.18
(a) In the classical approach, a material element is isolated from a structural lattice, and the 
properties of the material are determined in a separate test in which uniform stress is applied 
to the material specimen. The material specimen needs to be an order of magnitude larger 
than the defining material structural elements in the RVE for the material. (b) In the struc-
tural approach the properties of a complete lattice element are determined, of given size L, 
and under the governing boundary conditions of its position in a global lattice. The resulting 
interaction potential F–r may have any shape, for example, the one discussed in Section 11.3.
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nonlinear function in which all effects caused by element size and bound-
ary conditions are included. For practical purposes it seems appropriate to 
distinguish two or three basic lattice element types in a global lattice. The 
structural element of Figure 11.18b is just an example: a beam element in a 
2D-lattice with nodal forces and moments; the support conditions are set 
by the flexural constraints of the other lattice beams connected in the same 
node. Thus, lattice elements located near the free surfaces of the global lattice 
will have a different connectivity, which will affect the rotational stiffness in 
the two nodes of the beam.

Finally, it seems necessary to emphasize once more the role of heterogene-
ity. In the lattice model as it was applied in Chapters 6 through 9 the coarse 
heterogeneity observed at the meso-size/scale of concrete was incorporated 
directly in the model. In Figure 11.19a we show a small lattice consisting of 
just two elements. The two elements are placed symmetrically with respect 
to the loading axis: at the top a displacement δ is applied which leads to ten-
sile loading in both elements. For the argument it is not important to specify 
whether the elements are beams or trusses. If all properties of the two ele-
ments are identical (EA, EI, ft, ν, etc.) the structure will deform symmetrically. 
This is all right considering the mathematics, but it will never correspond to 
physical reality in general. Concrete is perhaps, next to rock, one of the most 
extreme examples. The variability of the material properties is so large, caused 
by the rough meso-scale heterogeneity, that symmetry in the behavior of a 
structure such as that in Figure 11.19a is hard to imagine; if symmetry occurs 
that would be sheer coincidence. In Chapter 4 we discussed various ways of 
including heterogeneity in a lattice model. When the principle of interaction 
potentials is used, the only variability would come from differences in the 
connectivity from the lattice elements, unless, as in Section 4.5 the material 
structure is projected on top of the lattice structure and different properties 
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FIGURE 11.19
(a) Small two-dimensional lattice consisting of just two identical elements A and B placed at an 
angle with the loading direction. The structure is loaded at the top by a displacement δ. When 
the two elements have exactly the same interaction potential F–r, the deformation of the global 
structure will remain symmetric. When variations are made like those depicted in (b)–(d), the 
global structure will deform asymmetrically and flex to one side. This is exactly what experi-
ments on cement and concrete will always show (also see, e.g., Figure 2.11).
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are assigned to the various elements according to the local properties of the 
material phases in which they would fall. If variations in (simplified bilinear) 
interaction potentials are made, as shown in Figures 11.19b–d, we have made 
full circle, and it would seem we return to the FCM, in particular Figure 2.8 
where various forms of softening curves are shown. Of course this is just a 
superficial correspondence. Here we obtain asymmetric behavior, and mech-
anisms such as the nonuniform opening in tension between fixed platen 
loading (Figures 6.9–6.10) emerge naturally from the analysis of the structure 
of Figure 11.19a. Bringing in a variation of the maximum load an element 
can carry (Figure 11.19b), the initial stiffness (Figure 11.19b), or the softening 
slope (Figure 11.19d), in all cases, nonsymmetric global structural behavior 
would be calculated. Some researchers have claimed to find the asymmetric 
mode without including variability of local properties, for example, De Borst 
(1986). Close scrutiny of these results shows, however, that extremely small 
load steps were made, small enough to take advantage of a tiny round-off 
error in corner elements where localization would start. It is amazing that 
some researchers do feel it necessary not to reveal such “tricks.” When next 
comparisons to experimental results are made, one must take care to choose 
the boundary conditions in complete agreement with the experiment. For 
example, the erroneous claim that boundary rotations in tensile experiments 
would not affect the global softening behavior by Rots and De Borst (1989), 
can simply be traced back to fundamental errors made in the interpretation 
of the boundary conditions used in their simulations (see also Appendix 2.2).

Thus, in the end we have returned to considering the interaction poten-
tials as the structural property of a lattice element. Because of the similar-
ity between lattice and particle models, this can equally well be seen as 
a model of the contact laws between the particles. In a beam lattice, the 
flexural stiffness of the elements could be used to simulate friction; other 
possibilities that can be translated directly from the lattice model can be 
found in Section 3.5.

For modeling fracture the suggested fundamental modification of mechan-
ics theory seems quite essential. Ignoring the constitutive equations is a 
simple step. At the experimental front no further discussion is needed as 
to whether an element would correspond to the demands for an RVE; these 
matters have now become totally superfluous.
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12
Conclusions and Outlook

Science is what you know, philosophy is what you don’t know.

Bertrand	Russell	(1872–1970)

I noticed the above line during a recent visit to a museum in The Netherlands. 
It was printed on a wall in an exhibition gallery. How true this expression 
is: it was a good reminder of how we fare in science and technology. It also 
expresses in a wonderful way the contents of this book: from the basic mathe-
matical theory of linear elasticity to the more elusive debates on applying mul-
tiscale approaches, which stand at center stage in current fracture research. 
Although this book is about fracture of concrete, the way of approaching the 
topic proceeds in a similar way to that of many other branches of engineer-
ing. Engineers are interested in models. Models describe and summarize 
our understanding about a certain area of interest in terms of mathematics, 
in almost all cases interlaced with empirical content. Including empiricism 
to some extent is due to the fact that an area can be so complex, containing 
many influence factors that are barely understood, that it is impossible to 
even start thinking about an appropriate mathematical model that would 
capture all these factors. In that respect, the mechanical behavior of materi-
als is an easy subject area, although here we already encounter substantial 
difficulties. The book enfolds very much as summarized in this powerful 
expression of Bertrand Russell. In linear elasticity, as presented in Chapter 
3 one simply follows the rules laid out in the theory and one comes to the 
(exact) solution. A mathematical mind is what is required; understanding the 
language and knowledge of the logical rules are the essential tools. Linear 
elasticity is a well-defined mathematical construct. As soon as a comparison 
is made to real-world behavior, as we see it and interpret it from physical 
experiments, complications arise. Suddenly it is recognized that the world is 
not as black and white as the mathematics suggest, and some of the elasticity 
parameters may perhaps be understood in a different way. Do our interpre-
tations have to develop along the lines set out by mechanics, or are alterna-
tives possible, or even necessary?

Dealing with fracture is inherently more complicated than applying linear 
elasticity. In fracture one is confronted with a limit state: how do materials 
and structures break (fail)? How can we capture the observed behavior in a 
useful and correct model? I am hesitant to use the term “theory” because this 
seems to imply that the construct stands as a rock, and can only be turned 
over by extremely new insights. A theory is more than a model. Somehow 
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the word implies that the insights are well developed and stand for eternity. 
Over the years I have learned that we have to be careful with this terminol-
ogy, and if we are to qualify a model with words such as “theory” or “law” 
(which is another qualification that one should use sparsely) it is very depen-
dent on our ability to prove that the parameters used, and which provide 
the link to real-world behavior are properly defined, and can be determined 
from well-defined and independent experiments. The limitations of any 
approach should be known in as much detail as the phenomena that can be 
described. This attitude is quite lacking in modern science and engineering, 
to the point where a certain arrogance starts to affect progress in the field.

Exclamations such as “My theory (or law) is better than your model,” are 
true killers, in particular when the considered theory or law, like the com-
peting model relies heavily on curve-fitting. Not willing to admit that the 
parameters used in a theory, a law, or a model, are not as well defined as 
would be required, is a way of falling short of conducting science and engi-
neering in a responsible manner. It is very damaging, and may lead again 
to delaying progress in the field. Perhaps this all has to do with the extreme 
competition to which scientists and engineers are driven today. The situa-
tion seems to depend to a large extent on the way research has been funded 
over the last decades, where the best strategy appears to call out, “My theory 
is the best.” The person with the loudest voice may (temporarily) win, but 
in the end, deepening our insight over time, as well as the accumulation of 
further experimental data may point to quite another winner.

Knowledge and insight in the fracture behavior of materials and struc-
tures is what this book is all about. The models, and for a few decades, also 
numerical simulations, are just tools to arrive at a better understanding of 
the phenomena at hand. They should not, as in 95% of the publications in 
the field of fracture mechanics of concrete, be aimed at deriving the closest 
possible fit to experimental data. The reasons are manifold, but it is obvious 
that the empiricism brought in to make the close fit is not helping very much 
to improve our understanding of fracture mechanisms in concrete. It is a 
golden rule in fracture mechanics that in order to carry out the mechanics, 
the mechanisms need to be known first. How can we summarize our knowl-
edge about fracture mechanics today in a coherent, not necessarily math-
ematical, framework? Chapters 6 through 9 set the framework. They define 
our current state of knowledge about tensile, mixed-mode, and compressive 
fracture, as well as the effect of size/scale on fracture behavior. A limitation 
had to be made: only quasi-static loading is considered; no rate effects (thus, 
very fast loading (impact) and slow loading rates (creep) are not discussed), 
which, however, in the end should become an integral part of these musings. 
In setting the framework, it directly becomes clear that classical fracture 
theories and models, developed for other materials such as glass and metal, 
are not always are the most appropriate choice for concrete. The material 
has a very rough, distinct particle structure at the intermediate level, the 
meso-level ([mm]-size/scale), where, when it comes to understanding some 
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of the important details, one cannot simply ignore the complexities of the 
hardened (and also, hardening) cement structure at the micro-level ([μm]-
size/scale). In particular for understanding the structure and properties of 
the interfacial transition zone between cement matrix and aggregates (or 
fibers) the behavior of cement is an important factor. Considerations about 
the material’s microstructure are relatively new in mechanical models aimed 
at describing the fracture behavior of concrete, only since the development of 
the finite element method, including the structure of the material in the model 
has become feasible. One of my own first endeavors was published 25 years 
ago (Van Mier 1986b); an example that has not been previously published 
has become part of a somewhat historical overview in Van Mier and Man 
(2009). In Chapters 4 and 11 we discussed in detail the structure of cement 
and concrete and the implications for the mechanical and fracture behavior. 
The heterogeneity of these materials is very much the source of deviations 
from classical mathematical models for fracture, in particular those models 
based on presumed homogeneity or uniformity of the material. These erro-
neous ideas lead to proposing continuum-based models where the effects of 
the heterogeneity of the material are assumed to be effectively captured by 
using nonlinear fracture criteria.

Models expire after a certain date; theories and laws are for a (limited) eter-
nity. New insights, mostly from experiments, will eventually lead to overturn-
ing a certain approach for a new one. This means that models, theories, and 
laws, when applied in the gray area between true mathematics and physical 
reality, are constantly revised. They stand for second-hand knowledge, where 
the true knowledge is the insight directly obtained from physical experi-
ments. Experimental results stand the flow of time much better. I am always 
amazed to read that much of our modern-day insight in shear banding dates 
back for almost a whole century. Carefully conducted experiments carried out 
in those days such as Nádai (1924) and Richardt et al. (1929) still contain many 
insights that haven’t been replaced today by repeating the same tests using 
modern computer-controlled devices. The modern devices are excellent tools 
that help to get a more detailed view of the mechanical behavior of materials 
and structures; yet, one should not overestimate their role. Interpretation of 
experimental results is still a human task, where it is often quite essential to 
combine knowledge from different areas to come to truly new insights and 
understanding. But let us not get too “philosophical” and return to the heart 
of the matter: understanding fracture of concrete and cement.

12.1	 Fracture	Mechanisms

First let us review our knowledge about fracture mechanisms. Seemingly 
impulsive conclusions, such as those made in conjunction with the 
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development of the Fictitious Crack Model (FCM, proposed by Hillerborg, 
Modeér, and Peterson (1976) and its continuum counterpart, the crack band 
model (CBM), namely, that softening can be explained from a “cloud of 
microcracks advancing in front of a stress-free macrocrack” bring confusion 
and appear to be false afterwards. Under global uniaxial tension the fracture 
process can be divided in four distinct stages, namely (0) elastic stage, (A) 
stable microcracking, (B) unstable macrocracking, and (C) bridging. Stage 
(A) is related to the prepeak stress–deformation curve in tension, and not the 
softening curve as assumed in FCM and CBM. Distributed microcracking is 
found in the prepeak regime. The microcracking is “relatively stable” under 
global tension, but the situation is very much improved under global com-
pression. In the latter case the external loading must increase to propagate 
the microcracks that tend to align in the direction of (compressive) loading. 
This explains the much higher compressive strength of concrete. Controlling 
microcracking, for instance, by means of fibers added to the concrete may 
also enhance the tensile strength of concrete.

The softening part of the stress–deformation curve is related to the growth 
of an unstable macrocrack (under global tension) or shear band (under global 
(confined) compression), which causes a gradual decrease of the cross-sec-
tional area that can carry load. The softening regime can be referred to as the 
stage where localization of deformations occurs, both in tension and in com-
pression. This means that the deformations mostly occur in the main crack 
separating a test specimen in two parts. This is indeed, the most important 
contribution made in the Fictitious Crack Model in 1976. By recognizing this 
important phenomenon during softening, the picture is not complete because 
the growth of the major crack is to some extent stabilized or slowed down by 
means of crack-face bridges, that is, intact material ligaments that connect the 
parts of the test specimen in the wake of the growing macrocrack. In com-
pression the shear band is slowed down by frictional restraint in the band, 
which may eventually lead to considerable residual carrying capacity.

It will not go unnoticed that global tension and global (confined) compres-
sion are treated here as if they were identical phenomena. Indeed they are: 
there is a large resemblance between failing concrete in tension and in com-
pression. Differences appear where the stability of the prepeak microcracking 
is concerned, and the modus of the main stable macrocrack leading to local-
ization of deformations. Also under compression localization of deforma-
tions has been demonstrated, initially by me in 1984; subsequently confirmed 
many times. Differences with global tension during the softening stage relate 
to the crack mode (mode I in tension, and mode II in compression, to use the 
conventional notation from classical fracture mechanics), and to the way the 
main crack is stabilized (crack-face bridging versus frictional restraint).

Details about the fracture process under global tension, mixed-mode ten-
sion and shear, and compression are revealed by means of meso-scale mod-
els of concrete. Such simulations can be considered as the first multiscale 
analyses of the mechanical behavior of concrete. The first to try this were 
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Roelfstra, Sadouki, and Wittmann (1985) and was named “numerical con-
crete.” The lattice analyses shown in Chapters 6 and 7 show that a local mode 
I criterion suffices to simulate crack mechanisms under mode I and mixed-
mode I and II correctly. Mode III (torsion or out-of-plane shear) is captured 
realistically as well, as long as the confinement in the longitudinal direction 
is limited. The analyses show that, although the fracture mechanisms are 
simulated correctly, getting the overall load-deformation behavior right is 
less straightforward. Using a local elastic purely brittle fracture law leads in 
many of the examples to underestimating the global strength and the pre-
peak brittleness is often overestimated. Using a softening model at the meso-
level might seem the solution, yet there are strong arguments against such 
an approach, as discussed in the next section.

The prepeak microcracking can be attributed to the weak strength of the 
interfacial transition zone between aggregates and cement matrix. Because 
the structure of this transition zone very much depends on how the water 
moves in the fresh mixture during the hydration process, and because of 
its flimsy dimensions, it is mostly the properties of the hardened cement 
paste itself that decide how the properties of the ITZ develop over time. For 
understanding in detail the formation of the ITZ as well as estimating its 
properties it is necessary to repeat the meso-level analyses mentioned before 
at a smaller size/scale: with this step the multiscale approach is complete. 
An interesting observation is that many features of the fracture mechanisms 
observed at the meso- and macro-level reappear at the micro-size/scale level. 
For example, bridging in the final stages of tensile fracture has been identi-
fied, but needs further confirmation. However, there are several complica-
tions at the cement level, namely the structure of the material is inherently 
more complicated and moisture plays an important role. Except for the fact 
that several phases are recognized in the hydrated cement structure, and 
that they can be identified by means of indentation tests, detailed knowl-
edge about the local cement properties is very much lacking. A wide field of 
experimentation lies open for the near future. A number of potentially use-
ful experimental ideas have been included in Chapter 11.

12.2	 Theoretical	Models

For explaining fracture of concrete and cement several types of models have 
been used throughout the book, but foremost criticized. The main criticism 
relates to the unrestricted use of softening (sometimes even referred to as 
strain-softening, which of course is false simply because deformations local-
ize during the softening stage) in many macroscopic fracture models for 
concrete. In the first place the material is usually considered as an isotro-
pic continuum; in the second place handling negative material stiffnesses 
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during softening leads to many complications and errors that are avoided 
by considering fracture over several size/scales, and through the inclusion 
of the heterogeneous structure of the material. The importance of material 
heterogeneity was shown in Section 11.4. For a material like concrete it seems 
just not possible to neglect its coarse heterogeneity because it will always 
lead to deviations from the exact mathematics of continuum theory. For the 
derivation of FCM (or CBM) usually a single element is considered, and over 
its length at some point the element will break; that is, a crack will appear 
that separates the element in two parts. It is not important where this hap-
pens; it is important that the element stress σ will decrease with increasing 
deformation δ. The point that is missed, and which is caused by assuming 
that an average state variable such as stress can still be used to describe the 
loading on the element, is that the localization will not spread over the full 
cross-section of the element instantaneously, but it will take time for the 
crack to traverse the cross-section. This is just the same simple idea as that 
of localization in the direction of loading: the heterogeneity of the material 
(and with that the nonuniformity of the internal stress distribution) will sim-
ply decide where cracking starts first, and how the subsequent crack growth 
will unfold. Now, one may argue that for large structures, well beyond the 
representative volume element, average state variables including stress and 
strain can well be used. Yet, as soon as cracks start to develop, causing a dis-
continuous deformation field, the continuum theory will simply not relate 
to the physical reality. A theory must be used that can capture the displace-
ment jumps. In higher-order continuum theories this is just what is tried to 
be accomplished. By separating the total deformation in various contribu-
tions such as elasticity outside the cracked zone, strains within the cracked 
zone (where the notion of strain can only be maintained by introducing an 
internal length scale) it is to some extent possible to construct a displacement 
jump in the theory. The costs for this construct is an increase of complexity, 
and a new parameter must be introduced, the internal length scale, which 
has no clear physical basis. Indeed, as shown by Iacono (2007), when trying 
to model the behavior of specimens of different size by means of a gradient-
enhanced continuum damage theory, it appeared that for each specimen size 
another value for the length parameter was needed.

So, to make a long story short: the original idea in FCM was the notion of 
localization of deformations. What is missed is that the localization is three-
dimensional, and thus not only develops in the direction of the applied load. 
The error that persists to date is that softening is assumed to be a material 
property. It clearly is not correct, and easy to demonstrate in experiments 
through a variation of boundary conditions (BC) and specimen size (see 
Figures 2.11 and 9.5). Through the provision of this experimental falsification 
(Popper in action!) the theory should have been abandoned two decades ago. 
As long as continuum state variables are used in a fracture problem, and the 
softening curve is seen as a material property, there will be no improvement 
in the predictive qualities of such models, no matter how many internal 
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length scales are introduced; they will remain an artificial way to capture 
the effects from material heterogeneity in a continuum model.

Putting matters in an historical perspective may show that it was a neces-
sary step to go through the development of the Fictitious Crack Model. Now 
that it has become clear that not only the crack but also some of the model 
assumptions are fictitious, it seems a better strategy to develop a new model 
based on the physics of fracture. The fracture process as sketched in the pre-
vious section may serve as a guideline.

In this book several models have been discussed and/or applied; they are 
the following:

• Linear elastic fracture mechanics (LEFM, in Chapters 2 and 10 and 
Appendix 2)

• Cohesive crack models (FCM and CBM for concrete, in Chapter 2)
• Micromechanical models incorporating the structure of the material 

(Lattice model in Chapters 3–9)
• Multiscale models, extending over three or more size/scales 

(Chapter 11).

Normal procedure in many publications is to show the advantages of a cer-
tain model approach only. This is no surprise because future funding may 
depend on (presumed) success. Yet, it is unfair to newcomers in a field, who 
usually show no preference to any approach, but would like to hear about 
the advantages as well as the disadvantages of certain approaches. So, let us 
examine the four abovementioned approaches a little more closely.

• Linear elastic fracture mechanics. This theory is based on the stress-
intensity at the tip of a slitlike crack. The theory can be applied at any 
size/scale. The determination of the critical stress-intensity factor is 
the crucial problem. Boundary and size effects are incorporated by 
means of a geometrical function, which, in many cases can only be 
determined in an approximate manner. The elegance of this theory 
lies in the separation between material (critical stress-intensity factor) 
and size and BC-related influences (geometrical function). The dis-
advantage is that for every new problem the geometrical function 
must be determined. For three-dimensional crack geometries this 
may be a tedious job. Of course the same disadvantage applies to the 
4-stage fracture model that was discussed in Chapter 10.

• Cohesive crack models. These were developed with the idea of incor-
porating local nonlinear effects from crack-tip plasticity in a dis-
crete fracture model. The original model was derived for metals, in 
which the size of the plastic zone is small compared to the struc-
ture size. Equivalent models for concrete have been proposed (FCM 
and CBM), but because of the extreme low tensile strength of this 
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material, the plastic zone, or rather process zone, generally extends 
beyond the size of the considered structure. As in LEFM it is there-
fore important to incorporate BC and size effects. The models are 
preferentially used in conjunction with the finite element method. 
This latter method is assumed to take care of BC and size effects, 
but this is generally not correct. Mesh sensitivity is often a problem, 
mainly because the crack is not given sufficient freedom to grow 
in any desired direction. Numerical models based on LEFM gen-
erally fare much better in this respect (e.g., Ingraffea and Saouma 
1984), where instead of having cracks growing through a predefined 
element mesh, the mesh is constantly adjusted depending on the 
growth direction of a crack. Softening is certainly not a material 
property, but is dependent on BC and size of the considered struc-
ture. It is by no means clear which softening relation must be used 
under certain structural conditions; it will vary from case to case.

• Micromechanical models. In these models the macroscopic behavior 
is calculated by incorporating the structure of the material directly. 
This is mostly done using a numerical model, such as the distinct ele-
ment model, the lattice model, the finite element method, or another. 
The major disadvantage is that these approaches are computation-
ally demanding, as shown in Appendix 1 (note that this disadvan-
tage also applies to higher-order continuum models, where internal 
iteration loops tend to lengthen an analysis; this is, however, rarely 
mentioned). An advantage is that effects from material heterogene-
ity on the macroscopic fracture behavior can be explained. Size and 
BC effects can be analyzed in a simple and straightforward manner. 
The determination of the local fracture properties is possible only 
through inverse analysis, which does not guarantee uniqueness of a 
found parameter set.

• Multiscale models. These are similar to lattice or particle models, but, 
in comparison to the micromechanical models mentioned extend 
over more than two size/scale levels, for example, from micro- via 
meso- to macro-size/scale. The original idea is that results from the 
lowest size/scale are used as input in the meso-size/scale, and so 
on to the macroscopic level. The main issue here is to determine 
the interaction potential at the different size/scales. Moreover, it is 
not clear how the boundary conditions are included in the transi-
tion from one size/scale-level to the next one. It is common to use 
periodic boundaries, but this is a way of ignoring the real problem. 
The multiscale approach proposed in Chapter 11 returns to the fun-
damentals of mechanics. Constitutive equations are omitted com-
pletely, and the properties of the elements in a lattice model are 
directly determined as a structural property, thus including effects 
from the element size and the governing BC.
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In all the aforementioned model approaches determination of the frac-
ture parameters is of major concern. For LEFM applications, the process 
zone must be infinitely small, which means that the critical stress-intensity 
factor for a material such as concrete can only be determined by means of 
extremely large specimens (estimated size/scale range 1–10 [m], perhaps 
even larger). Cohesive crack models for concrete suffer from the fact that the 
required softening relation depends on specimen size and governing BC. 
For micromechanical models, which are basically a multiscale model at two 
size/scale-levels, the determination of the model parameters is also consid-
ered a major problem. Here inverse analysis is the common way out, but 
uniqueness of the parameters is not guaranteed. The same is true for higher-
order continuum models in which an internal length-scale must be deter-
mined. In a more general way it can be stated that the “potentials” that must 
be used in any fracture model always presents the largest obstacle. Over the 
years it has become very clear that an intensive and fundamental search for 
the physical processes leading to fracture must be carried out, which would 
need to extend over all size/scale-levels, from nano- to macro-level. There 
is great need for new original experiments; less for additional simulations 
using models that suffer from the aforementioned fundamental problem of 
parameter identification.

Finally, there is a natural tendency for engineers to favor continuum-based 
theories. This is no surprise: it evolves from the way mechanics, materials, 
and structures are taught in our curricula. For fracture models it is difficult, 
if not impossible to measure material properties independent of size and BC 
effects. If this problem cannot be solved, and the outlook for a solution is cer-
tainly not bright, it seems better avoiding it altogether. For this reason, lattice 
models, or particle models might be used at any size/scale-level, in which 
the constitutive equations are simply omitted, which means a fundamental 
change in the way we apply mechanics. This implies that the properties of 
structural elements need to be determined. Such structural elements have 
the actual size of the individual elements in the global lattice, and the bound-
ary conditions as they appear in the connectivity to adjacent elements in 
the global lattice. Expectations that something like a property of a material 
might exist that can be used in a fracture model are then simply denied ab 
initio. All we see are structural properties, and in particular in limit-state sit-
uations such as we encounter when studying fracture the full consequences 
become visible.
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Appendix 1: Some Notes on 
Computational Efficiency

The first analyses with the lattice model were conducted in 1990–1991 using 
the DIANA Finite Element Package, and were published in Schlangen and 
Van Mier (1991, 1992a). Those first computations used meshes of up to a few 
thousand elements: for example 4,812 elements were used in the SEN tensile 
tests reported in Schlangen and Van Mier (1992a), and were carried out on a 
SUN workstation. By modeling only the part of the specimen where cracks 
were expected to grow as a lattice, and the remainder of the structure by 
means of continuum elements (typically 8-noded isoparametric plane-stress 
elements that were available in DIANA), realistic specimen dimensions 
could be handled. With the increase of workstation capacity, performance 
increased and larger lattices could be analyzed. In 1993 the largest lattice of 
beam elements measured up to about 35,000 elements: a detailed fracture 
analysis of anchor pull-out. This latter analysis was performed at a CRAY 
system available at TU Delft (see Vervuurt et al. 1993b). It was considered 
essential to look for different solvers such as a conjugate gradient solver 
(see Schlangen and Garboczi 1996). In 2000 the lattice algorithm was imple-
mented in ScaFiep (Scalable Finite Element Package) developed by Lingen 
(2000). This allowed the use of parallel computing systems, which proved 
quite useful for three-dimensional analyses; see Lilliu and Van Mier (2003). 
These latter analyses contained up to 449,179 lattice beam elements and were 
done at the SARA-NSF computer center in Amsterdam using SGI-Origin 
3000 TERAS. From this moment on the use of continuum elements was abol-
ished because in many cases it was observed that small but very energy-
consuming cracks also developed outside the region of interest.

At present two different systems are used: an in-house Silicon Graphics 
system with 16 Itanium 2 processors (single core) and a CRAY XT3 com-
puter system at CSCS in Manno, Switzerland. The latter system has 1,656 
AMD Opteron processors (1,100 single core and 556 dual core), where max-
imum 1,024 can be used. The result of a benchmark simulation of a 3D 
lattice structure (974,403 beam elements) with 20 fracture steps using 1 to 
1,024 processors is shown in Figure A1.1. The parallel speedup is almost 
perfect up to 256 processors. For most analyses that were, for example, pub-
lished in Man and Van Mier (2008a), 64 processors proved to be quite opti-
mal with regard to wall-clock time. A problem of 7,448,383 elements (3D 
beam lattice) would take about 60,000 CPU hours. This number may show a 
substantial variation depending on the number of fracture steps that must 
be made. Further improvements in software and hardware are needed for 



268 Appendix 1: Some Notes on Computational Efficiency

including more detail in 3D analyses as they are carried out today. For 
further information see the most recent PhD thesis completed on the lattice 
model by Man (2009).
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FIGURE A1.1
Parallel speedup in a benchmark analysis of a 3D lattice; 20 fracture steps were made. (From 
Man and Van Mier. 2008a. Mech. Mater., 40(6): 470–486. With permission from Elsevier.)
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Appendix 2: Simple Results from 
Linear Elastic Fracture Mechanics

Ever since the pioneering work of Kaplan (1961), most researchers would 
agree that LEFM cannot be applied to materials like concrete and rock. The 
reason is that LEFM principles apply to single sharp cracks, and the presence 
of the microcracks can generally not be accounted for in this framework. 
Nevertheless, LEFM analyses can help to understand a few basic observa-
tions, and explain a few limit cases. In this appendix two cases are discussed: 
(1) the limit size effect on strength for very large samples, and (2) the effect of 
allowable rotations on the shape of the softening curve in tension.

A2.1	 Size	Effect

According to LEFM the stresses near the tip of a sharp crack in a thin plate 
(plane stress) can be written using Equation (2.11a) from Chapter 2:

 σ =
π

θK
a
f ( )I  (A2.1)

where KI is the mode I (opening mode) stress intensity factor, r and θ are the 
polar coordinates of a point close to the tip of the crack, and the function f(θ) 
is the geometrical factor that contains information on specimen geometry 
and boundary conditions. The half-length of the crack is equal to a. For a 
finite size structure f(θ) is often replaced by f(a/W) for convenience. Now let 
us assume that for a notch length a0 exactly the critical stress intensity KIc is 
reached and the structure starts to fail. The failure stress of the structure, 
with width W1 can then be formulated as
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For a second structure with size W2 > W1 and an initial notch size at which 
the maximum stress is reached such that (a0/W1) = (a0/W2) = ξ leads to a 
strength ratio
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The strength ratio is thus proportional to the square root of the size ratio. 
For example for a structure having a size W2 = 4.W1 the peak stress is half of 
the peak stress for the smaller structure σp,1. On a log-log scale this leads to a 
slope –1/2 of the size-effect diagram.

A2.2	 Boundary	Rotations	in	Uniaxial	Tension

In a similar way it is possible to calculate the shape of the softening branch, 
for example in a uniaxial tension test (see also Van Mier 1991a). The assump-
tion made is that the main crack that fails a specimen starts to grow at the 
maximum stress in the stress-crack opening diagram. There is quite some 
experimental evidence to support this assumption. In the past this was 
shown, for example, using a photoelastic coating technique by Van Mier and 
Nooru-Mohamed (1990); see Figure A2.1. Using a contact-free method, for 
example, moiré interferometry (see, e.g., Raiss, Dougill, and Newman 1989) 
or digital image correlation (Sutton et al. 1983) the growth of macrocracks in 
the postpeak regime can also be visualized. The latter technique is nowa-
days commercially available, also in a three-dimensional version, and the 
resolution steadily increases (see Appendix 4).

Assuming that the macrocrack starts at peak stress σp, with a small size a0, 
the stress σ1 after elongation of the macrocrack to length a1 can be written as

 σ
σ

= ξ
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(A2.4)

The assumption is made that during macrocrack growth the critical stress 
intensity factor KIc governs the growth process and is constant. Moreover, the 
crack propagates in a straight path, perpendicular to the tensile loading. The 
critical stress intensity for the initial crack a0 is exactly reached at the peak of 
the stress-crack opening diagram. In Equation (A2.4) the parameter ξi = ai/W, 
where W is the width of the considered test specimen and ai is the length of 
the macrocrack (a0 < ai < W). The key to the solution of Equation (A2.4) is in 
the geometrical factor f(ξ). For uniaxial tension between freely rotating load-
ing platens the approximate numerical solution given in the stress intensity 
handbook by Tada, Paris, and Irwin (1973) can be used, for the case between 
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nonrotating (fixed) loading platens a more complicated numerical solution 
by Marchand, Parks, and Pelloux (1986) is used (see Equations (2.13)–(2.16) 
in Chapter 2). The result is plotted in Figure A2.2. Depending on the ini-
tial notch length a0, the smooth shape of the softening curve between freely 
rotating platens (Figure A2.2a) follows a steeper or smoother descent after 
peak-stress. For the case of nonrotating platens the propagating crack is after 
a relative length ai/W ≈ 0.3 arrested and can only be propagated to larger 
lengths by slightly increasing the external load. For hardened cement paste 
such an increase of stress during the postpeak plateau (or bump as it has 
been called in the literature) has been observed in experiments (see, e.g., Van 
Mier 1991a) for a material like concrete, where the straight crack propaga-
tion is violated the plateau in the postpeak regime usually takes the form as 
shown in Figure A2.1. Thus, for concrete the given LEFM solution is quite 
approximate and does not cover the observations completely. Nevertheless 
the approach is simple and gives a first-order insight to what is happening 
during failure of a tensile specimen. The results show the correct behavior 
qualitatively; compare to the experimental results shown in Figure 2.11.
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FIGURE A2.1
Crack propagation observed by means of photoelastic coating technique in a single-edge 
notched specimen subjected to uniaxial tension between fixed (nonrotating) loading platens. 
The main crack first starts at the left notch (a), jumps over to the right notch at 22.5 μm (b). Next 
the two cracks shield and propagate in a very slow and stable manner (c,d). (From Van Mier 
and Nooru-Mohamed. 1990. Fracture Toughness and Fracture Energy: Test Methods for Concrete and 
Rock. With permission from Elsevier.)
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Finally, it cannot be said too often: it is very important that the boundary 
conditions are treated with much care. For example, Rots and De Borst (1989) 
using a softening fracture model based on the crack-band model by Bažant 
and Oh (1983) conducted various simulations of the effect of the rotational 
stiffness of the loading platens on the behavior of a tensile specimen, quite 
similar to the LEFM solution shown here. They concluded that there was no 
difference between freely rotating and fixed boundaries and in both cases 
the bump in the softening branch would appear. Unfortunately, an error in 
the analyses was made, namely the lateral displacement of the loading point 
was prevented, thereby allowing a bending moment to develop also when 
the rotational stiffness was assumed to be zero. Such errors are easily made, 
and may lead to erroneous statements that do not help the debate.
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Appendix 3: Stability of 
Fracture Experiments

In order to measure stable softening curves special experimental equipment 
is needed. Conventional open-loop systems do not provide feedback that 
allows capturing the decrease of load with increasing deformation, which 
is typical for softening. In such a loading device the load increases until 
something breaks, usually the specimen. Failure is uncontrolled, instanta-
neous, and a softening curve cannot be measured. By inserting some bars 
(e.g., aluminum) parallel to the specimen, it is possible to measure part of the 
softening regime, or, when softening is really gradual, the entire curve. Such 
systems, using parallel bars in an otherwise conventional load-controlled 
machine have, for example, been used by Hughes and Chapman (1966) and 
Evans and Marathe (1968); see Figure A3.1a. Basically the complete speci-
men-bar system is loaded, and after an experiment the contribution from the 
bars must be deducted to obtain the curves pertinent to the material under 
investigation (concrete and rock show a quite similar softening response). In 
Figure 2.10 some of the results obtained by Evans and Marathe (1968) were 
shown. These results have been central to the development of the Fictitious 
Crack Model, which is discussed in some detail in Chapter 2 as well. Modern 
machines are equipped with electronics that control the deformation and 
simultaneously can reduce the loading on a specimen. Such so-called servo-
hydraulic test machines are fastest when using, as the terminology implies, 
hydraulic actuators. A double-acting actuator is needed in combination with 
a servovalve that can react rapidly to signals from the electronic control 
amplifier. In Figure A3.1b the setup is clarified for a uniaxial tension test 
(Van Mier and Shi 2002). The test is an illustration of a tensile test between 
cables. Although the cables are considered a soft element in the entire load-
ing chain that might impair test-control, the obvious advantage is that speci-
mens are loaded at a well defined (centric) point-load.

As shown further on in this appendix, it is still possible to achieve a stable 
softening response, in spite of the use of cables. The principle of servocon-
trolled hydraulic testing has been known for a longer time now, and most 
laboratories are equipped with such loading devices. A review of basic test 
techniques can be found in Hudson, Crouch, and Fairhurst (1972), Gettu et 
al. (1996), Van Mier (1997), Van Mier and Shi (2002), and other publications.

Using a fast closed-loop test machine is not the only requirement to mea-
sure stable softening behavior. The length over which the control measure-
ment is read is also of great importance. In a simple and straightforward 
analysis, where the control length is varied from the entire specimen length 
L to zero, the significance of the measurement length in the test control 
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feedback loop can be shown; see Figure A3.2. The total elongation comprises 
two parts: the crack opening and the elastic deformation within the control 
length following,

 δ = δ + ε ⋅ ltot crack e meas
 (A3.1)

where δcrack = the pure crack opening and εe.lmeas is the elastic deformation 
within the measuring length. Because εe = σ/E and in the softening regime 
σ decreases, the total elastic deformation decreases. When, in the softening 
regime, the crack opening becomes smaller than the elastic unloading defor-
mation, snap-back behavior will occur, in this case when lmeas = L, as indicated.

Depending on the speed of the test-control system the snap-back may 
not be catastrophic, but rather a snap-through, after which the load can be 
restored and the tail of the softening curve can still be measured as shown in 
the quite extreme experimental result shown in Figure A3.3. In these experi-
ments 200-mm square plates with a single 25-mm deep notch (as drawn in 
the inset of Figure A3.3) were loaded between nonrotating (fixed) end-plat-
ens. This created a rather critical situation and the servocontrol appeared to 
be just too slow to prevent the instability. An additional parameter was var-
ied, namely the position of the LVDT used for test control. In the experiments 
shown in Figure A3.3a test control was over the average deformation mea-
sured with four LVDTs placed along the corners of a specimen; in the tests of 
Figure A3.3b test control was over the average deformation measured with 
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FIGURE A3.1
Schematic overview of the parallel-bar loading device used by Evans and Marathe (1968. Mater. 
Struct. (RILEM), 1(1): 61–64) (a) and of a modern tensile test in a servocontrolled testing machine 
(b). K denotes the stiffness of the parts indicated; subscripts have the meaning (pb) parallel bar, 
(sp) specimen, (lf) loading frame, (c) cable. (From Van Mier and Shi. 2002. Int. J. Solids Struct., 39: 
3359–3372. With permission from Elsevier.)
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two centrally placed LVDTs. The measuring length of these LVDTs was 65 
mm, which was clearly too long to avoid snap-through. Reducing the mea-
suring length to 35 mm solved the problem. Although one might be tempted 
to conclude that the results of Figure A3.3 can be used for further analy-
sis, this is not the case. A clear unstable regime appears after the plateau in 
the softening curve (see Appendix 2 for an explanation of this plateau), and 
likely the part just after peak stress, that is, the first steep stress-drop in the 
softening regime was unstable as well. Stability was restored because of the 
fixed-platen boundary condition. By simply moving the control LVDTs away 
from the corners, toward the specimen’s center, the tests became increasingly 
more unstable (compare Figures A3.3a and A3.3b). This means that the right 
choice of the location of the test-control parameter is quite essential with 
regard to the stability of the experiment. The experiments also showed the 
importance of the boundary conditions.

In general it is assumed that a stiff loading frame is required, but by using 
special advanced control parameters, a soft machine is actually quite suf-
ficient. In size-effect tests it always needs to be decided what is scaled, and 
what is not. The most common scaling is in two dimensions, while keeping 
the size in the third dimension (thickness) constant. Scaling of the measuring 
length may be an issue. At best, of course, one would control an experiment 
over the true crack opening, but because of the construction of LVDTs and 
other measuring devices it is almost impossible not to include some elas-
tic deformation, at least when unnotched specimens are tested. For notched 
specimens clip-gauges in the notch might be an appropriate choice. In the 
experiments shown in Figure 9.5 dog-bone-shaped specimens were loaded in 
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uniaxial tension. A small, but scaled eccentricity was used to ascertain that 
the main crack leading to softening would always emanate from the same 
side of a specimen. The curved bays of the dog-bones caused a stress distribu-
tion similar as shown in Figures 6.9b and c. Thus, the largest stresses appear 
over a relatively long part of the specimen; the cross-section of the specimen 
varies over this length with high stress. Considering the heterogeneity of 
concrete, the main crack could thus appear anywhere in the high-stressed 
part of a specimen. A solution was to use an adaptive control system, similar 
to a method used earlier, among others, by Li, Kulkarni, and Shah (1993). The 
system comprises a maximum of 16 control LVDTs. The LVDT measuring 
the largest deformation is the control parameter in the closed-loop servohy-
draulic loading system. Fast switching between LVDTs is possible through 
a custom-made switch box. The measuring length of all LVDTs was chosen 
as short as possible, but also considering that in the largest test specimen a 
wide enough area was covered. These demands led to a measuring length of 
75 mm. In Figure A3.4 an example is shown. The medium-size test specimen 
has a size D = 400 mm, leading to the smallest dimension in the neck of 240 
mm. The thickness is 100 mm. In the diagram the curves measured with four 
LVDTs are shown. Three LVDTs were placed inline along the length of the 
curved bay at the side of the largest stress as indicated. Along the other side 
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of the specimen the same amount of LVDTs was placed but here just the mid-
dle ones on the front and back side were included in the control system. The 
shown specimen thus had a total of 8 LVDTs connected to the switch box. In 
the beginning of the test, LVDT-5 (right, back-side) showed the largest defor-
mation, but at peak (point A in Figure A3.4) LVDT-2 (right, front-side) took 
over. At a deformation of about 27–28 μm (point B), LVDT-5 showed the larg-
est deformation again and control switched to that LVDT. Note that because 
the specimen was loaded between hinges, the opposite side of the specimen 
(LVDT-7 and 8) showed compressive deformations. Including the two LVDTs 
at the left side was important only in the very beginning of an experiment.

The next step is to show that in a “soft” machine stable softening can also 
be achieved, provided that the electronic and hydraulic parts of the test-con-
trol system are fast enough. The logical further development is to cut down 
the large dog-bone-shaped specimen in Figure A3.4 to a small plate with 
length in the order of 100 mm, and to replace the outer parts by a steel cable. 
The cable deformations can then be considered as the elastic deformations of 
the outer parts of the dog-bone, being actually much “softer” than the dog-
bone (mainly due to the dramatically reduced cross-section of the cable). It 
appears that controlling the deformation rate is needed to achieve stable soft-
ening: see Van Mier and Shi (2002). The cable tensile test is shown schemati-
cally in Figure A3.1b. The cable lengths can vary, and four different cases 
were considered: 50-, 100-, 150-, and 200-mm length. The specimen geometry 
and a photograph of the test setup with a fully instrumented specimen are 
depicted in Figure A3.5.

In Figure A3.6 it is shown that stable load-deformation response is obtained. 
The example concerns a test between two 50-mm long cables. The location of 
the two control LVDTs is shown in the inset of Figure A3.6a. Figure A3.6b 
shows at which time a certain LVDT is controlling the experiment. When the 
output value is 0.95 (arbitrary number), LVDT #10 controls the experiment, 
and when the output value is 0.10 (arbitrary number but deviating from the 
aforementioned value for the other control LVDT), LVDT #13 is in control. At 
the end the experiment fails instantaneously when the load on the specimen 
has decreased to a level equal to the total weight of the lower loading platen 
and the lower cable. To avoid this sudden rupture, the lower platen should be 
counterbalanced by the same weight, but this is of interest only when the final 
part of the tail of the softening curve must be determined. Thus, by using the 
right combination of hydraulic loading devices and fast electronic control sys-
tems stable fracture may be achieved under a variety of loading conditions 
for specimens of quite large size. It is imperative to have stable softening data 
in order to draw valid conclusions, therefore it is very important to solve the 
aforementioned stability issues before a series of experiments is conducted.

Stability of crack propagation can also be considered from an analyti-
cal point of view. As mentioned in Chapter 2, with the introduction of the 
Fictitious Crack Model by Hillerborg and coworkers in 1976 it was proposed 
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FIGURE A3.5
(a) Location of LVDTs on specimen and dimensions of the single-edge-notched specimen used 
in the cable tensile test, shown in (b). (From Van Mier and Shi. 2002. Int. J. Solids Struct., 39: 
3359–3372. With permission from Elsevier.)
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to measure the softening properties of concrete from a uniaxial tensile 
test loaded between fixed (nonrotating) loading platens. Zhou (1988) and 
Hillerborg (1989) proposed an equation that can be used to select the dimen-
sions of a tensile specimen in order to obtain a stable result. The inequality 
that was derived is:
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In this expression b, d, and h are the overall width, depth, and length of the 
tensile specimen, bc and dc are the width and thickness of the notched sec-
tion, E is the Young’s modulus of the concrete, and (-dw/dσ)min is the steepest 
part of the softening curve, usually the part just beyond maximum stress. 
Nonrotating loading platens have an infinitely large rotational stiffness Kr. 
The left part of Equation (A3.2) is always larger than 0, and thus the right-
hand part should also be larger than 0. For a material with steepest slope 
in the softening curve (-dw/dσ)min the selected specimen dimensions should 
then fulfill the following inequality:
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Before deciding which specimen dimensions should be selected it is impor-
tant to have an idea of the value of the steepest slope. It is therefore debat-
able if these expressions are really useful. The practical procedure would 
use the same specimen dimensions for a related material, and check on the 
test stability. One should be careful in judging whether no local snap-backs 
occur. Thus it is inevitable to run a few preliminary experiments. Having 
results such as those presented in Figure A3.3, which are really on the brink 
of being stable, it is possible to estimate the rotational stiffness of the used 
loading machine, which is in most cases not known a priori; see Van Mier 
and Schlangen (1989).
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Before applying fracture mechanics, one should have an idea of the fracture 
mechanism. This is a fundamental starting point for any fracture mechan-
ics analysis. Fracture mechanisms can be established by trying to measure 
how cracks develop during loading of a certain test specimen. Basically two 
stages can be distinguished: visualization and quantification. The first stage 
is rather demanding in heterogeneous materials: it is not straightforward 
to distinguish cracks from grain boundaries and interfaces, nor to detect 
cracks with very small opening, that is, at the submicron scale. In some cases 
the development of a crack at the [mm]-scale opening is accompanied by 
many [μm]-scale microcracks. This would, for example, occur in several of 
the high-performance fiber-reinforced cement-based composites, which are 
a popular subject of research these days. In such cases it is of importance 
to combine a large field of view with very high resolution. Quantifying is 
equally demanding. Cracks in concrete tend to be rather tortuous as a result, 
again, of its heterogeneity. How are crack length, crack area, crack density, 
crack roughness, and other parameters defined? How do these parameters 
relate to the mechanical behavior of concrete? These questions, together with 
the unavoidable simplifications, are probably the most important debate in 
this book.

Quite a variety of crack-detection techniques has been developed over 
the years, applied to different materials, at different size-scales, and under 
different loading regimes. As mentioned, we have to distinguish between 
visualization and quantification. Visualizing cracks can be done with the 
naked eye, or with the aid of optical means (microscopy, such as light- and 
electron-microscopy and atomic force microscopy, x-ray tomography, etc.). 
In most cases these are two-dimensional techniques; that is, the surface of 
a specimen, with or without load, is subjected to close inspection. Getting 
some insight in the internal crack growth can only be achieved by means of 
cutting and slicing. In the process the specimen is destroyed, and only the 
cracking at a given loading stage can be determined. It is interesting that at 
very high resolution by means of milling with a focused ion-beam cracking 
at the [nm]- and [μm]-level can be studied. The result usually is stored by 
means of a (digital) camera, or simply pencil and paper. At some scales and 
for some techniques it is helpful to enhance the cracks, to make them more 
visible. With the naked eye it is possible to see cracks with a width of 30–50 
μm, provided the light conditions are excellent, and the specimen surface 
is well prepared, for example, painted white or well polished. Fluorescent 
epoxy impregnation is a useful enhancement of cracks in concrete, which are 
presented in Section A4.1. A brief explanation of this technique is accompa-
nied by some results that are meaningful for the debate in Chapters 6 and 10. 
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In x-ray microscopy/tomography sometimes cracks are enhanced by means 
of a contrast medium (e.g., Goto 1971 and Otsuka et al. 1998), but this is rather 
tedious and requires special preparation of the specimen. X-ray tomogra-
phy is a rapidly developing technique that allows making three-dimensional 
images of specimens, even under load, showing the internal material struc-
ture, but also the development of cracks. In Section A4.2 we discuss x-ray 
computed tomography in some detail, again highlighting some results that 
relate to the discussion in Chapters 4 and 11.

By means of digital image correlation it is possible to measure the defor-
mation of a specimen/structure under load. Progressive stages of defor-
mation can be monitored. When discontinuities in the deformation fields 
arise, cracks have developed, and in this way the technique can be applied 
in fracture mechanics. In Section A4.3 we briefly discuss the principle of 
this technique, and show some results that relate to the debate in Chapter 8 
on compressive fracture. Most of the examples presented are qualitative in 
nature: no direct measurements of crack lengths, or crack densities are made. 
As a matter of fact, this will be a challenge for the coming decades. After 
having established fracture mechanisms, and after having proposed several 
possible theories that could well model these mechanisms (see Chapters 4, 
10, and 11), the time has come to quantify the results. Even by means of digi-
tal computers quantifying crack data is still a challenge, not in least because 
the cracks are highly tortuous surfaces. In Chapter 10 some attempts are pre-
sented to make sense of crack patterns from numerical mesoscale analyses of 
tensile fracture. Basically this is the same as using crack data from physical 
experiments. Simplification is at the current state of knowledge unavoidable.

Energy is consumed to create a new crack surface. Measuring parameters 
indirectly that relate to this energy consumption is quite popular, for exam-
ple, the use of nondestructive techniques such as acoustic emission (AE) 
monitoring, measuring changes in the ultrasonic pulse velocity in specimens 
under load, monitoring temperature changes in a structure due to crack-
ing by means of infrared thermography (e.g., Luong 1990), or, as recently 
proposed, looking to piezo-nuclear neutron emissions (see Carpinteri and 
Lacidogna 2010). The first two techniques have been used for many years: 
in AE monitoring weak elastic waves produced by the nucleation and prop-
agation of cracks and friction in cracks are measured. In ultrasonic pulse 
velocity experiments, the running time and changes therein of an ultrasonic 
pulse are determined, and it is attempted to relate the signals to the actual 
damage in the specimen/structure. These techniques are to some extent 
quite speculative: it is extremely difficult to relate the acoustic signals to real 
crack geometries. Nevertheless, the techniques are popular inasmuch as the 
structure/specimen remains intact during monitoring of internal cracking. 
In Section A4.4 we discuss AE monitoring and show an example of dry-
ing cracking in hardened cement paste. The results from AE monitoring are 
compared to fluorescent epoxy impregnation on the same specimen at the 
end of the monitoring period.
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In the (near) future destructive techniques where cutting and slicing of a 
specimen are needed will very likely be replaced by x-ray tomography and 
AE monitoring, that is, by techniques that can be applied while a specimen 
is under load, revealing the complete three-dimensional (internal) material 
structure and changes therein (i.e., crack nucleation and growth).

A4.1	 Fluorescent	Epoxy	Impregnation

The impregnation technique has often been applied over the past decades. 
The technique developed by Vonk (1992) during his doctoral work has proven 
to be quite helpful in visualizing the fracture process in concrete subjected to 
tension and compression. After several small changes, the technique is now 
applied as follows; see Stähli (2008). A specimen is loaded to the required 
stress- or deformation-level, after which it is unloaded. To ensure that cracks 
do not close, one can decide to glue steel platens on the outer surfaces of the 
specimen. This can be done while the specimen is under load, or after it has 
been unloaded. In the latter case one must expect that crack widths have 
reduced. Next, the specimen is placed in a cylindrical container, which can 
be closed with a heavy (steel) lid. On the lid a valve, a hopper, a vacuum 
hose, and a manometer are fitted (see the scheme shown in Figure A4.1). 
Using a vacuum pump, the air pressure in the container can be reduced to 
200 mbar (20 kPa). From the hopper fluorescent epoxy can be injected on top 
of the specimen when the required pressure has been reached. To facilitate 
the epoxy addition, a hose is fixed to the inside of the lid, ending about 1 
cm above the specimen’s surface. To prevent spilling epoxy the specimen is 
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Transparent
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Specimen
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Pressure
gauge

Heavy lid
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FIGURE A4.1
Setup for fluorescent-epoxy impregnation.
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wrapped in tape before placing it in the container. A small hole just below 
the hose attached to the hopper allows for filling with epoxy. After the epoxy 
has been impregnated, atmospheric pressure is restored slowly, taking about 
40–50 minutes. Hardening of the epoxy is accelerated by placing the speci-
men in an oven at 60°C for an entire day. After hardening of the epoxy, the 
specimen can be cut in slices, and under ultraviolet light the internal crack 
patterns become visible. Common practice is to take pictures, sometimes at 
high resolution. Various crack measurements can be done from the images, 
but first crack mechanisms are studied qualitatively.

In Figure A4.2 two examples of crack-face bridging in concrete subjected to 
uniaxial tension are shown. The average crack width in the direction of the 
tensile load was measured with LVDTs around the specimens’ circumfer-
ence, and the specimens were unloaded after reaching 100 μm. In this exam-
ple the original images were reversed to have a black crack against a white 
background. Crack-face bridges in concrete develop as crack overlaps (often 
referred to as “hand-shake cracks”) near larger stiff aggregate particles. A 
small load can be carried by the intact ligament between the two crack-tips; 
the bridge fails in bending as shown in Van Mier (1991b). The mechanism 
appears at crack openings larger than 20–25 μm, that is, in the tail of the soft-
ening curve; see also Chapter 6 (Figures 6.1 and 6.2) where the mechanism 
was identified from meso-level analyses of tensile fracture, and Chapter 10 
where crack-face bridging forms an integral part of the recently proposed 
4-stage fracture model (viz. Section 10.1.4).

Another example of using fluorescent epoxy impregnation is shown in Figure 
A4.3, demonstrating multiple cracking in fiber-reinforced concrete. The mate-
rial is actually a fiber-reinforced mortar (sand with dmax = 1 mm is used); the 
fiber content is 3% of 12-mm long, 0.2-mm diameter high-strength steel fibers 
(1,980–2,180 MPa). The beam is loaded in 4-point bending, in displacement 
control up to a middle deflection of 1.7 mm. This particular mixture showed 
the largest prepeak deformations, compared to mixtures containing shorter 

‘Hand-shake’ cracks

‘Hand-shake’ cracks

Lytag particles

(a) (b)

FIGURE A4.2
Crack-face bridging in a tensile crack (average crack opening 100 μm) in 2-mm aggregate con-
crete (a) and 8-mm lytag concrete (b). Note that in Figure (b) the large porous lytag particles are 
also filled with fluorescent epoxy (cluster of black speckles; two particles have been marked). 
Bridging in lytag concrete therefore occurs around the largest sand grains; cracks are often 
found to cross the weak lytag particles. (From Van Mier. 1991a. Cem. Conc. Res., 21(1): 1–15. With 
permission from Elsevier.)
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(6-mm) or longer (30-mm) fibers. At peak (0.9 mm deflection), a diffuse regu-
larly spaced crack pattern is visible; beyond peak in addition a localized crack 
develops under the right loading point (as shown here). For more information, 
see Stähli (2008). The image is a mosaic of several images, each measuring 25 
× 20 mm2 (Figure A4.3a), which are stitched together to obtain a single image. 
Under UV-light the fluorescent epoxy shows in bright yellow, and the concrete 
in dull blue (here white for epoxy, dark gray for concrete). Figure A4.3b shows 
the conversion to a binary image; Figure A4.3c to a grayscale image. The latter 
is used for illustration purposes only (qualitative illustration of the fracture 
process). After manual tracing of the grayscale image the pattern of Figure 
A4.3d is obtained. From such figures crack spacing, crack length, crack densi-
ties, crack widths, and the like can be measured, which remains, however, a 
relatively tedious job, see Stähli (2008). The method allows us to see the small-
est cracks in the high-resolution subimages, and thus to obtain a very detailed 
map of all cracks present at a certain loading stage.

Although the impregnated crack patterns reveal much detail of the frac-
ture process, a large disadvantage is that for every loading stage a new speci-
men must be loaded up to the required deflection. There can be a great deal 

(a) (b)

(d)

(c)

FIGURE A4.3
Crack pattern in a fiber-reinforced concrete beam subjected to 4-point bending. By stitching 
10 individual high-resolution UV images together the crack growth is visualized in the entire 
beam (a). Binary thresholding (b), and grayscale images (c) help to improve the view. After 
manual tracing the crack pattern of Figure (d) is obtained, which is the basis for various crack 
measurements. (After Stahli. 2008. Ultra-Fluid, Oriented Hybrid-Fibre-Concrete. With kind per-
mission from Dr. Patrick Stähli.)
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of scatter in concrete properties, therefore it may take several repetitions of 
each loading stage before a proper insight in the governing fracture mech-
anism is obtained. For example, for discovering the crack-face bridging in 
uniaxial tensile fracture, hundreds of images from 26 specimens of four dif-
ferent concretes were produced. Details can be found in the aforementioned 
publications. It is not always clear which cracks are “active.” that is, show 
progressive movement of the crack faces during loading. This is hard to 
show by means of fluorescent epoxy impregnation because the crack pattern 
is frozen in time. Active cracks can more easily be identified using visualiza-
tion techniques that work while the specimen/structure is under load, for 
example, long-distance microscopy (see Van Mier (1991b) and Figure 10.6), 
or x-ray computed tomography and digital image correlation, which are dis-
cussed in the next sections.

Impregnation is quite well suited for demonstrating macroscopic fracture 
patterns in concrete. Bridging and multiple cracking shown here are just two 
examples; failure of concrete under compression has been shown using the 
same techniques by Vonk; see Figure 8.5. Shear-band propagation under tri-
axial compression was shown by Van Geel (1998); see Figure 8.15. Fluorescent 
epoxy impregnation is also done on a regular basis on microscopic small 
samples (for use in light microscopy), for example, in the field of cement and 
concrete durability. Consequences of various chemical reactions may lead to 
expansion and thus to internal damage; cracks caused by alkali-aggregate 
reactions or corrosion-induced crack growth can be shown in quite some 
detail. The epoxy used in the example of Figure A4.3 (EpoFix, supplied by 
Struers, mixed with fluorescent dye EpoDye) has a very low viscosity and 
negligible shrinkage, which are the essential properties, next to a sufficiently 
long pot-life (1 hour would generally suffice).

A4.2	 X-Ray	Computed	Tomography	(CT)

The disadvantage of using multiple specimens for examining the fracture 
process can be avoided by applying x-ray computed tomography (CT). Of 
course this technique requires more advanced equipment: an x-ray source 
and a digital computer for imaging and 3D reconstruction. In recent years 
table-top x-ray tomography equipment has become standard in many labo-
ratories. The technique can be used at different size-scales: from [μm]-small 
cement samples to [m]-size concrete prisms. For obtaining some of the 
results presented in this book (see Chapter 4 and 11) the so-called cone-beam 
technique (see Persson and Östman 1986) has been applied, which is shown 
schematically in Figure A4.4. The specimen is rotated in the x-ray beam, and 
at designated angles an image is captured. In one of the applications, trying 
to visualize the internal structure of foamed cement and crack growth due 
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to external loading, typically 4,000 angular steps of 0.09 degrees each were 
used; see Meyer (2009).

For studying crack growth it is essential that the loading device does not 
hinder the capturing of images. The parts of the loading frame in the x-ray 
beam must be translucent to the x-rays, for example, glass can be used, or a 
carbon–polymer composite used by Meyer (2009), which was selected after 
consultation with experts from Scanco medical AG, who delivered the table-
top x-ray scanner. When a miniature loading device is built into an existing 
scanner one should expect numerous problems. The samples are very small, 
and in particular in the case of concrete is it important to check if the mate-
rial sample is larger than the representative volume (see also Section A4.1 
and Chapter 9). Denser materials are less translucent to x-rays than voids (or 
cracks): on the usual grayscale the densest materials appear white and hol-
low space is black. In the past contrast media have been used to enhance the 
visibility of cracks; see for example the work of Goto (1971) and Otsuka et al. 
(1998). This leads to further complications because methods must be devised 
to bring the contrast fluid into the cracks. Modern applications function well 
without additional measures, and as said, function on the basis of density 
differences only.

In an attempt to obtain detailed insight to crack growth in plain hardened 
cement, a small loading device was constructed for use in the tomography 
beamline at the synchrotron of the Paul Scherrer Institute (PSI) at Villigen 
(see Figure A4.5). Using synchrotron radiation very high resolution images 
can be obtained, provided the specimens are sufficiently small. The speci-
mens used had a length of 250 μm and diameter of 130 μm. Cylindrical sam-
ples were used because this is the ideal geometry when the specimen must 
be rotated. The field of view is equal to the diameter of the sample, giving the 
best resolution per pixel. Casting these small specimens was quite difficult. 
Small holes of 130 μm were made in a sheet of Teflon of 250-μm thickness. 
The cement was pressed in the holes, and the Teflon could easily be removed 

Specimen (and
loading device)

on rotation table

x-ray source

Detector

FIGURE A4.4
Computed tomography using the cone-beam technique.
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by cutting it away with a sharp razor blade. The specimen was glued between 
two tungsten needles of the same diameter. The two rods with the specimen 
in between was fixed in an assembly consisting of a piezo-electric tube and 
a glass capillary as shown in Figure A4.5a. The glass capillary is translucent 
to x-rays and was strong enough to function in the loading-rig. The com-
plete device was then placed on top of the rotation table in the tomography 
beamline at the synchrotron of the Paul Scherrer Institute (see, for instance, 
Stampanoni et al. 2002). Figure A4.5b shows the loading device in front of the 
SRμCT-detector. Tensile loading of the cement sample was achieved by vary-
ing the voltage on the piezo-electric element. The loading was not controlled: 
the test was an open-loop arrangement, and only by sheer luck insight to the 
softening regime would be possible. This was not an obstacle because the 
primary goal was to obtain information about the fracture process just prior 
to reaching peak-load.

These experiments are highly demanding. In particular the preparation of 
the loading device that could be used only once takes an enormous amount 
of effort. On top of that one simply has to wait until measuring time becomes 
available at the synchrotron tomography beamline. At most four to five tests 
could be run each half-year, which is barely sufficient to get a good idea of 
the statistics. Therefore only a few experiments were conducted, revealing 
the inner structure of hydrated cement paste, in particular the porosity and 
unhydrated cement particles that can easily be distinguished because of the 
large differences in density; see Figure 4.8. Some detail about the cracking 
process was obtained as well. The cracks were unstable, but nonetheless 
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FIGURE A4.5
(a) Small-scale testing device based on piezo-electric actuation, for use in a synchrotron-
based microtomography (SRμCT) experiment at the Paul Scherrer Institute in Villigen (CH). 
(After Trtik et al. 2007. Proc. 6th Int’l. Conf. on Fracture Mechanics of Concrete and Concrete 
Structures (FraMCoS-VI).) (b) Entire loading apparatus in the tomography beamline at PSI. At 
this scale the specimen is hardly visible; it is located near the top of the glass capillary.
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bridging similar to that shown in Figure A4.2 was observed. In Figure A4.6 
the upper and lower crack-face after fracturing a specimen are shown, as 
well as a 3D view of a crack-face bridge connecting the upper and lower part 
of the specimen. The main crack runs through the hydrates, but also along 
the interface between unhydrated and hydrated cement. The light gray in 
Figures A4.6a and A4.6b indicates the hydrated Portland cement, medium 
gray is unhydrated cement and dark gray indicates the interface between 
hydrated and unhydrated cement. The resolution of the whole setup was 
not quite sufficient to reveal much of the prepeak fracture process, which 
was the actual goal of the experiment. Other, destructive, techniques are 
likely more useful, for example, looking to the interior of a (cracked) speci-
men using a focused ion beam (FIB); see, for instance, Holzer et al. (2004), 
but then of course it is not possible following cracking throughout the load-
ing sequence in a single specimen.

In this book results from three different applications of x-ray tomogra-
phy have been used, at three different size-scales, namely the level of the 
individual aggregate particles and fibers in (fiber-reinforced) concrete ([cm]-
scale; see Figure 4.7), pores in foamed cement ([mm]-scale; see Figure 4.6) 
and the material structure and crack growth in hardened Portland cement 
([μm]-scale; see Figures 4.8, 11.9, and A4.6). For each of these applications it 
was necessary to use different equipment as shown in Table A4.1.

Important crack-data, such as length, tip location, and movement of vari-
ous parts of a specimen/structure separated by cracks can be quantified 
from the obtained images using specially developed software; see, for exam-
ple, Roux et al. (2008), Landis et al. (2007), and many others. In the framework 
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hydration products

(a) (c)(v)

Crack through
hydrated material

Small white islands:
crack-face bridging

FIGURE A4.6
Crack-face bridging at μm-scale from synchrotron-based microtomography (SRμCT). Two 
crack-faces of a broken specimen are shown (diameter 130 μm); (a) and (b). The small white 
islands are the remnants of crack-face bridges. A 3D view of a crack-face bridge connecting 
the two specimen parts (c). (After Trtik et al. 2007. Proc. 6th Int’l. Conf. on Fracture Mechanics of 
Concrete and Concrete Structures (FraMCoS-VI).)
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of this book no further information is given here, and the interested reader is 
referred to the mentioned literature sources.

A4.3	 Digital	Image	Correlation	(DIC)

Digital image correlation is an interesting technique for measuring the 
deformation of a large part of a whole structure (specimen) under load. 
Discontinuities in the deformation field are interpreted as being cracks. The 
predecessor to digital image correlation is stereo-photogrammetry; see, for 
example, Torrenti, Benaija, and Boulay (1992), which was used in the precom-
puter era. Making use of digital computers is essential nowadays for storing 
and analyzing the enormous amount of data collected during a single experi-
ment. Started in two dimensions, fully three-dimensional systems have been 
developed more recently. The method has even become commercially avail-
able, for example, VIC-3D of LIMESS. There is an obvious advantage of work-
ing with three-dimensional rather than two-dimensional image correlation: 
negative influences such as out-of-plane deformations are circumvented, 
specimen surfaces studied do not need to be perfectly planar, and it is even 
possible to record more surfaces at the same time. The three-dimensional 
version of digital image correlation requires stereovision, that is, two digital 
cameras are needed. In the images shown below, two CCD cameras with a 
resolution of 2048 × 2048 pixels were used. Three-dimensional digital image 
correlation has been developed in the last part of the previous century; see 
Sutton et al. (1983), Helm, McNeill, and Sutton (1996), Kahn-Jetter and Chu 
(1990), Luo et al. (1993), Synnergen and Sjödahl (1999), Robert et al. (2007), 
and many others. For calculating the surface displacements two images are 
needed: a reference image, most often the structure or specimen studied in 
the unloaded state, and a second image, that is, the same structure/speci-
men at a given external loading. It is possible to use specific points in the 
texture of a material as reference points in the analysis. For materials like 
concrete it may be useful to fill the larger pores on the surface of a speci-
men, for example, with cement or epoxy, paint the surface white, and finally 

TABLE A4.1

Overview of X-ray Computed Tomography (CT) Experiments

Size/Scale Material Equipment
Theoretical	
Resolution

[cm] Concrete Siemens SOMATON definition 64 0.5–1 mm
[cm] FRC Siemens SOMATON definition 64 0.5–1 mm
[mm] Foamed cement Scanco Medical μCT40 desk top 6 μm
[μm] Portland cement SRμCT, PSI, Villigen 0.7 μm
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apply a speckle pattern by spraying black paint by means of an airbrush. The 
principle is simple. Characteristic parts of a surface of the undeformed speci-
men can be traced back on the surface of the deformed specimen. The area 
surrounding the point of interest is called the subset, and should include 
minimal 3 × 3 speckles, see Figure A4.7.

There are several parameters affecting the results obtained; see, for exam-
ple, Robert et al. (2007) for details. Image noise cannot be eliminated com-
pletely. It is important to keep the conditions (light in particular, and the 
position of the cameras) the same throughout an experiment in order to 
reduce the noise. Moreover, the entire setup needs to be free of vibrations. 
For homogeneous materials under uniform loading very good results can be 
obtained. For very heterogeneous materials like concrete, in particular when 
cracks develop, noise will increase and the conclusions may not be as solid 
as desired. In all applications it is usually better to decrease the image size 
in order to reveal more details of the fracture process; see Caduff and Van 
Mier (2010).

As an example, in Figure A4.8 crack patterns determined with 3D-digital 
image correlation are shown (Figure A4.8a,c), including a comparison with 
results from vacuum impregnation with fluorescent epoxy (see Section 
A4.1) of the same specimens after the experiments were terminated (Figure 
A4.8b,d). The prisms were loaded in uniaxial compression between two dif-
ferent end-conditions: rigid steel platens (Figure A4.8a,c) and steel platens 
with a special friction-reducing sandwich element inserted between speci-
men and platen (Figure A4.8b,d). The sandwich elements consist of two 
sheets of 0.10-mm PFTE (Teflon) with a layer of 0.05-mm grease in between, 
as proposed by RILEM TC 148-SSC (2000). With this sandwich the friction 
between loading platen and concrete reduces to approximately 1–2%, and 
specimens are loaded more uniformly (see also Section 8.2 where the effect 
of boundary conditions on the stress–strain behavior of concrete in compres-
sion is debated, in particular the softening behavior). The results from digital 
image correlation show that with the method the main crack pattern can be 
visualized. With the commercial package used it was not possible to look to 
crack patterns in the prepeak regime, but postpeak the fracture process can 

(a) (b)

FIGURE A4.7
Speckle pattern on unloaded surface of a specimen and definition of subset (a), and situation 
after deforming the specimen (b).
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FIGURE A4.8
Crack patterns in 16-mm normal concrete (37-MPa compressive strength), loaded between rigid 
steel platens (a,c) and steel platens with friction-reducing sandwiches according to RILEM TC 
148-SSC (2000) (b,d). The two top images are results obtained from 3D digital image correla-
tion; the two bottom images show the results after vacuum impregnation with fluorescent 
epoxy. Specimens are prisms h/d = 2, d = 70 mm. (From Caduff and Van Mier. 2010. Cem. Conc. 
Comp., 32: 281–290. With permission from Elsevier.)
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be captured. Comparison with the impregnated specimens indicates that 
with the latter method all fine details in the crack pattern are revealed; yet it 
is not obvious which cracks are active at a certain moment, and here digital 
image correlation is a great help. In spite of its limitation in capturing all fine 
cracks, knowing the main mechanisms is helpful for constructing average 
crack models such as the 4-stage fracture model presented in Chapter 10.

A4.4	 Acoustic	Emission	(AE)	Monitoring

Nondestructive techniques for monitoring crack growth include acoustic 
emission monitoring. The method is based on the small elastic waves pro-
duced in the material when cracks nucleate or propagate, or when there is 
friction between the crack-faces. By mounting several sensors on a speci-
men/structure where cracks appear, for example, caused by external load-
ing or restraint, the approximate location of the events can be determined. 
Location analysis is based on assumptions of the speed at which signals 
travel through the material, which, for a material like concrete, can only be 
a very rough average. The signals can be very small indeed, and one must 
be careful not to perform measurements in the background noise. Signals 
occurring close to sensors may also turn out to give erroneous results, and 
location analysis is hampered when more cracks develop at the same time. 
In spite of such difficulties there is great interest in developing sound and 
robust methods. Research in the field is on-going. As a general reference the 
reader is referred to the recent book by Grosse and Ohtsu (2008).

It is still difficult to correlate acoustic events with the geometry of the 
real cracks.

Again, we show the method through an example. Due to drying, hardened 
cement paste shrinks, and when the deformations are restrained cracks may 
develop. The ensuing cracks may affect the strength of a cement or concrete 
specimen; see, for example, Van Mier (1991a) and Van Mier and Schlangen 
(1989). Combining experience from two research teams drying shrinkage 
cracking was studied using both AE source location and fluorescent epoxy 
impregnation. Several circular concrete slabs with a thickness of 42 mm and 
a diameter of 235 mm, made of two different materials, were subjected to a 
controlled drying regime; see Bisschop (2002) and Shiotani, Bisschop, and 
Van Mier, (2003). Some slabs were made of pure hardened cement paste (hcp) 
with a w/c-ratio of 0.45; the others were also made of hcp but contained 35% 
(volume) of 6-mm glass spheres. Glass, with a Young’s modulus of 77 GPa 
is an excellent substitute for aggregates, with the great advantage that the 
shape of the grains is better controlled and that a single size fraction can 
be used. The disadvantage is that the bond of the glass spheres to the sur-
rounding cement matrix is very low, which can be improved, however, by 
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sand-blasting the surface of the glass spheres. In the experiment shown here, 
smooth spheres were used. There was no danger for the glass to react with 
the cement because the total duration of the (short-term) experiments was 7 
days for controlled hardening (1 day in the mould; 6 days in CH-saturated 
tap water at room temperature), and an additional 16-h or 282-h controlled 
drying in an environmental cabin at 25% ± 5% RH and 31°C ± 0.5°C. During 
16-h drying the hcp specimen lost 22.1 g of moisture, the composite with glass 
spheres 18.1 g. At the end of the experiments the specimens were impreg-
nated by means of fluorescent epoxy, that is, using the technique explained 
in Section A4.1. Crack growth during the drying period was monitored by 
means of 6 AE sensors (diameter 6 mm × height 6 mm; resonant freq. 500 
kHz) that were attached to the top surface of a specimen, which was the dry-
ing surface. All other surfaces of the specimens were sealed with three lay-
ers of adhesive tape, which proved to be a sufficient barrier against drying. 
A Mistras AE System (Physical Acoustic Corporation) was used for acoustic 
monitoring. Because six sensors were used location analysis was possible, 
which was limited to two dimensions because all sensors were attached to 
the top (drying) surface of the slabs. Next to the location analysis various 
AE parameters were recorded, such as the peak amplitude, the rise time, the 
ring-down count, duration time, energy/absolute energy, the signal strength, 
and initiation frequency. In this appendix we only include the cumulative 
AE events, the cumulative absolute energy and the location analysis of the 
largest AE events and compare these results to the crack patterns from the 
fluorescent-epoxy impregnation.

Due to drying shrinkage, cell-like crack patterns develop, quite similar 
to the crack patterns observed in drying clay or adobe. In Figure A4.9 the 
crack patterns obtained from the vacuum fluorescent-epoxy impregnation 
are shown, both for the plain hcp (Figure A4.9b) and for the glass sphere–
cement composite (Figure A4.9c). Figure A4.9a shows the complete specimen, 
indicating the location of the six AE sensors (black circles).

Both for the hcp and the composite the shrinkage cracks develop in cell 
with varying shape. In analyzing the geometry of these crack patterns in 
more detail Bisschop (2002) found that the cell size decreased toward the 
edges of the specimens. Explanations are rather speculative at this moment. 
The formation of the cells can be explained from overcoming capillary forces 
that are present between the cement particles, as elucidated in Section 11.2 
(see also Van Mier 2007). A comparison between the AE events (small crosses) 
and the optical cracks is difficult because source-location was carried out in 
two dimensions only. Some of the sources appear to overlap with the cracks, 
in other cases there is a mismatch. Note that a 30-dB threshold was adopted, 
implying that only the strongest events are recorded. More interesting was 
the temporal evolution of the acoustic events, which is the major advantage 
of this technique.

In Figure A4.10a the results of the hcp-drying test and the composite 
are compared. Not only the cumulative AE events are shown, but also the 



299Appendix 4: Crack-Detection Techniques

cumulative absolute energy. At a later stage a number of additional tests were 
performed with a longer drying time of 282 hours. The results from these 
long-term tests have been included in Figure A4.10b. In the short-time exper-
iment the hcp appears to develop a complete crack pattern within the first 
hour; after that hardly any additional AE events are recorded. In contrast the 
composite shows not only a larger number of AE events (factor 3.5 larger than 
the hcp specimen), but also the cumulative absolute energy is much larger 
(factor 4.5 compared to the hcp specimen). Obviously, with the progressive 
drying front over the thickness of the slab, shrinkage of the cement past 
around the stiff glass particles, which give additional restraint (see Bisschop 
2002), leads to a continuous development of interface cracks along the glass 
particles. The shrinkage restraint caused by the glass particles is commonly 
referred to as “aggregate-restraint,” and will continue as long as the dry-
ing front goes deeper and drying shrinkage of the cement matrix proceeds 
into the interior of the specimen. The longer drying experiments depicted 
in Figure A4.10b show a continuation of acoustic activity in the composite, 
whereas in the hcp specimen the activity only slightly increases. The imme-
diate cracking of the hcp specimen, which occurred at 6 minutes after the 
start of the drying sequence, is caused by the steep moisture gradients that 
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FIGURE A4.9
Specimen used in short-term drying experiments (a); crack pattern (top view) in hardened 
cement paste after 16-h drying (b), and in glass sphere–cement composite (c). Note that in the 
composite the top surface has been slightly ground to show the top of the glass spheres close 
to the surface. The black circles indicate the location of the AE sensors; the small crosses in (b) 
and (c) show the locations of the most energetic AE events. (From Shiotani, Bisschop, and Van 
Mier, 2003. Engng. Fract. Mech., 70(12): 1509–1525. With permission from Elsevier.)
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develop in the specimen; see Bisschop (2002). The phenomenon is usually 
called “self-restraint.” The two types of restraint, aggregate-restraint and 
self-restraint are explained in Figure A4.11. An in-depth analysis may give 
further details about the shape of the acoustic emission events. For those 
results the interested reader is referred to the relevant literature. For the pur-
pose of this book no further analysis is needed here.

One final remark relates to the geometry of the drying shrinkage cracks in 
the third dimension. In Figure A4.12 two cross-sections of the hcp and com-
posite slabs are shown, straight through the middle of the specimens as indi-
cated in Figure A4.9a. After an initial straight crack growth perpendicular to 
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Acoustic activity in hcp and composite specimens up till 16 hours of drying (a). At the end of 
the test the specimens were impregnated. The optical crack patterns are shown in Figure A4.9. 
(b) Acoustic activity in two additional experiments in which the drying time was extended 
to 282 hours. (After Bisschop. 2002. Drying Shrinkage Microcracking in Cement-based Materials. 
Reprinted with kind permission of Dr. Jan Bisschop.)
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FIGURE A4.11
Self-restraint is caused by a moisture gradient in the structure/specimen under consideration. 
Where the humidity has decreased most, drying shrinkage deformations are largest, that is, 
close to the drying surface. A simple numerical analysis based on a transient flow analysis 
leads to the deformed structure of (a); drying occurs only along the top surface. (After Sadouki 
and Van Mier 1996. HERON, 41(4): 267–286.) The moisture profiles from NMR experiments on 
both the hardened cement paste (b) and the composite containing 35% glass particles (c) show a 
gradual drying in time. (After Bisschop, Pel, and van Mier. 2001. Creep, Shrinkage and Durability 
Mechanics of Concrete and Other Quasi-Brittle Materials, Proc. CONCREEP-6.) The drying starts 
near the surface, almost immediately, and then progressively moves deeper into the specimen. 
Note that after 12 days of drying a moisture gradient still persists, which is the reason for the 
differential deformations in (a). When the figures are presented relative to the absolute amount 
of cement in the samples, (b) and (c) are identical (see Bisschop 2002 for details). Aggregate 
restraint is caused by the presence of stiff aggregate particles: radial cracks grow from the 
interface into the surrounding cement matrix. The mechanism was shown by Golterman 
(1995). The aggregate particle is subjected to hydrostatic compression.

(a) Hardened cement paste

(b) Composite

FIGURE A4.12
Crack profiles over Section A-A (see Figure A4.9) in the hcp specimen (a) and the compos-
ite specimen (b). The drying surface is the top surface. Gray circles in Figure (b) indicate the 
glass spheres. (After Bisschop. 2002. Drying Shrinkage Microcracking in Cement-Based Materials. 
Reprinted with kind permission of Dr. Jan Bisschop.)
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the drying surface, the cracks in the hcp specimen (Figure A4.12a) reorient in 
a horizontal plane a few mm below the drying surface. This is not quite visible 
in the composite, likely because the additional aggregate restraint prevents 
the development of the horizontal cracks. There are different explanations 
for the observed behavior. Van Mier (2007) offers an explanation based on 
capillary forces between the cement particles. When the bonds between the 
cement particles are broken, due to shrinkage deformations around kernels 
in neighboring areas, the cell patterns of cracks develop. When the cracks 
penetrate into the specimens’ interior, additional drying occurs along the 
crack-faces. In addition capillary suction may assist in the development of 
the horizontal crack branches. We do not further discuss these mechanisms 
here because it is part of the debate in Section 11.2; see also Van Mier (2007) 
for further information. Important, also for the discussion in Chapter 9, is 
the notion that in hcp a full shrinkage crack pattern develops within the 
first hour after start of drying, characterized by vertical cracks growing per-
pendicular to the drying surface to a limited depth, followed by horizontal 
branching. In composite materials the cracks proceed for much longer inter-
vals as a direct consequence of aggregate restraint; also the cracks appear to 
develop at larger depths from the drying surface.

In conclusion, combining various crack detection techniques may help 
to unravel details of the fracture process. Where one technique cannot be 
applied, another may be helpful. As shown in this last section, fluorescent-
epoxy impregnation gives great detail of the crack geometry, but only at one 
selected point of the experiment. The temporal development of the fracture 
process can be monitored conveniently using the AE source location, but 
detailed information on crack geometry cannot be obtained.
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Appendix 5: Active and 
Passive Confinement

Confinement is a good way to improve the properties of a material. There 
are two ways: the first possibility, “active confinement,” is a more structural 
measure, whereas the second option, “passive confinement,” must be consid-
ered as a definite change of the material structure. In both cases the density 
and orientation of microcracks can be affected, which may lead to enhance-
ment of the mechanical properties of the material specimen, albeit some-
times only in a specific direction.

A5.1	 Active	Confinement—Multiaxial	Compression

Multiaxial compression is the most common form of active confinement. 
Not only (compressive) stresses are applied in the first principal direction, 
but also along the second or third principal axis. In Chapter 8 we showed a 
variety of different stress–deformation curves from multiaxial compression 
tests. Tests are commonly done in a standard triaxial device (Hoek-cell), in 
which two principal stresses are always equal; triaxial compression with σ1 < 
σ2 = σ3 < 0 (compressive stresses are negative), for instance tests by Richardt, 
Brandtzaeg, and Brown (1929), Kotsovos and Newman (1977), Jamet, Millard, 
and Nahas (1984); and triaxial extension σ1 > σ2 = σ3 where σ1 can be either 
tensile or compressive, and σ2 and σ3 are both compressive, for example, 
experiments by Visser and Van Mier (1994) and Visser (1998; Figure A5.1a) or 
in a “true-multi-axial testing machine,” which allows for free variation of the 
three principal stresses, for instance, Schickert and Winkler (1977) and Van 
Mier (1984; Figure A5.1b).

Tests in a standard triaxial test will always have two equal lateral stresses, 
σ2 = σ3, whereas the axial stress can be varied independently. All failure 
points lie on two intersecting lines with the failure surface in three dimen-
sions, namely the compressive meridian and the tensile meridian, both of 
which are indicated in Figure A5.2c. More possible stress combinations can 
be explored in “true” multiaxial experiments using cubes, prisms, or plates, 
which can, in principle, cover the entire stress space. In Figure A5.2a,b, a 
summary is given of 2D failure contours from experiments by Kupfer, which 
are considered the best available data at present. These experiments were 
carried out with steel brushes to transmit stresses to the platelike speci-
mens. Likewise, 3D failure contours for normal concrete are shown in Figure 
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(a)

(b)

FIGURE A5.1
Examples of a triaxial cell and a “true” multiaxial machine: (a) interior of a triaxial cell suit-
able for extensile tests on concrete and rock using 100-mm diameter cylindrical specimens. 
The entire specimen is fitted in a steel cylinder; by means of fluid pressure on the sides of 
the cylinder lateral confinement is applied; in thraxial direction tensile loading is applied by 
means of a servocontrolled hydraulic actuator. (After Visser and Van Mier. 1994. Computer 
Methods and Advances in Geomechanics.) (b) Machine suitable for testing 100-mm cubes allow-
ing for free variation of all three principal stresses; in each direction compressive stresses up 
to a maximum of –200 MPa (or tensile stresses up to 140 MPa) can be applied by means of a 
servocontrolled hydraulic actuator, allowing to measure the complete stress–strain behav-
ior including the softening regime. (After Van Mier. 1984. Strain-Softening of Concrete under 
Multiaxial Loading Conditions.)
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results from 3D proportional stress-path and proportional deformation path tests (From Van 
Mier. 1984. Strain-Softening of Concrete under Multiaxial Loading Conditions). Note that the axes in 
(a) and (b) are dimensionless with respect to the uniaxial compression strength, whereas in (c) 
absolute values are shown. (Parts (a) and (b) are from Kupfer. 1973. Behaviour of Concrete under 
Short Term Multiaxial Loading, with Emphasis on Biaxial Loading. With permission of Deutscher 
Ausschuss für Stahlbeton.)
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A5.2d. Here the apparatus shown in Figure A5.1b was used; loading was also 
applied by means of steel brushes. Only part of the stress-space was inves-
tigated using proportional stress-paths σ2 = ασ1 and displacement-paths u2 
= αu1 (α = +0.2, 0, –0.1, and –0.33). As a matter of fact the individual curves 
of Figure A5.2d lie on tilted planes σ3 = βσ1 (with β = 0, 0.05, and 0.10). Going 
from 2D- to 3D-confined tests results in a rapidly expanding stress contour, 
and it will be obvious that soon the loading equipment will fail to register 
the ultimate stress if the minor confining stress keeps increasing. Therefore 
it is assumed that the failure contour for concrete, as shown schematically in 
Figure A5.2c, is an open-ended cone in the 3D-compression regime, with the 
top lying in the triaxial tensile regime. The shape of the cone in deviatoric sec-
tions (which are oriented perpendicular to the hydrostatic axis) varies from 
rounded-triangular (at low σ0) to circular (for high σ0). The data in Figure 
A5.2d are compared to the five-parameter model developed by Willam and 
Warnke (1974). The parameter fit is shown in the inset. The match between 
data and model is quite agreeable. In line with the approach followed in this 
book, the better option is to calculate the failure strength (and the complete 
stress deformation behavior) for a variety of stress combinations from ab 
initio analyses. In that case no separate equations for the failure envelope 
would be needed. In other words, the failure envelope is an integral part of 
the constitutive equations.

In Figure 8.14 in Chapter 8 the two distinct failure modes that are found 
under multiaxial compression were mentioned. The first mode is found 
under uniaxial compression, and leads to a more-or-less symmetrical pattern 
of short inclined cracks. This so-called “cylindrical mode” is found along the 
entire compressive meridian, at least below the brittle-to-ductile transition. 
Above this transition it is not entirely clear how the material fails, nor if it 
is possible to separate a test specimen in several distinct parts. The other 
type of failure mode is found along the tensile meridian, and is called the 
“planar mode” or extensile failure. It is characterized by a horizontal split-
ting-type or shear crack in the plane of the two largest compressive stresses. 
If an extension test is carried out in a conventional triaxial cell, the failure 
plane is oriented perpendicular to the axis of the cylindrical specimen. We 
do not further discuss extensile failure in the context of this book. Instead, 
we take a closer look at the “cylindrical” failure mode. The orientation of the 
microcracks in an experiment can be measured using stereological methods 
(see, e.g., Stroeven 1979 who applied the method, which is described in detail 
in Underwood 1970). By means of fluorescent petroleum the microcracks 
on the surface of a specimen under load can easily be visualized (see also 
Section A4.1). The petroleum will be sucked into the concrete, in particular 
where cracks are present. The fluorescent particles will concentrate along the 
edges of cracks. In Figure A5.3 two examples are shown of crack-orientation 
distributions using the so-called “roses-of-intersections” from stereology. 
Simply counting the numbers of intersecting cracks along radial lines from 
the center of the specimen, and normalizing the count over the length of the 
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measuring line, is a good indication for the number of cracks and their ori-
entation. Figure A5.3 shows the orientations for two 100-mm cubes loaded 
in uniaxial compression at two stages in the postpeak regime, at approxi-
mately –40 MPa (corresponding to axial strains ε1 = –0.00291 and –0.00341 as 
indicated in the diagrams) and at –20 MPa (which relates to axial strains ε1 = 
–0.00453 and –0.00562, that is, well in the softening regime).

The specimen of Figure A5.3a was loaded perpendicular to the casting 
direction; the one of Figure A5.3b parallel to casting, which results in a differ-
ent orientation of initial damage from casting. Just beyond peak, at –0.00291 
and –0.00341 strain the rose-of-number-of-intersections is elongated in 
Figure A5.3a, and more circular in Figure A5.3b. This means that the micro-
cracks are better aligned to the loading direction in the first specimen, which 
was loaded perpendicular to the direction of casting. This simple result, 
which confirms our intuitive idea about the importance of the casting direc-
tion, shows that the method can be useful. When the specimens are further 
strained in the postpeak regime the elongated shape of the perpendicular-
loaded specimen becomes more pronounced, but the parallel-loaded speci-
men now also shows a more elongated orientation distribution. Obviously, 
as a result of the applied uniaxial compressive load new microcracks 
develop, which are oriented in the loading direction. In three dimensions 
the circular and elliptical roses translate to oblate- and prolate-ellipsoids, 
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FIGURE A5.3
Two examples of roses-of-numbers-of-intersections per unit testline length for 100-mm con-
crete cubes loaded perpendicular to the casting direction (a), and parallel to the direction of 
casting (b). The diagrams are a measure of the damage-anisotropy of the concrete specimens 
at different stages of loading. (After Van Mier. 1984. Strain-Softening of Concrete under Multiaxial 
Loading Conditions.)
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assuming symmetric cracking behavior in these uniaxial-loaded specimens. 
The degree of crack-anisotropy can be derived from the relative length of the 
three axes of the ellipsoids. This is exactly what drives the behavior under 
multiaxial compression: the state of stress determines where cracks can or 
cannot develop, and as a result the crack orientation and crack density dis-
tributions are affected.

It is interesting to extend this idea about crack orientation distributions 
in experiments where the specimens are subjected to a second multiaxial 
loading regime after being damaged during a first loading history with 
completely different orientation. Without having to handle the specimens 
between the two loading regimes, 90° rotations are the best (only) possible 
choice when a “true” multiaxial machine is available (note: for cylindrical 
specimens applying torsion in addition to a triaxial loading may also pro-
vide rotation of the loading axes, but this presents a rather severe complica-
tion to otherwise rather simple conventional triaxial cells). In Figure A5.4 
two results are shown from experiments where a second loading is applied, 
which, in both cases, is 90° rotated with respect to the first loading. In the 
test of Figure A5.4a the first loading is almost similar to uniaxial compres-
sion, except that a small symmetric confinement is present; that is, σ2 = σ3 = 
–1 MPa. The specimen is loaded approximately to ε1 = –0.0045, well after the 
peak. Next, after unloading the situation is changed: σ3 becomes the main 
loading direction, whereas σ1 = σ2 = –1 MPa. This specimen thus repre-
sents an example of the (cylindrical) failure mode observed along the com-
pressive meridian (see Figure  8.14b). The second specimen, Figure A5.4b, 
is initially loaded with σ2 = 0.5σ1 and σ3 = –1 MPa up to approximately ε1 
= –0.005; subsequently, after unloading the major and minor stresses are 
exchanged and σ2 is coupled to σ3, namely following σ2 = 0.5σ3 and σ1 = –1 
MPa. Displacement-control was used in all these experiments in the direc-
tion of the major principal stress. Thus the second test is representative for 
the second, planar failure mode (Figure 8.14a).

The specimen in Figure A5.4a fails symmetrically due to the first load-
ing, and the expected damage orientation distribution takes the shape of 
an oblate ellipsoid; the second loading is also symmetric, but now in the 
σ3-direction and the resulting damage orientation distribution will change 
to a more spherical shape as indicated. Interestingly the strength measured 
after the second loading does not reach the initial level of –53.46 MPa, but 
reaches just –42.90 MPa, that is, about 20% lower. The reason will be obvious: 
because damage has already been inflicted from the first loading, and, more 
importantly, oriented in the right direction, the second loading will simply 
cause damage to increase from the already substantial level. Therefore a 
critical state will be reached much earlier, and the second peak load (σ3p) 
decreases. The σ3–ε3-curve appears to join the first curve (σ1–ε1) almost 
exactly at the right spot in the softening regime, as if just a cyclic loading 
was applied without rotating the loading direction.
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The planar-mode test of Figure A5.4b behaves quite differently: now the 
second loading has about the same failure strength as measured during the 
first loading (viz. –74.29 MPa and –72.62 MPa before and after rotation), and 
except for the long shallow part in the beginning of the σ3–ε3-diagram the 
curves look identical. The damage orientation distribution from the first 
loading is a prolate ellipsoid, and simply insufficient damage has been done 
along the σ3-axis to affect the second diagram. Thus, a new damage orien-
tation distribution, again with a prolate ellipsoidal shape has to develop: a 
new, second crack system is needed to fail the specimen after rotation. The 
shallow part of the σ3–ε3-curves in Figures A5.4a and A5.4b is caused by the 
damage from the first loading history and is (in part) oriented perpendicular 
to σ3. These cracks must be closed before significant stresses can develop 
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FIGURE A5.4
Stress–strain diagrams for two specimens that were loaded two times: (a) cylindrical failure 
mode, and (b) planar failure mode. The loading situation is explained in the main text. The 
damage-orientation distributions due to the first and second loadings are indicated below each 
diagram. (After Van Mier. 1984. Strain-Softening of Concrete under Multiaxial Loading Conditions.)
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and quite obviously, larger deformations are required. This is a contact effect 
caused by the geometrical mismatch between the two opposite crack-faces.

These examples show very nicely how anisotropy in the damage orien-
tation distribution affects the mechanical behavior of a specimen when it 
is loaded again. It is not unthinkable that such situations also develop in 
real practice. The amounts of damage (microcracks) as well as the damage 
orientations are very important parameters on which a useful constitutive 
equation for concrete should be based. Before this can be achieved, however, 
much experimental work will be needed, for instance, measuring the crack 
topography for different stress combinations at varying loading levels by 
means of x-ray computed tomography (see Section A4.2).

A5.2	 Passive	Confinement—Fiber-Reinforced	Concrete

Mixing fibers in concrete can have the same effect as applying external con-
finement. It was first recognized by Yin et al. (1990) in biaxial experiments on 
fiber-reinforced concrete. The biaxial failure envelopes, more specifically, the 
biaxial compression regime, expanded when fibers were added to the con-
crete, indicating that the fibers restrain crack growth in the free (unconfined) 
direction. Thus, like adding a small confining stress in the third direction, 
fibers will help to restrain crack growth. The two mechanisms thus appear 
to be similar; see Figure A5.5.

Another form of passive confinement is the use of spiral reinforcement, 
or steel cladding in columns to ensure that the concrete is fully contained 
in steel reinforcement. When axial load is applied, the concrete will expand 
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σ2 = σ3 σ2 = σ3 = 0
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σ1 σ1Microcracks
(dashed lines)

Fibers
(Solid lines)

(b) Passive confinement
(from fibers)

(a) Active
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Delayed microcrack growth
           higher strength

FIGURE A5.5
Delayed microcrack growth in general leads to a higher strength. Either active (external) con-
finement (a) or adding fibers to the concrete (b) is an effective measure.
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in the lateral direction, which is restrained by the spiral reinforcement, or 
steel cylinders. Much work has been done to optimize the steel content to 
obtain the best results against the lowest costs. We do not dwell further on 
this form of passive confinement, but have a little closer look at the effect of 
(steel) fiber reinforcement.

In a conference in 1992 in Sheffield (see Swamy 1992) my impression was 
that delegates were rather disappointed because for 40 years no appreciable 
progress had been made. In spite of all the research done no real applications 
of FRC had emerged at that time. This has changed a lot in the last decade 
because mechanisms are better understood, and fibers are not just added to 
a concrete mixture. They are incorporated in the mixture design from the 
very first considerations. Fibers work best when no large aggregates are pres-
ent in the concrete, because in that way the fiber distribution is not affected. 
Moreover, the bonding of fibers to finer-grained mixtures is much better, as 
the fibers are better contained in the particle structure. At best the grain-
size distribution is adjusted to the size of the fibers, most importantly the 
diameter, as shown by Rieger and Van Mier (2010). In addition one should 
take care that the bonding length is sufficiently long to assure pull-out of the 
fibers from the concrete, rather than breaking them. Smaller fibers may help 
to bridge and arrest the smallest cracks, whereas longer and thicker fibers 
are needed to guarantee an appreciable effect when large fractures develop. 
In 1987 Rossi, Acker, and Mallier made this hypothesis and suggested add-
ing fibers of two different sizes to concrete: the smaller fibers would restrain 
microcracking in the prepeak regime (Rossi et al. called this the “material 
level”) and larger fibers would arrest cracks in the softening regime (to which 
Rossi et al. referred to as the “structural level”). High-modulus fibers, such as 
steel, are usually considered the best choice inasmuch as they will be better 
capable of redistributing stresses after cracks develop in the concrete matrix. 
The concept of 1987 was tried and shown to work by Rossi and Renwez (1996). 
These ideas are spreading, not least due to the many conferences organized 
in the last two decades; see, for instance, the series of HPFRCC-Conferences, 
the last one in 2007 in Mainz (Reinhardt and Naaman 2007).

Much can be written about fiber concrete, but here we limit ourselves to 
a few significant results that are also of interest for the development of the 
universal 4-stage fracture model in Chapter 10. The idea of adding fibers of 
different size, that is, developing hybrid fiber concrete may lead to a substan-
tial increase of flexural strength as shown in Figure A5.6. The results shown 
all relate to hybrid fiber concrete containing steel fibers of two different sizes 
(Markovic, Walraven, and Van Mier 2003 and Van Gunsteren 2003) or three 
different sizes (Stähli and van Mier 2004). The fiber-factor is a parameter that 
weighs the contributions of the different types of fibers, via the aspect ratio 
l/d (where l is the fiber length and d the fiber diameter) and volume fraction 
V of each fiber type in a single (dimensionless) number, following:
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Figure A5.6 clearly shows that adding fibers of one, two or three different 
sizes, and at increasingly higher volumes, leads to a substantial increase of 
the flexural strength (in comparison: plain concrete has a flexural strength 
around 8–10 MPa). An important condition is that the concrete remains work-
able when cast and that the fibers do not segregate; the addition of new and 
improved (super-) plasticizers is a key factor in these developments. What 
is of more interest here is not so much the strength increase, but rather the 
improvement in the load deformation behavior, which changes from quasi-
brittle behavior for plain concrete to a highly ductile response for hybrid 
fiber concrete. In Figure A5.7 some results from Markovic (2006) are shown. 
In the lower left corner, the behavior of plain concrete is shown. Adding 
2% of 13-mm long fibers has a large effect on the flexural strength; in the 
prepeak behavior not so much deformation is registered, but postpeak the 
deformations (midpoint deflection) are huge. When 1% of 60-mm long fibers 
are present in the mixture, a slightly lower strength is found compared to 
the mixture with 13-mm fibers, but the deformations up to peak are larger, 
as is the postpeak ductility. Obviously crack-face bridging from the long 
fibers is more effective than from the shorter fibers (note: an example of fiber 
bridging is shown in Figure 10.13 in Section 10.4). Now, if the two curves are 
added, the dotted line is obtained. This result would be reached if no syn-
ergy occurred between the two types of fibers in hybrid fiber concrete. Some 
synergy occurs, however, as experiments on hybrid fiber concrete containing 
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FIGURE A5.6
Increase of flexural strength from 4-point bending tests with increasing fiber factor Vfib. (After 
Stähli and Van Mier. 2004. Proc. 5th Int’l Conf. on Fracture of Concrete and Concrete Structures 
(FraMCoS-V).)
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2% 13-mm fibers and 1% 60-mm fibers show: although the strength is almost 
equal to the analytical result, the deformations before and after peak increase 
significantly. Thus, mixing different types of fibers seems like a good solu-
tion to optimize the properties of concrete, see for example in Markovic 
(2006) and Stahli (2008). Microcrack growth can be delayed considerably, that 
is, the fibers work perfectly as internal confinement, and overall ductility, 
especially in the postpeak regime is significantly improved due to the addi-
tional effect from fiber bridging (see Figure 10.13).

Finally, the directionality of the fibers may further enhance the properties 
of these concretes in some directions. Aligning the fibers is possible using 
a variety of methods, for example, sprinkling fibers through narrow slits in 
molds for producing Slurry Infiltrated Fiber CONcrete (SIFCON; Van Mier 
and Timmers 1992) or by means of magnetic positioning as proposed by 
Linsel (2005). Here we used the fluidity of the hybrid fiber concrete as a tool 
to align fibers by controlling the flow in the longitudinal direction of the 
beams. In that way fibers are well aligned parallel to the main tensile direc-
tion, and better performance is expected. Note that due to the alignment 
the material will become anisotropic, and properties are likely improved in 
just one direction, and may even get worse in other directions; see also Van 
Mier and Timmers (1992). In Figure A5.8 some of the results from the flow 
tests are shown.

The results in Figure A5.8 suggest that a relation between the number of 
fibers in a cross-section and the nominal bending strength exists: the higher 
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the amount of fibers is, the higher the flexural strength. Higher fiber counts 
and higher flexural strengths are observed in the “B” and “C” prisms, that 
is, the horizontal and rising branches of the U-shaped mold. Clearly, fibers 
are better aligned in those parts; in the “A”-specimens the concrete simply is 
cast from the top and does not really flow. Thus flowing of concrete appears 
to be a key factor in fiber alignment and may help to obtain better strength. 
Using dog-bone-shaped specimens, and pumping the concrete in a vertical 
standing mold will also result in highly aligned fibers in the neck of the dog-
bone. Stähli (2008) showed that the tensile strength also depends on the cast-
ing method, quite similar to the results shown here for bending. Thus, as in 
actively confined concrete, directionality in the properties may be achieved 
in fiber concrete as well. The results may in the future find an application in 
the precast concrete industry where local properties of a building element 
may be enhanced by casting it in the right way.
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The study of fracture mechanics of concrete has developed in recent years to 
the point where it can be used for assessing the durability of concrete structures 
and for the development of new concrete materials. The last decade has seen 
a gradual shift of interest toward fracture studies at increasingly smaller sizes 
and scales. Concrete Fracture: A Multiscale Approach explores fracture 
properties of cement and concrete based on their actual material structure.

Concrete is a complex hierarchical material, containing material structural 
elements spanning scales from the nano- to micro- and meso-level. Therefore, 
multiscale approaches are essential for a better understanding of mechanical 
properties and fracture in particular. This volume includes various examples 
of fracture analyses at the micro- and meso-level. The book presents models 
accompanied by reliable experiments and explains how these experiments 
are performed. It also provides numerous examples of test methods and 
requirements for evaluating quasi-brittle materials. More importantly, it 
proposes a new modeling approach based on multiscale interaction potential 
and examines the related experimental challenges facing research engineers 
and building professionals.

The book’s comprehensive coverage is poised to encourage new initiatives for 
overcoming the difficulties encountered when performing fracture experiments 
on cement at the micro-size/scale and smaller. The author demonstrates how 
the obtained results can fit into the larger picture of the material science  
of concrete—particularly the design of new high-performance concrete 
materials which can be put to good use in the development of efficient and 
durable structures.
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